Integration of Hypergeometric Supertrigonometric Functions Using Generalized Hypergeometric Functions and its Applications
DOI:
https://doi.org/10.3126/jist.v30i1.72429Keywords:
Clausen hypergeometric, definite integration, generalized hypergeometric, hypergeometric supertrigonometricAbstract
This study explores the integration of hypergeometric supertrigonometric functions, with a particular focus on hypergeometric supersine and hypergeometric supercosine functions, by leveraging the properties and relationships of generalized hypergeometric functions. By expressing hypergeometric supertrigonometric functions in terms of hypergeometric functions, we derive integral representations that connect these functions to classical results in generalized hypergeometric theory. The work emphasizes the role of convergence conditions, parameters and highlighting special cases where the results can be expressed in simple form, providing a unified framework for evaluating integrals involving hypergeometric trigonometric functions.
Downloads
References
Bailey, W.N. (1935). Generalized hypergeometric series. Cambridge University Press.
Basnet, G.B., Pahari, N.P., & Paudel, R.P. (2024). Double integrals involving generalized hypergeometric functions and its applications. The Nepali Mathematical Sciences Report, 41(2), 79-89.
Basnet, G., Pahari, N.P., & Poudel, M.P. (2024). A result on an integral involving product of two generalized hypergeometric functions and its applications. Journal Nepal Mathematical Society (JNMS), 7(2), 22-29.
Bateman, H. (1953). Higher transcendental function. McGra-Hill Book Company, INC.
Binet, J.P. (1839). Memoire sur les integrales defines euleriennes et sur leur application a la theorie des suites ainsi qu 'al' evaluation des functions des grands nombres. Journal de L'Ecole Polytechnique 16, 123-343.
Euler, L. (1729). Letter to Goldbach. Correspondence math.net phy. de quelques celebres geometres du 18e siecle, publee par Fuss,, vol. 1.
Euler, L. (1772). Evolutio formulae integralis int x^(f-1) dx (lx)(m/n) integratione a valore x = 0 and x = 1 extensa. Novi Commentarii Acadiae Scientiaram petropolitanae, 91-139.
Gauss, C.F. (1812). Disquisitiones generals circa seriem infinitam 1 + m.n/l x/1! + m(m+1).n(n+1)/l(l + 1) x^2/2! + ... Commentationes Societiones Regiae Scientiarum Gottingensis Recentires, 2, 1-46.
Legendre, A.M. (1814). Exercise de calcul integral. Courcire, 1, 2.
Manocha, H.S., & Srivastava, H.M. (1884). A treatise on generating functions, mathematics and its applications. Ellis Horwood Series.
Pochhammer, L. (1870). Ueber hypergeometrischen funktionen ordungen. Journal fur die Reine und Angewandte Mathematik, 71, 316-352.
Poudel, M.P., Harsh, H.V., Pahari, N.P., & Rathie, A.K. (2023). An interesting integral involving product of two generalized hypergeometric functions. Boletim da Sociedade Paranaense de Matematica, 40, 1-6.
Rainville, E.D. (1960). Special functions. MacMillan, New York.
Yang, X.J. (2020). Theory and applications of special functions for scientists and engineers. Springer, Singapore.
Yang, X.J. (2021). An introduction to hypergeometric, supertrigonometric, and superhyperbolic functions. Academic Press.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Institute of Science and Technology, T.U.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The views and interpretations in this journal are those of the author(s). They are not attributable to the Institute of Science and Technology, T.U. and do not imply the expression of any opinion concerning the legal status of any country, territory, city, area of its authorities, or concerning the delimitation of its frontiers of boundaries.
The copyright of the articles is held by the Institute of Science and Technology, T.U.