Indirect somatic embryogenesis and plant regeneration through leaf and nodal cultures of Piper longum L.

Authors

DOI:

https://doi.org/10.3126/banko.v34i2.62729

Keywords:

Coconut water, micropropagation , Murashige and Skoog medium, nodular callus, somatic embryos

Abstract

This research aims to develop a protocol for inducing somatic embryogenesis and plant regeneration through callus in Piper longum. Leaf and nodal explants were cultured in the Murashige and Skoog medium added with 2, 4-dichlorophenoxyacetic acid (2, 4-D) or α-naphthaleneacetic acid (NAA), Kinetin (KN), and 10% coconut water (CW). The maximum frequency of embryogenic/nodular callus development (66.66%) and the number of embryos (28.33±3.511) per 0.2-0.3 g embryogenic callus developed from the leaf explant was obtained in the MS + 1.5 mg/L 2, 4-D + 1.0 mg/L KN + 10% CW. Similarly, the maximum frequency of embryogenic/nodular callus production (50%) and the number of embryos (12.66±2.51) per 0.2-0.3 g embryogenic callus developed from the stem explant were obtained in the MS + 1.0 mg/L NAA + 10% CW. Somatic embryo differentiation, maturation, and conversion were obtained when the nodular calli with various stages of embryos were transferred to the MS + 0.25 -1.5 mg/L thidiazuron + 10% CW. Somatic embryos were also transformed into seedlings after being transplanted to the MS medium with no growth regulators. This study developed a technique for micropropagation of P. longum using somatic embryos derived from leaf and nodal explants, which could serve as the foundation for an alternate method of micropropagation and ex-situ germplasm conservation.

Downloads

Download data is not yet available.
Abstract
171
pdf
81

References

References

Adhikari, S. R., & Pant, B. (2013). Induction and Proliferation of in vitro Mass of Callus of Withania somnifera (L.) Dunal. Research in Plant Sciences, 1(8): 58-61. https://doi.org/10.12691/plant-1-3-2.

Bhat, S. R., Chandel, K. P. S. & Malik, S. K. (1995). Plant regeneration from various explants of cultivated Piper species. Plant Cell Reports, 14: 398–402. https://doi.org/10.1007/BF00238605

Bhatia, S. (2015). Plant Tissue Culture. Modern Applications of Plant Biotechnology in Pharmaceutical Sciences, 31–107. doi:10.1016/b978-0-12-802221-4.00002-9

Choudhary, N., & Singh, V. (2018). A census of P. longum's phytochemicals and their network pharmacological evaluation for identifying novel drug-like molecules against various diseases, with a special focus on neurological disorders. PLoS ONE, 13(1): e0191006. https://doi.org/10.1371/journal.pone.0191006

De Sousa, P. C. A., Souza, S. S. S. E., Meira, F. S., Meira, R. D. O., Gomes, H. T., Silva-Cardoso, I. M. D. A., & Scherwinski-Pereira, J. E. (2020). Somatic embryogenesis and plant regeneration in Piper aduncum L. In Vitro Cell. Dev. Biol.-Plant, 56: 618–633. https://doi.org/10.1007/s11627-020-10110-y

DPR, (2012). Plants of Nepal-Fact Sheet, Department of Plant Resources, Government of Nepal, Ministry of Forest and Soil Conservation, Kathmandu, Nepal.

DPR, (2017). Plant Source, Newsletter. Department of Plant Resource, Government of Nepal, Ministry of Forest and Soil Conservation, Kathmandu, Nepal.

Fay, M. F. (1992). Conservation of rare and endangered plants using in vitro methods. In Vitro Cell. Dev. Biol. Plant, 28: 1–4.

Fay, M. F. (1994). In what situation is in vitro culture appropriate to plant conservation? Biodiv. Conserv., 3: 176–183.

Ferreira, J.C. B., de Araújo Silva-Cardoso, I. M., de Oliveira Meira, R., & Scherwinski-Pereira, J. E. (2022). Somatic embryogenesis and plant regeneration from zygotic embryos of the palm tree Euterpe precatoria Mart. Plant Cell Tiss Organ Cult, 148: 667–686. https://doi.org/10.1007/s11240-022-02227-2

Giri C., Shyamkumar B., & Anjaneyulu C. (2004). Progress in tissue culture, genetic transformation and applications of biotechnology to trees: an overview. Trees, 18: 115–135. 10.1007/s00468-003-0287-6

IUCN, (2004). National Register of Medicinal and Aromatic Plants (Revised and updated). IUCN–The World Conservation Union, Kathmandu, Nepal.

Joseph, B., Joseph, D., & Philip, V. J. (1996). Plant regeneration from somatic embryos in black pepper. Plant Cell Tissue Organ Culture, 47: 87–90. https://doi.org/10.1007/BF02318970

Joshee, N., Biswas, B. K., & Yadav, A. K. (2007). Somatic Embryogenesis and Plant Development in Centella asiatica L., a Highly Prized Medicinal Plant of the Tropics. Hortscience, 42(3): 633–637.

Joshi, P. R., Pandey, S., Maharjan, L., & Pant, B. (2022). Micropropagation and assessment of genetic stability of Dendrobium transparens Wall. Ex. Lindl. using RAPD and ISSR markers. Front. Conserv. Sci. 3: 1083933. https://doi.org/10.3389/focaccia.2022.1083933.

Mazri, M. A., Belkoura, I., Meziani, R., Mokhless, B., & Nour, S. (2017). Somatic embryogenesis from bud and leaf explants of date palm (Phoenix dactylifera L.) cv. Najda. 3 Biotech., 7(1): 58. https://doi.org/10.1007/s13205-017-0676-y.

Murthy, B. N. S., Murch, S. J., & Saxena, P. K. (1998). Thidiazuron: A potent regulator of in vitro plant morphogenesis. In Vitro Cell Dev. Biol. plant, 34: 267-275

Nair, R. R., & Gupta, S. D. (2003). Somatic embryogenesis and plant regeneration in black pepper (Piper nigrum L.): I. Direct somatic embryogenesis from tissues of germinating seeds and ontogeny of somatic embryos. The Journal of Horticultural Science and Biotechnology, 78(3): 416-421, https://doi.org/10.1080/14620316.2003.11511641

Nair, R. R., & Gupta, S. D. (2006). High-frequency plant regeneration through cyclic secondary somatic embryogenesis in black pepper (Piper nigrum L.). Plant Cell Rep, 24: 699–707. https://doi.org/10.1007/s00299-005-0016-2

Nhut, D. T., Hahn, N. T. M., Tuan, P. Q., Nguyet, T. M., Tram, N. T. H., Chinh, N. C., Nguyen, N. H., & Vinh, D. N. (2006). Liquid culture as a positive condition to induce and enhance quality and quantity of somatic embryogenesis of Lilium longiflorum. Sci. Hortic., 110: 93-97.

Pant, B. (2014). Application of Plant Cell and Tissue Culture for the Production of Phytochemicals in Medicinal Plants. In R. Adhikari and S. Thapa (Ed.), Infectious Diseases and Nanomedicine II, Advances in Experimental Medicine and Biology (pp. 808), Springer India. https://doi.org/10.1007/978-81-322-1774-9_3.

Pandey, S., Maharjan, L., & Pant, B. (2023). In vitro Propagation and Assessment of Genetic Homogeneity using RAPD and ISSR Markers in Tinospora cordifolia (Wild.) Hook. F. & Thoms, An Important Medicinal Plant of Nepal. Journal of Nepal Biotechnology Association, 4(1): 27–36. https://doi.org/10.3126/jnba.v4i1.53443

Parida, R., & Dhal, Y. (2011). A study on the micro-propagation and antioxidant activity of Piper longum (an important medicinal plant). Journal of Medicinal Plants Research, 5(32): 6991-6994. https://doi.org/10.5897/JMPR11.1067

Rao, N. K. (2004). Plant genetic resources: Advancing conservation and use through biotechnology. Afr. J. Biotechnol. 3:136–145.

Saito, H., & Nakano, M. (2002). Plant regeneration from suspension cultures of Hosta sieboldiana. Plant Cell Tiss. Organ Cult., 71: 23–28.

Santos, A. L. W., Silveira, V., Steiner, N., Vidor, M., & Guerra, M.P. (2002), Somatic embryogenesis in parana pine (Araucaria angustifolia (Bert.) O. Kuntze). Braz. Arch. Biol. Technol., 45(1): 97-106

Sarasan, V., Thomas, E., Lawrence, B., & Nair, G. M. (1993). Plant regeneration in Piper longum L. (Piperaceae) through direct and indirect shoot development. J. Spices Aroma. Crops. 2: 34–40.

Sasi, S., & Bhat, A. (2016). Optimization of cyclic somatic embryogenesis and assessing genetic fidelity in six varieties of black pepper (Piper nigrum L). Journal of Medicinal Plants Studies, 4(4): 109-115

Sathelly, K., Podha, S., Pandey, S., Mangamuri, U., & Kaul, T. (2016). Establishment of Efficient Regeneration System from Leaf Discs in Long Pepper an Important Medicinal Plant (Piper longum L.). Med Aromat Plants, 5: 248. https://doi.org/10.4172/2167-0412.1000248

Sreenivasu, K., Malik, S. K., Ananda Kumar, P., & Sharma, R. P. (1998). Plant regeneration via somatic embryogenesis in pigeon pea (Cajanus cajan L. Millsp). Plant Cell Rep., 17: 294-297.

Szewczyk-Taranek, B., & Pawłowska, B. (2015). Recurrent somatic embryogenesis and plant regeneration from seedlings of Hepatica nobilis Schreb. Plant Cell Tiss Organ Cult, 120: 1203–1207. https://doi.org/10.1007/s11240-014-0661-7

Thapa, C. B. (2020). Ethnomedicinal Practices by Tharu Community in Rupandehi and Nawalparasi districts, Western Nepal. Journal of Institute of Science and Technology (JIST), 25(2): 93-106. https://doi.org/10.3126/jist.v25i2.33745

Thapa, C. B., Pant, K. K., Bhattarai, H. D., & Pant, B. (2023). In Vitro Induction and Proliferation of Callus in Piper longum L. through Leaf Culture. Nepal Journal of Science and Technology, 21(1): 13-22. https://doi.org/10.3126/njst.v21i1.49892

Venkatachalam, P., Kavi Kishor, P. B., Geetha, N., Thangavelu, M., & Jayabalan, N. (1999). A Rapid Protocol for Somatic Embryogenesis from Immature Leaflets of Groundnut (Arachis hypogaea L.). In Vitro Cellular & Developmental Biology. Plant, 35(5): 409–412. http://www.jstor.org/stable/4293275

Williams, E. G., & Maheswaran, G. (1986). Somatic embryogenesis: factors influencing coordinated behavior of cells as an embryogenic group. Ann Bot, 57: 443–462. https ://doi.org/10.1093/oxfordjournals.aob.a0871 27

Xu, K-D., Wang, W., Yu, D-S., Li, X-L., Chen, J-M., Feng, B-J., Zhao, Y-W., Cheng, M-J., Liu, X-X., & Li, C-W. (2019). NAA at a high concentration promotes efficient plant regeneration via direct somatic embryogenesis and SE-mediated transformation system in Ranunculus sceleratus. Scientific Reports, 9: 18321. https://doi.org/10.1038/s41598-019-54538-8

Yong-Wook, K. (2000). Somatic embryogenesis in Quercus acutissima. In S. M. Jain, P. K. Gupta, and R. J. Newton (Eds.). Somatic embryogenesis in woody plants (pp. 671–685). Kluwer Academic Publishers, Dordrecht, The Netherlands

Yusuf, A., Tyagi, R. & Malik, S. (2001). Somatic embryogenesis and plantlet regeneration from leaf segments of Piper colubrinum. Plant Cell, Tissue and Organ Culture, 65: 255–258. https://doi.org/10.1023/A:1010678609606

Zhang, Q., Chen, J., & Henny, R. J. (2004). Direct somatic embryogenesis and plant regeneration from leaf, petiole, and stem explants of Golden Pothos. Plant Cell Rep., 23(9): 587-95. https://doi.org/10.1007/s00299-004-0882-z.

Downloads

Published

2024-11-22

How to Cite

Thapa, C. B., Pant, K. K., Bhattarai, H. D., & Pant, B. (2024). Indirect somatic embryogenesis and plant regeneration through leaf and nodal cultures of Piper longum L. Banko Janakari, 34(2), 16–28. https://doi.org/10.3126/banko.v34i2.62729

Issue

Section

Articles