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Abstract

In general, the classical Traveling Salesman Problem (TSP) with assumptions of uniform travel times
does not fully apply due to factors like fluctuating traffic conditions, diverse transportation modes,
and varying resource availability. This research seeks to tackle the optimization of time-specific profit
within the TSP framework while considering travel times dependent on available resources. The study
also introduces an approach to ertend the classical TSP model. accommodating resource-dependent
travel times to mazrimize profit from visiting a specific set of locations within a defined timeframe. A
mathematical formulation is presented, integrating the variables of travel time variability, resource
availability, and profit generation into the TSP framework. This method acknowledges the dynamic
nature of travel times and efficiently utilizes resources to achieve optimal profit. Furthermore, it is
ensured that wdentifying the optimal solution using this approach will not pose a greater computational

challenge than solving the classical TSP.
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Introduction

The Traveling Salesman Problem (TSP) is a classic and fundamental challenge within the realm of
operations research, representing a key combinatorial optimization problem. At its core, the TSP involves
finding the most efficient route that connects a specified set of locations, with the requirement of making a
single stop at each location before returning to the starting point. A central challenge of the TSP revolves
around determining the most cost-effective sequence for the salesman to visit the varions locations. The
primary objective is to construct a tour that, at the lowest possible cost, includes every designated site.
Real-world scenarios introduce variability in travel times due to factors such as traffic congestion, diverse
transportation modes, and fluctuating resource availability. In contrast, the classical TSP assumes
constant travel times between sites, adding a new layer of complexity to the optimization process: the
need to minimize travel distance while also optimizing for the time-specific profit generated from these

journeys.

The Traveling Salesman Problem (TSP) is a well-known NP-hard problem, widely recognized for its sig-
nificant computational complexity. Various problem-solving approaches exist, including cutting planes,
branch and bound algorithms, dynamic programming algorithms, and other recommended practices.
Additionally, employing approximation techniques is a viable strategy for tackling the TSP. Solution
procedures for the problem in some dimensions can be found in works by Hartley (1985), Williams
(1999), Cook et al. (2008), and Cook (2011) etc.

The Traveling Salesman Problem (TSP) is traditionally based on the asswunption that the distance (or
travel time or cost) between any pair of cities is fixed. However, in practical settings such as manufac-
turing applications or transportation svstems, processing or travel times can be influenced and managed
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using finite, expendable resources such as financial budgets, overtime, energy, fuel, subcontracting, or
manpower. It's common for inereasing the available resources to yield diminishing reductions in travel

time.

This study introduces a unique extension of the Traveling Salesman Problem (TSP) where travel times
are influenced by available resources, with a constraint on the total resource capacity. The objective goes
bevond determining the sequence of city visits: it also aims to optimize resource allocation to maximize
profit per unit of time, termed the profit rate. In contrast to typical TSP variants with predefined edge
weights (representing travel times), this research assumes that edge weights are contingent on available
resonrces, with a limit on total resonrce availability. Our problem has significance in various engineering
and scientific domains requiring a delicate balance between time and cost, aligning with the primary
objective of organizations focused on maximizing profit.

The influence of resource allocation on travel (or processing) time is comunonly depicted through a
resonrce consiimption funetion. In studies involving sequencing problems, a linear resource consnmption
function is frequently assumed, as demonstrated in prior research hy Vickson (1930), Van Wassenhove
and Baker (1982), Daniels and Sarin (1989), Janiak and Kovalyov (1996), and Cheng et al (1998).
Nevertheless, this linear assumption overlooks the marginal value produet rule, which dietates that
productivity rises at a diminishing rate as resources are angmented. Henee, in this research, we opt to
use the resource consumption function formulated by Monma et al (1990) to characterize traveling time.

This choice is made because it more accurately mirrors the realistic correlation between resources and

w;; "
tij = (Tii) (1)
ij

In equation (1), wyj. r;; and t,; respectively represent the workload, resource allocated and travelling

productivity.

time of the edge {i, j} joining vertex 1 and vertex j. The equation reveals that each traveling time
t

increases. The marginal traveling time diminishes with higher resource consumption, and when no re-

;; solely depends upon the allocated resource r;; and it decreases as the amount of resource allocated

sources are allocated, the traveling time becomes infinite.

Problem description and notation

We consider the notations f;; and r;; as described in equation (1), that represent travelling time and
resonrce allocated to the edge {i, j}. Let C;; represents cost (or distance) for traveling from vertex i
to vertex j and R signifies the total resource consumption per tour, while V represents the contribution

to profit per tour, measured in resource units, We may consider a binary decision variable r;; defined as,

1. if tour passes through edge {i. j}
Tijj =
0, otherwise
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The classic travelling salesman problem is formulated as follows (P1):

n n

Min Z Z Cijxi;

=] j=1

subject to

n

Y #y=1Vi

j=1

n

Y wi=1Vj

i=1

i ={0,1} Vi, j
No any subtours are allowed

The constraints in above problem guarantee that every chosen tour covers all vertices exactly once. To
eliminate subtours, various methods can be emploved. The method is deseribed in the work of Miller et
al (1960), As the main goal of the problem outlined in this paper is to optimize the profit per unit of
time. This profit is obtained by subtracting the resource consnmption from V and then dividing it by
the total time taken to complete the tour. It's important to note that the travel time #;; changes based
on the resource allocation. The problem is now formulated based on the work of Zofi et al (2017) as
follws (P2):
= E:l:l ET:l FijTij

Min n n . (2)
i=1 i=1 r'.j'?*..f.
subject to
Z-*'s,‘ =1VYiii=12 ..n (3)
=1
n
Y my=1VY44=1,2 .n (4)
i=1
2 =1{0,1} Vi j (5)

No any subtours are allowed

Based on resonrce consumption function defined by Monma et al (1990}, the objective function for profit

rate (P) can be expressed as,

Profit P = q (6)
where,
R=3"% ryazi; (7)
i=1 j=1
i i i) k
F=2.2 (,—,; ) ij (8)
i=1 y=1 d
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Solution Approach

Now, let’s take into account any possible feasible tour. This tour can be depicted as a sequence of
connected edges forming a one-path graph. Monma et al.  (1990) introduced the optimal resource

allocation method to minimize the duration of a path in a series-parallel graph.

In the scenario, any feasible tour can be expressed as a series of interconnected graphs, where G}
represents the edge linking the first and second vertices in the tour, Ga represents the edge linking the
second and third vertices in the tour, and so forth. And therefore G = Gy — Gy — --- — G, represents
the entire tour. Initially, our focus will be on solving the following problem to find the optimal resonrce

allocation when we have a fixed, known guantity of nonrenewable resource R
n Sl k
s o
Min T —g(r') (9)
subject to

Y HER (10)
7=1

The snitable Lagrange function is
n :*‘ k n
““-*2---'-'"-"‘}—Z(P,) #a[3r-R (1)
i=1
The sufficient conditions for optimal conditions are:

BLlri e i Pas A)

‘ =0 ¥ §=1; cuihi (12)
or;
and IL( A)
L 14 T2 oee 3Ty ‘
= “ %
O\ (13)
But from (11). we have
”Ll:."l. . PRETSEEE, 1\) o ﬂ = _ﬂ + A {l”
“J"j N rj ’ !'f
and
OL(ry. 79, ... .Tyi A) = -
= _z‘:;,_n (15)
a4
Hence from (12) and (14), we get
k()
R o TR (16)
r
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Sinee this condition is identical to all graphs Gy, Ga. ..., G, we may write

So, we conclude that
o FAT
" I'Ij i 3
frecd (17)
w;

‘l-
|

Also nsing optimal condition (13) and equation (15). we can have

k
" n o F41 . "
riw r k
+ . ]t = J JEH] )
B=J =t A~ F (18)
4 ==
i=1 i=1 ”_1 "_J' i=1
The optimal resource allocation r} for G; in terms of R is
L"_
. Ruw;" i
...l (19

Zn JEFT
i=1 Wi

Also the optimal time to complete the entire tour is:

i\ My
(s.0)
T — . (20)
If we assime the workload we as
w = | 3 uf" (21)

j=1

Then, for a given total resource consumption R, the optimal time T of graph G is:

1= (%)" (22)
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So, the profit function (2) can be written as

V-R_ (V-RR

(e j* wk,

Profit P = (23)

Using the marginal approach to profit with respect to total consumption resources R, we can have

or ~or\ wk

aP 0 ((L-’-R}R*)

As it is known that the workload we is independent of total resource consumption R, so we can have
. ok
R'=V—— (24)
k+1

The condition R* < V7 ensures the positivity of the optimal profit P. Also the profit function is a
unimodal function with a single maximum point. As observed in Equation (24). R* is not affected by
the chosen tour. Additionally, when R* is utilized, the profit rate becomes positive. Furthermore, if
there is an extra constant cost per unit of time, the optimal resource amount £ remains unchanged,
Also to optimize the profit rate, we need to minimize weg. The value of we is directly determined by
the chosen tour, as shown in Equation (21). The tour that achieves the minimum we value is the one
that minimizes 37, {w,}*%. Consequently, we introduce new edge weights S;; = (uwy; . We can
now minimize W by addressing problem P1, either through an optimal procedure or an approximation

method. The formal statement of our optimization procedure for this problem is as follows
i. Find B* by using equation (24)
ii. Set S;; = (w;;)©1
iii. Solve TSP (P1) by any method
iv. Calculate w¢; using equation (21)
v. Calculate the optimal resource allocation R by using equation (19)

The travelling time and the profit are caleulated by equations (22) and (23) respectively. If step 3 is

solved by a (1 + €)—approximation algorithm, the resulting workload of the tour can be

[
ki

Wgappror S |1+ )Y (W)™ =(149F w]
1=1

and so the time of tour will be

ey k
L w
.I:IJ'J'H'IJ_I E (1 =+ ‘.]k-'—l ( U)

Also the approximated profit per unit time is

1 .
R:ppr!u' — (m) P
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where, w, represents the workload of the optimal tour. Hence, depending on the work of Zofi et al,
(2017), the whole procedure of the model yields an ﬁm approximation for sub-problem P2,

Conclusion

In today’s applications, the traditional Traveling Salesman Problem (TSP) model’s assumptions of uni-
form travel times may fall short when confronted with the complexities of contemporary transportation
and logistical sitnations. For example, consider the hurdles encountered by delivery services, where the
task is to create efficient routes ensuring on-time deliveries within designated time frames. Likewise,
industries involving mobile services or maintenance activities must consider travel times dependent on
resources to efficiently allocate resources and fulfill service obligations. In these contexts, the objective
is not solely to minimize travel distance but also to optimize profit within the confines of time-sensitive

windows and Huctuating travel conditions.

In the extension introduced in this paper based on the work of Zofi et al. (2017), deals the condition
where the travel times are influenced by resources and the objective is to maximize profit per unit of time.
The optimal resource allocation for any tour was determined using the equivalent load method, revealing
that the required resource, *, is independent of the chosen tour and depends on 'V, which represents
the profit contribution per tour. To maximize profit, the tour with the minimum equivalent workload
had to be identified. This was achieved by transforming edge workloads and solving the classic TSP,
Additionally, the optimal resource allocation for the selected tour and R* were derived analytieally. The
model defined here may contribute to advancing the field of combinatorial optimization by addressing
the complex interplay between time-sensitive profit optimization and resource-dependent travel times in
the context of the Traveling Salesman Problem. By extending the classical TSP, we seck to bridge the
gap between traditional optimization models and the practical demands of contemporary industries.
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