DOI: https://doi.org/10.3126/shaheedsmriti.v13i10.76816 Urban Bird Counting From Lothar to Tikauli Bufferzone Forest, Chitwan, Nepal

Arjun Khanal Assistant Lecturer, Shaheed Smriti Multiple Campus Email:arjunkhanal40447@gmail.com

Abstract

Urbanization results in habitat modification causing alteration in the assemblage of biological diversity. Bird diversity serves as a good ecological indicator; hence, this study examined the effects of urbanization on bird species counting and diversity in East-west highway from Lothar Khola to Tikauli Bufferzone Forest, Chitwan. Bird surveys were conducted during the spring season and pre-monsoon seasons of 2022 along fifteen transects each of 2 km length by positioning the point count stations at every 2 km interval on vehicle survey. A total of 3,147 birds of 63 species were observed from 28 families. Among the 63 species, 58 were residents and 5 were migratory. The associations of bird richness and abundance were found higher in forest area that covers almost 20% of the total surveyed transects. Number of nest were also recorded throughout the entire survey and majority of nest were of Baya weaber. Conversely, road under construction showed negative effects. In an urban setting, 100 nesting sites were recorded on electric pole, tree species and some on the residential houses. Thus, cities should focus on developing green city concept simultaneously with other developmental projects.

Keywords: Urbanization, abundance, fragmentation, variation, distribution

Introduction

Due to the rapid increasing urbanization in developing countries and increase in settlements, disturbances, construction works etc. that makes the urban area more complex (McKinney 2002 and Thapa *et al.*, 2010). The most common factor causing species endangerment and extinction second to interactions with invasive species appears to be top-ranked urbanization (Czech *et al.*, 2000). Though, the effect of urbanization varies to all the taxa as it carves abundance of some urban exploiter species but reduction in the species richness and their diversity. Avifauna serve as good ecological indicators showing sensitiveness to environmental degradation (Clergeau *et al.*, 2001). Habitat degradation is the major challenges that cohord the bird communities in the urban area (McKinney, 2006).

The complexity in bird community and their composition alter with urbanization gradients as species richness decreases with urbanization, while Urbanization creates habitat fragmentation, alters or destroys the natural habitats, threaten the biodiversity and produces great challenges to conservation (McKinney 2006). The species which are not able to cope with such habitat modification disappear locally (Strohbach *et al.*, 2009 and Yu and Guo 2013). However, some bird species are also benefited by such heterogeneous habitat of urban landscapes (Chace and Walsh 2006; Caula *et al.*, 2008). So, our understanding of urbanization complexity and its impacts on biodiversity are still unknown.

Urbanization is rapidly increasing in Nepal since late 90s and also Chitwan district on of the most developing and populated city that consist of some unplanned place like Tandi, Parsa etc. The unplanned urbanization in such city has triggered the increased habitat fragmentation, changing land use system and loss of forests. Until now, the total number of urban bird species and threats by urbanization in Chitwan district especially the highway trail has not been analysed thoroughly, though a large number of birds are to be believed to be threatened by urbanization due to the lack of breeding and foraging grounds.

Objectives

The objectives of this study were as follows:

- > To list the bird's species and their abundance.
- > To observe the possible threats.
- \succ To record the nest.

Area of Research

The Chitwan district is situated in South Central Nepal, Bagmati Province in the subtropical lowlands of the inner Terai (DNPWC, 2017) located between 27°.11'and 27.45'N and 83.47' and 84.52'E ranging from 140-900masl (Fig.1). The Chitwan possesses a diversity of ecosystems, including Rapti, Reu, Narayani river, Khair Khola, Lothar Khola, Khageri Khola etc. The Churia hills rise slowly towards the east from 150m to more than 800m. On the north part, The Mahabharat range stood through the border line.

The climate of this region is tropical type. The summer is hotter and dry with temperature rising up to 40°C whereas the winter is cold with temperature declining below to 8°C. Major precipitation takes place during the monsoon that usually begins in June. About 65% of the surface area of Chitwan district is covered by the forest (Thapa and Poudel, 2018). Dominant vegetation in urban and suburban areas of East-West highway from Lothar Khola to Tikauli Bufferzone Forest include *Shorea robusta, Acacia catechu, Ficus religiosa, Ficus benghalensis, Azadirachta indica, Bombax ceiba, Aegle marmelos, Dalbergia sissoo, Garuga pinnata, Saraca asoca, etc.*

Despite unplanned urbanization, Chitwan district still harbors a beautiful landscape and rich biodiversity. Remnant forest patches can be found inside the cities and villages. Altogether six types of vegetation, Tropical mixed forest, Subtropical Broadleaved forest, Riverine Mixed forest, Churia Arid forest, Grassland are found in the district and more than 850 birds, 60 mammals and 70 butterfly's species have been reported (Grimitt *et al.*, 2007; BES 2019).

Research sites in Chitwan District ,Nepal

Figure 1: Map showing the study area; Chitwan District and East-West Highway.

Materials and Methods

The various materials used throughout the survey were binocular, camera (Nikon Cool-pix P-900), GPS, Altimeter, Sound recorder etc. The field design was prepared using topographic map and local bird watchers. The intensive study area was divided into three parts via. Urban, Sub-urban and forest covered area respectively. Line transects (Bibby *et al.*, 1992) were drawn according the length of the highway.

Urban bird counting were surveyed through slow drive vehicle survey. Direct observations (Bibby *et al.*, 1992) were made through binoculars and visual scanning on walking in transect, two times each during the study period between May 2022 to June 2022. Transect were monitored in the morning (7 am-11 am) and evening (4 pm -6:30 pm). A slow vehicle rides surveyed the entire areas with one bird expert and two observers. For the bird identification, a 'Birds of Nepal' book was carefully investigated (Grimmett and Baral *et al.*, 2018). Nearly 30 km stretch was covered in each day and presence of bird species was recorded. A total of 7 days was spent in the field for locating urban bird. Calls were also recorded only for the confirmation of species presence by the help of Call back play method. Possible nest sites were also recorded during the survey time. When the birds were observed, the latitude and longitude at the beginning point and the end point of transect were also noted down immediately with the help of GPS.

Results and Findings

Typically, urban birds in the east-west highway included majority of local resident but few of them visit as a summer and winter migratory. The suitable time for the urban birds was during the morning and evening time while get roosted during mid-day time. Based on present samplings and observation to the urban birds, habitat preferences of vagrant species, the species richness and abundance were remarkably significant.

A total of 3,147 birds of 63 species were observed from 28 families. Among the 63 species, 58 were residents and 5 were migratory (Table 1). Habitat status refer as Resident (R), Winter migratory (WM) and Summer migratory (SM).

Table 1: Checklist of birds recorded in East-west highway from Lothar to Tikauli Bufferzone Forest, Nepal.

S.N.	English name	Scientific name	Family	Status
1	House Swift	Apus affinis	Apodidae	R
2	Common Hoopoe	Upupa epops	Upupidae	R
3	Indian Grey Hornbill	Ocyceros birostris	Buceroidae	R
4	Asian Openbill	Anastomus oscitans	Ciconiidae	R
5	Common Pigeon	Columba livia	Columbidae	R
6	Spotted Dove	Stigmatopelia chinesis	Columbidae	R
7	White throated Kingfisher	Halcyon smyrnensis	Alcedinidae	R
8	Green Bee Eater	Merops orientalis	Meropidae	R
9	Greater Coucal	Centropus sinensis	Cuculidae	R
10	Asian Koel	Eudynamys scolopaceus	Cuculidae	SM
11	Ashy Prinia	Prinia socialis	Cisticolidae	R
12	Black Drongo	Dicrurus macrocercus	Dicruridae	R
13	Black hooded Oriole	Oriolus xanthornus	Oriolidae	R
14	Oriental magpie robin	Copsychus saularis	Muscicapidae	R
15	Common Stonechat	Saxicola torquatus	Muscicapidae	R
16	Jungle Myna	Acridotheres fuscus	Sturnidae	R
17	Asian Pied Sterling	Gracupica contra	Sturnidae	R
18	Brahminy Sterling	Sturnia pagodarum	Sturnidae	R
19	Common Tailorbird	Orthotomus sutorius	Cisticolidae	R
20	Grey Wagtail	Motacilla cinerea	Motacillidae	WM

21	Indian Jungle Crow	Corvus culminatus Corvidae		R
22	House Crow	Corvus splendens	Corvidae	R
23	House Sparrow	Passer domesticus Passeridae		R
24	Jungle Babbler	Turdoides striata Leiothrichidae		R
25	Paddy-field Pipit	Anthus rufulus	Motacillidae	R
26	Purple Sunbird	Cinnyris asiaticus	Nectariniidae	R
27	Red-vented Bulbul	Pycnonotus cafer	Pycnonotidae	R
28	Red-whiskered bulbul	Pycnonotus jocosus	Pycnonotidae	R
29	Scarlet Minivet	Pericrocotus flammeus	Campephagidae	R
30	White Wagtail	Motacilla alba	Motacillidae	WM
31	Indian Pond Heron	Ardeola grayii Ardeidae		R
32	Cattle Egret	Bubulcus ibis Ardeidae		R
33	Little Egret	Egretta garzetta Ardeidae		R
34	Red-napped Ibis	Pseudibis papillosa Threskiornithida		R
35	Coppersmith Barbet	Megalaima haemacephala	Megalaimidae	R
36	Plum-headed Parakeet	Psittacula cyanocephala	Psittaculidae	R
37	Alexandrine Parakeet	Psittacula eupatria	Psittaculidae	R
38	Rose-ringed Parakeet	Psittacula krameri	Psittaculidae	R
39	Spotted Owlet	Athene brama Strigidae		R
40	Golden Oriole	Oriolus kundoo Oriolidae		R
41	Indian Roller	Coracias benghalensis Corvidae		R
42	Stork-billed Kingfisher	Halcyon capensis Alcedinidae		R
43	Common Swift	Apus apus Apodidae		R
44	Common Moorhen	Gallinula chloropus Ardeidae		R
45	Bay backed Shrike	Lanius vittatus Campephagidae		R
46	Ashy Drongo	Dicrurus leucophaeus	Dicruridae	R

47	Plain Martin	Riparia paludicola	Apodidae	R
48	Barn Swallow	Hirundo rustica	Apodidae	R
49	Baya Weaver	Ploceus manyar Passeridae		R
50	Scaly Breasted Munia	Lonchura punctulata Campephagidae		R
51	Oriental White-eye	Zosterops palpebrosus	Muscicapidae	R
52	Plumbeous Water Redstart	Rhyacornis fuliginosus	Apodidae	R
53	Oriental Turtle Dove	Streptopelia orientalis	Columbidae	R
54	Scarlet Minivet	Pericrocotus flammeus	Campephagidae	R
55	Shikra	Accipiter badius	Strigidae	R
56	Steppe Eagle	Aquila nipalensis	Strigidae	WM
57	Velvet-fronted Nuthatch	Sitta frontalis	Sittidae	R
58	White-browed Wagtail	Motacilla maderaspatensis	Motacillidae	R
59	Yellow Wagtail	Motacilla flava	Motacillidae	R
60	Ruddy-breasted Crake	Porzana bicolor	Rallidae	SM
61	Red-wattled lapwing	Vanellus indicus	Charadriidae	R
62	White breasted Waterhen	Amauromis phoenicurus	Ardeidae	R
63	Common Myna	Acridotheres tristis	Sturnidae	R

Shaheed Smriti Peer Reviewed Journal Year: 13 No.: 10, 2024

A total number of 100 nests were recorded in the 15 transects (Table 2). Majority nest were of Baya weaver whereas some of the nest were of House Crow, House Swift, Cattle Egret, Common Myna and Indian Pond Heron. Some of the nest were active where individuals are roasting while some were passive nest.

S.N.	Bird species	No. of nest	Tree species/Habitat
1	Baya Weaver	40	Bettle nut
2	Cattle Egret	25	Peepal
3	House Crow	10	Khair and Electric pole

Table 2: Number of sited nest of different bird species with their nesting habitat.

Shaheed Smriti Peer Reviewed Journal Year: 13 No.: 10, 2024

4	Indian pond Heron	7	Bamboo
5	House Swift	10	Old Muddy house
6	Common Myna	8	Telecommunication tower and electric pole

Figure 2: Map showing urban bird diversity and nest location in the east-west highway from Lothar khola to Tikauli Bufferzone Forest by the *ArcGIS* software (Version 10.4.1).

Urban bird was affected by the deforestation in the edges. Many trees species were likely to be cut down as the purpose for road expansion. Due to the purpose of road expansion, the number of bird counting are not maximum as expected. The possible threats to urban birds in the study area were vulnerable (Figure 3).

Figure 3: Perceived threats to urban birds in the east-west highway, Chitwan.

Discussion

This results from a mostly busy highway and developing and rapidly urbanizing city is consistent with previous studies from developed cities and countries that have shown decline in species richness and diversity of birds from rural to urban area (e.g. Tratalos *et al.*, 2007; Grimmtt *et al.*, 2008; Evans *et al.*, 2009; Rija *et al.*, 2014). This is because of the disturbances, differences in food availability, deforestation along in the highway edges and habitat features along the urban–rural gradients.

The record of fewer species in urban areas may be due to the lack of greenery, foraging area, fruiting trees, high human population density impact, less roasting success, environmental pollution and predation risk (Chandler *et al.*, 2004; Crooks *et al.*, 2004; Ditchkoff *et al.*, 2006; Anderies *et al.*, 2007) showing similarity in this survey findings along with urban areas suitable for fewer species (Plass and Wunderle 2013; Tryjanowski *et al.*, 2015).

For shaping bird species composition in Nepal, seasonality plays a significant role. Both summer and winter migratory birds constitute almost one-third of the total bird species recorded in Nepal (Grimmett *et al.*, 2003; Inskipp *et al.*, 2016). In our study, a small number of summer migrants was recorded compared to winter migrants. This is at least partly because there are fewer summer migrants than winter migrants in Nepal (Grimmett *et al.*, 2003; Inskipp *et al.*, 2016). Also due to migration timing, as well as the availability of thick leaves on trees and bird being less vocal during the breeding period could have influenced in counting summer migratory birds.

The abundance of this species tends to be correlated with the density of large and old trees for nesting. Indeed, recent work has shown a significant nesting preference for larger trees, usually in old growth forest. The Herons are more likely to build nests in tall, evergreen trees. Old growth trees that extend the height of the canopy are preferred for nesting and the height of the tree and availability of natural cavities large enough to hold the male and female individual and also the eggs are more important than the type of tree species (James and Kannan, 2009).

This finding favours the bird abundance in the urban house sparrows with Chandler, R.B., A.M. Strong, and C.C. Kaufman., 2004. In urban house sparrows which was the maximum number of individuals as recorded but the survey was conducted regular time interval of five years' project plan. A threat to sharp-shinned hawks and merlin was also found to co-related with the house sparrows as the massive building and food unavailability adversely affect these passerine urban small creatures.

Conclusion

This finding provides that species richness, possible nest and threats of birds are differently affected by the urbanization and there exists distinct seasonal variations in these communities. More number of urban bird species was found in sub-urban areas as compare to the urban areas. Out of 63 bird species five was found to be migratory bird species. From the intensive study area, a total of 63 urban bird species were recorded in 15 different transects that covers 30km. More bird abundance was observed in the forest covered highway. A total number of 100 active and passive nest were recorded in the survey area. Among them, 60 were active nest whereas 40 were passive nests. The nest of Baya Weaver has been found to be more abundance. Road construction and cutting down the highway edges trees was the major threats for the urban birds. And also the intense noise pollution and deforestation nearby by highway edges in the urban area was major threats for nesting bird species.

We conclude that urbanization and seasonality differently affect the distribution of each bird community in East way highway. Except for urban areas, sub-urban areas contain higher species of birds. Sub-urban areas might help to facilitate in bird migration from rural to urban areas. But the bird diversity, abundance and the number of nests is more likely to deteriorates in near few more days. Rapid urbanization and road construction due to highway expansion project are major threats for urban bird.

References

- Anderies, J.M., M. Katti, and E. Shochat. 2007. Living in the city: resource availability, predation, and bird population dynamics in urban areas. Journal of Theoretical Biology 247: 36–49.
- Bibby, C.J. and Burgess, N.D. 1992. Bird Census techniques. British Trust for Ornithology and the Royal Society for the protection of Birds, 72pp.
- Bibby, C.J., N.D. Burgess, D.A. Hil, and S. Mustoe. 2000. Bird census techniques, 2nd ed. Great Britain: Academic Press. Blair, R.B. 1996. Land use and avian species diversity along an urban gradient. Ecological Application 62(2): 506–519.
- Caula, S., P. Marty, and J.-L. Martin. 2008. Seasonal variation in species composition of an urban bird community in Mediterranean France. Urban Planning and Landscape 87: 1–9.
- Chace, J.F., and J.J. Walsh. 2006. Urban effects on native avifauna: A review. Landscape and Urban Planning 74: 46–69.
- Chandler, R.B., A.M. Strong, and C.C. Kaufman. 2004. Elevated lead levels in urban house sparrows: A threat to sharp-shinned hawks and merlins; Journal of Raptor Research 38:62–68.
- Clergeau, P., J. Jokima[•]ki, and J.P.L. Savard. 2001. Are urban bird communities influenced by the bird diversity of adjacent landscapes; Journal of Applied Ecology 38: 1122–1134.
- Crooks, K.R., A.V. Suarez, and D.T. Bolger. 2004. Avian assemblages along a gradient of urbanization in a highly fragmented landscape. Biological Conservation 115: 451–462.
- Ditchkoff, S.S., S.T. Saalfeld, and C.J. Gibson. 2006. Animal behavior in urban ecosystems: modifications due to human induced stress. Urban Ecosystems 9: 5–12
- Evans, K.L., S.E. Newson, and K.J. Gaston. 2009. Habitat influences on urban avian assemblages. IBIS 151: 19–39.
- Garaffa, P.I., J. Filloy, and M.I. Bellocq. 2009. Bird community responses along urban–rural gradients: Does the size of the urbanized area matter; Landscape and Urban Planning 90: 33–41.
- Grimmett, R., C. Inskipp, T. Inskipp, and H.S. Baral. 2018. Birds of Nepal. Helm field guide book. New Delhi: Prakash Books. (Nepali version).
- James, D. A. and Kannan, R. 2009. Wild Urban bird, Habitat modelling and finding species richness and evenness. Wilson Journal of Ornithology, 119: 118-121.
- McKinney, M.L. 2002. Urbanization, biodiversity and conservation. BioScience 52: 883–890.

- McKinney, M.L. 2006. Urbanization as a major cause of biotic homogenization. Biological Conservation 127: 247–260. https://doi.org/10.1016/j.biocon.2005.09.005.
- Pautasso, M., K. Bo"hning-Gaese and P. Clergeau, V.R. et al., 2011. Global macroecology of bird assemblages in urbanized and semi-natural ecosystems. Global Ecology and Biogeography 20: 426–436.
- Plass, E.O., and J.M. Wunderle. 2013. Avian distribution along a gradient of urbanization in northeastern Puerto Rico. Ecological Bulletin 54: 141–156.
- Rija, A.A., A. Bugingo, A. Said, and K.A. Mwamende. 2014. Wet season bird species richness and diversity along urban–rural gradient in Morogoro municipality and surrounding areas, Tanzania. Tanzania Journal of Forest and Nature Conservation 83: 1–13.
- Seto, K.C., B. Guneralp, and L.R. Hutyra. 2012. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences USA 109: 16083–16088.
- Strohbach, M.W., D. Haase, and N. Kabisch. 2009. Birds and the city: urban biodiversity, land use, and socioeconomics. Ecology and Society 14(2): 31. http://hdl.handle.net/10535/5420.
- Thapa, R.B., and Y. Murayama. 2010. Drivers of urban growth in the Kathmandu Valley, Nepal: Examining the efficacy of the analytic hierarchy process. Applied Geography 30(1): 70–83.
- Tratalos, J., R.A. Fuller, K.L. Evans, R.G. Davies, S.E. Newson, J.J.D. Greenwood, and K.G. Gaston. 2007. Bird densities are associated with household densities. Global Change Biology 13: 1685–1695.
- Tryjanowski, P., T.H. Sparks, and W. Biadun. et al., 2015. Winter bird assemblages in rural and urban environments: A national survey. PLoS ONE 10(6): e0130299.
- Yu, T., and Y. Guo. 2013. Effects of urbanization on bird species richness and community composition. Pakistan Journal of Zoology 45: 59–69.