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Abstract

Memristor is one of the fundamental electrical elements, which has
recently been successfully built. Memristor is being used extensively
as synapses in neuromorphic applications. A common method for
developing memristor based synaptic circuits is to store synaptic weight
values within memristors as resistance values. It requires use of the
continuous resistance (memristance) range available in the memristors
to store the weights. In this paper, we study how different compact
synaptic circuits implemented using TiO, memristors lo perform zero,
negative, and positive synaptic weightings. Results of different memristor
based circuits, based on pulsed input signals, are compared, analyzed
and presented using TiO, memristors via simulations.
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I. Introduction

The existence of the “memristor” as the fourth basic circuit
element was predicted by Leon Chua in 1971 [1]. The prediction
was based on symmetry and a missing relationship between an
independent pair of the four fundamental circuit variables: current
(i), voltage (v), charge (¢ ), and flux linkage (¢ ). The three basic
circuit elements, resistor, inductor and capacitor are defined by a
relationship between v and i , ¢ and i , and g and Vv, respectively,
but the relationship between ¢ and ¢ was missing. For the sake
of symmetry and completeness, the memristor was postulated in [1]
as the fourth basic two-terminal circuit element characterized by a
relationship between ¢ and ¢ .

Memristor is defined in [2] by a state-dependent Ohm’s law
between the memristor-voltage v and memristor-current 7 as,

V=M (3 X peens Xy ) 1 (1)
P

p=p(q)
or

Pe 0 q=q(p)

0
9

Fig. I Nonlinear function between flux and charge. The memristance
M (q) can be obtained by calculating the slope at q = 4y
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where M is called the memristance and x,' are the state
variables. The state variables x,x,...x, are defined by
“n” differential equations called the associated state
equations, as follow:

i, fdt =, (% %y it); X120 (2)

In the special case where the device possesses only
a single state variable x and f(x, i)=i , then x=g¢q
is the charge entering the memristor and the device is
called an “ideal memristor”’. The memristor is defined
by,

dplg) dg :
Vfd—qEﬁM(Q)’ 3)

where ¢ and ¢ denote the flux and charge,
respectively. Thus, the memristance M (g) can be
interpreted as the slope at the operating point g=g,
on the memristor ¢—g curve as in Fig. 1. If the p—g
curve is nonlinear, the resistance will vary with the
operating point. Since the resistance in this type of
device is variable depending upon the operating point
q=q,, and since g =g, remains fixed when v(r)=0
and i(1)=0, the device can be used as a non-volatile
memory. A dynamical system described in [2] by
equations

v=M(x)i 4)
M (x) = Royx+ R (1 2 x) ()
dx/dt=Ki (6)

is an example of a memristor, where i is the input
current, v is the output voltage, R, , R, and K are
the system parameters, x is the state variable, and
M(x)is its memristance.

The researchers from /Ap group has announced the
successful development of a very compact memory
element made of Titanium Dioxide [2], which exhibited
the pinched hysteresis loop fingerprint of memristors.

In neural networks, incoming signal are multiplied
with synaptic weights and outputs are obtained
by passing through activation functions after the
summation of the weighted input signals. Hardware
implementation of the neural networks might be an
essential step to solve the real time processing problem
of neural networks. The success of each neural network
hardware design depends largely on the trade-offs
between accuracy, chip area and processing speed.

Fig. 2 Conventional CMOS synaptic circuit |3].

Unlike their digital counterparts, analog
implementations are usually more efficient in terms
of chip area and processing speed but they have
limited accuracy which arises due to spatial non-
uniformity of the analog components and their non-
ideal responses. In addition, another major bottleneck
in ANN hardware is the implementation of nonvolatile
weight storage [4]. Resistors are static and cannot be
changed once fabricated, thus they can be used only for
non-learning hardware. Capacitors have short synaptic
weights retention time due to charge leakage and
require dynamic weight updating at frequent intervals.
Floating gate transistors have been used successfully
as synapses in conjunction with analog multipliers,
but they suffer from high non-linearity in synaptic
weightings. Memristor is a two terminal electrical
clement, which exhibits features of biological synapse
under the excitation of input voltage or current pulses:
its resistance can be altered in a manner, similar to bio-
neurons, to emulate change in synaptic weight. Likewise
the two memristors with anti serial connection can be
used to generate both positive and negative weights.
Composite behaviour of memristor circuits has been
published in [5] which led to explore the varieties of
applications of memristors. Recently few artificial
synapses consisting of multiple identical memristors
in a bridge-like fashion capable of performing signed
synaptic weights were proposed in [6-7]. Memristor
bridge circuit which is composed of four identical
memristors is able to perform zero, negative and
positive synaptic weightings is developed. Together
with three additional transistors, the memristor bridge
weighting circuit is able to perform synaptic operation
for neural cells. By programming different values
on each memristor of the memristor bridge circuit,
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arbitrary weighting values can be set on the memristor
bridge synapses.

The unique features of memristor-based neural
architectures are their pulse-based operation, compact
and adjustable weighting, non-volatile memory and
linearly synaptic operation. In this paper, several
memristor based synaptic circuits are studies and
analyzed.

I1. Conventional CMOS synapse

Normally, CMOS analog multipliers are employed
to compute the multiplication between input signals and
weights in neural networks [2]. As the neural networks
have massive interconnectivity and are parallel in
nature, it is required that the multipliers should be
smaller, consume low power and non-volatile. The
multiplication between weights and input signals
should be linear. However, it is very difficult to get the

Vm
+ |

Fig. 3 A single memristor

Above features in CMOS analog multipliers. To
implement such an immense amount of processing into
a chip, extremely high density of analog multiplier is
needed. Multiplication in a typical analog Gilbert circuit
is usually implemented with at least seven transistors,
as shown in Fig. 2, operating in a nonlinear and hence
power-hungry regime. Therefore, significant nonlinearity
is unavoidable in multiplication processing with
conventional CMOS transistor circuits.

I11. Memristor Synapses

A. Single Memristor Synapse

The memristance/memductance of a two-terminal
memristor as shown in Fig. 3 can be varied by varying
the current passing through it such that a memristor
can be used as a synapse. The memductance of the
memristor is analogous to the strength of the synapse.
As memristor is a non-volatile device it retains its
conductance when there is no external input, and the
conductance can be changed by applying appropriate
external signal to emulate change in synaptic weight.

B. Two Memristor Synapse

Though a single memristor can be efficiently
implemented as synapse in neural learning circuits, a
single memristor lacks the ability to emulate negative
weights which are commonly encountered when
implementing artificial neural learning rules like back-
propagation. But negative weights can be realized by
utilizing other measurable quantities like current or
voltage across appropriately connected memristor(s).

It consists of two identical anti-serial memristors
with the polarities indicated as in Fig. 4. When an input
pulse V, is applied to the circuit, the memristance of
each memristor increases or decreases depending on
the polarity. For instance, if positive V_ is applied, the
memristance of M1 decreases whereas the memristance
of the reversely biased memristor M2 increases.
Similarly, if negative V. is applied the memristance
of M1 increases whereas that of M2 decreases. The
difference in the voltage drop across the memristor M1
and M2 then can be utilized to achieve positive and
negative synaptic weights.

If'V, is applied to the circuit shown in Fig. 4, then
using KVL, the input voltage is the sum of the voltage
drop across memristor M1 and the voltage drop across
memristor M2, The individual voltage drops across M1
and M2 are given as,

Vi = (LJ Vin (7
MU M1+ M2
i (L]v | (8)
M2 M1+ M2
+
Ml Vumi
+ -
®
- +
M2 VM2

Fig. 4 Two anti-serially connected memristors

Then, the voltage of interest is the voltage
difference between V,,, and V,,, given as
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vl)H! = vM 7 VMZ
_[MZ—M])V ®)
M1+M2) ™"

From Eq. (9) we see that the arrangement in Fig.
4 performs synaptic weighting of the input signal V_,
where the output is a weighted function of the input and
the weighting function is given as

i (MZ — MIJ
M1+M?2
The conditions for the anti-serial memristor

arrangement to function as weight in different regimes
is listed as follow.

(10)

[f M2>M1, positive synaptic weight
[f M2<M1, Negative synaptic weight
If M2=M1, Zero synaptic weight

C. Five-Memristors Bridge-Based Synapses

In the memristor weighting circuit, both positive
and negative multiplications are performed via a
charge-dependent Ohm’s law (v=M(g) *i). The circuit
is composed of five memristors with bridge-like
connections together with one differential amplifier.
It operates like an artificial synapse with pulse-based
processing and non-volatile adjustable weightings.

The sign-setting, weight-setting (positive or
negative) and the processing signals are applied through
a common input terminal. [t is assumed that the voltage
which is generated internally by current signal makes
the same amount of memristance change as that by the
same magnitude of the externally applied voltage. The
memristor M at the center plays the weighting role
of the synapse and the other memristors, Msl, Ms2,
Ms3 and Ms4 function as switches for selecting the
weighting sign.

—

VE V-

Vbe—]

Fig. 5 Memristor-based synapftic circuit.

The memristors alter the sign of the input voltage of
the differential amplifier by switching the on-off states
of the memristors in the manner of a bridge circuit.
Though five memristors are employed to emulate a
synapse in circuit, the total area of the five memristors
is less than that of a single transistor.

Sign Setting

Prior to weight setting or multiplication
processing, the sign of the synaptic weight is set first.
This is implemented by applying a strong current pulse
(high amplitude or wide current pulse) to change the
memristances toward one of the two extreme values
(In the TiO, memristor it is assumed that a turn-on
resistance 116 Q, and turn-off resistance 15.98 KQ).

When a positive wide pulse is applied at the input
terminal of the memristor circuit, as shown in Fig. 5,
the charge of both memristors Ms1 and Ms4 increases
while that of Ms2 and Ms3 decreases. Note that the
polarities of memristors Ms1 and Ms4 are opposite from
those of Ms2 and Ms3. Accordingly, the magnitude of
the resistances of memristors Msl and Ms4 decreases,
while that of Ms2 and Ms3 increases.

If the magnitude or the duration of the pulse is big
enough, the memristance of memristors Ms1 and Ms4
will reach its minimum value, while that of Ms2 and
Ms3 will attain its maximum value, thereby resulting
in an on (low memristance) state for Msland Ms4,
and an off (high memristance) state for Ms2 and Ms3.
Afterward, any current signal appearinﬁl at the input
terminal passes mostly through Msl, ™% and Ms4.
Consequently, a larger voltage is produced at terminal
V+ than that at terminal V— with a positive current i.
In this case, memristor My, functions as a positive
weight thereafter. On the other hand, when a negative
wide pulse is applied as shown in Fig. 5, the voltage
appearing at terminals V+ and V— will be opposite to
that of the previous case. In this case, the value ™"
functions as a negative weight thereafter.

Weight Setting

After the sign setting operation, the memristance
is set for the synaptic weight. A pulse with a smaller
width in the range [0, 0.7ms] is applied in this case. The
equivalent range of the memristance ™ is [116 Ohm,
IKOhm] in the TiO, memristor model.
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D. Four-Memristors Bridge-Based Synapses

The bridge circuit consists of four identical TiO,
memristors and is able to perform positive, negativé
and zero synaptic weighting. When a positive or
a negative pulse V, is applied at the input, the
memristance of each memristor M1, M2, M3 and M4
is changed depending upon its polarity. For instance,
when a positive V| is applied as input, the memristance
of M1 and M4 (whose polarities are forward biased)
will decrease whereas the memristance of M2 and M3
(whose polarities are reverse biased) will increase. It
follows that the voltage V, at node A (with respect to
ground) becomes larger than the voltage V at node
B for a positive input signal. In this case, the circuit
produces a positive output voltage V. representing

vo —{[

v

Vs

Fig. 6 Memristor bridge synaptic circuit.

a positive synaptic weight. On the other hand when
anegative V, 1is applied, the voltage at node B becomes
larger than the voltage at node A and the circuit produces
a negative output voltage V  representing a negative
synaptic weight. The voltage at different nodes in the
circuit of Fig. 6 is given as

VMI = Ml in (]])
M, +M,
MZ
T V. =y (12)
M2 (MI +M2J in A
VM} = M3 V.'u (]3)
V2T M+ M,
Vus = i Vin = Vg (14)
M,+M,

The required output is the voltage difference
between terminal A and terminal B given as
[ M, M,

N v. . (15)
M1+M2 M3+M4J in

voi‘.t! - vA VB

From Eq. (15) we see that the output voltage is
equal to the input voltage weighted by a factor i, where

(16)

1 1
0 002 004 006 008 01 012 014 016

002 004 006 008 0.1 012 014  0.16
Time

700 :
0

Fig. 7 Variation of Memristance of the TiQ, memristor by
applying voltage signal.

The conditions for the bridge to function as weights
in different regimes are listed as follow:

M,

M
>
M

Positive synaptic weight

3

<

)

M, : : .
< —= Negative synaptic weight
M, M, g ynap g
ME
M.

M ; .
=—2 Zero synaptic weight
M3

Each neuron must add a set of weighted input
signals from diverse sources. This is implemented in
the memristor bridge neuron via summing input signals
with current mode circuits. The differential amplifier
with three transistors in Fig. 6 is the voltage-to-current
converter which functions as a current source.
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IV. Simulation Results

The memristance of the TiO, memristor can be
changed by applying appropriate current (or voltage)
signal and the memductance remains unchanged
whenever there is no external input as shown in Fig. 7.

Fig. 8 (a) shows the variation in memristance of the
two TiO, memristors M1 and M2 and Fig. 8 (b) shows
the change in synaptic weight when a programming
input voltage pulse V, is applied to the circuit in Fig.
4. As can be seen from Fig. 8 (b), positive, negative
and zero synaptic weighting can be performed with two
anti-serial memristors as shown in Fig. 4. One possible
implementation of memristor-based synapse that can
emulate both positive and negative synaptic weights is
shown in Fig. 8.

The five memristor synaptic circuit allows positive
and negative weighting. The initial memristances
Ms1=Ms4 and Ms2=Ms3 are assumed 15.98 KOhms
and 116 Ohms, respectively. For the input current
I, the voltage across My can be computed as —0.98
M, %I Therefore, the initial sign of the weighting
with the above memristances is negative. Fig. 9 shows
the transition of the memristance at each memristor
while a positive current pulse with +10mA amplitude
is applied. At the end of the pulse, the memristances
are turned into Ms1=Ms4=116 Ohm and Ms2=Ms3=
15.98 KOhm.

x10

g
E 1t ; —_— M| -
H M2

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

0.02 004 006 0.08 0.1 012 014 0.16
Time

Fig. 8 Variation in memristance of the two TiO,
memvristors and (b) the weight programmed when a
voltage 1V is applied to the circuit.

Msl, Ms4=15.98K Ohm Ms2, Ms3=15.98K Ohm

14 |-
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2
o
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= 6
=]
= af >
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, Mw
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Time(Sec)

Ms2, Ms3, Mw=116 Ohm Msl, Ms4, Mw=116 Ohm

(a)
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(b)

Positive 1—)
Weighting Region

L

Fig. 9 (a) Memristance transition from {MsI=Ms4=15.98
KQ, Ms2=Ms3= 116 2} to {Ms1=Ms4=116 2 , Ms2=Ms3=
15.98 KQ}. (b) Weight programmed.

Note that both the negative and positive signs can
be obtained in the whole regions of the left and right
side of Fig. 9, respectively. However, a shorter time
is taken to program the same amount of memristance
value in the two extreme state regions than in the
middle regions. Similar to the positive sign transition
as above, the negative sign can be implemented when a
negative pulse is applied at a positive weighting state.

Fig. 10 shows the variation of memristance of
the four memristors M1, M2, M3 and M4 and the
corresponding synaptic weight realized when an input
voltage V, is applied to the circuit in Fig. 6. The bridge
circuit can be used as synaptic weight in ANNs to
realize positive, negative and zero weightings. Fig. 10
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(a) shows the changes in the memristances M (1) M,(?),
M (1) and M (1) as a function of time, obtained via
computer simulations of the memristor bridge circuit
in Fig. 6 with initial memristances, M (0) = M, (0) =
14.41 k@, M(0) = M ,(0) = 1.69 k. As shown in the
figures, these numerically computed memristances in
Fig. 10 (a) and the corresponding weight in Fig. 10 (b)
are all very linear.

NegativelyM Positively

Weighted——* < —* Weighted —> > —*
O M, M, Y OBnedy,

Region " Region

(a)

Memristance(KQ)

oo

coao
[N

=
‘ IWei ght(W¥)

+Balanced
1 State

s
= io

28
oo o

) 02 04 06 0% 1 13
Time(Sec)—

TV u

M () M) M) M)

L

Fig. 10 (a) Time variations of
and v (1) with memristor bridge circuit when a wide pulse
is applied. The linear memristor model is assumed. (b)
weight v (1),

V. Comparison of the four Synapse Structures

Different pulse-based programmable memristor
circuits for neural network applications are compared.
The single memristor synapse is the simplest of all the
four structures of memristor synapses discussed above.
Since the conductance of memristor is directly used
as analogous to synaptic weight, the output voltage
across the memristor (or current through it) can be
used directly to feed to the succeeding modules in the
neural learning circuit. The two-terminal structure of
the memristor can easily be integrated with the rest of

the neural learning circuit. Though simple in structure
and easy to implement, the single memristor synapse
has severe limitations in application due to the inability
of implementing zero and negative synaptic weighting
directly using conductance.

Whereas the two-memristor synapse and the
memristor bridge synapse utilize the difference of
voltage at different nodes in their structure to realize
synaptic weights. Hence auxiliary circuits are required
to make the output usable for succeeding layers when
used in neural learning circuit. The two-memristor
synapse however requires relatively more number of
CMOS components in the auxiliary circuit than the four
memristor bridge synapse. CMOS components occupy
almost three orders of magnitude more chip area than a
memristor. Therefore, more CMOS components means
more chip area utilization.

The two memristor synapse and the five and four
memristor bridge synapse however can implement
positive, negative and zero weighting and have no
restriction in applications and are particularly useful
for applications where the weights are not known
theoretically.

The single memristor synapse is particularly
not suitable for implementing ANN rules like Back
Propagation where the synaptic weights are not known
a-priori and the weights can evolve either as positive or
negative weights during learning.

The architecture of the five memristor bridge
circuit is able to perform signed synaptic operations.
However, it is very difficult to program small
weighting near to zero. Moreover, a sign setting has
to be performed before the weight setting of the input
signal. The memristance of the switching memristors
are also affected during the weight setting.

Also, a bridge synaptic circuit with four
memristors, which is even simpler and efficient than
five memristor based synaptic circuit. It is composed of
four identical memristors that is able to perform zero,
negative and positive synaptic weightings. Together
with three additional transistors, the memristor circuit
bridge weighting circuit is able to perform synaptic
operation like an artificial neural cell. The memristor
bridge based circuit has linear output characteristic
compared to the conventional CMOS based Gilbert
multiplier.
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V1. Conclusion

The non-volatile property and nano-dimension of
memristor makes it a suitable component to be used
as synapse for realization of simple and dense neural
learning circuits. Use of conductance of a single
memristor, analogous to the synaptic strength, is the
simplest way to realize synapse in neural circuits.
However, it can be applied only as positive weights.
Combination of different memristors in a circuit can
be utilized as synapse capable of performing positive,
negative and zero weighting, like the two-memristor
synapse and the memristor bridge-based synapse. But
these structures require additional circuitry to extract
the useful output which when realized with CMOS
circuitry occupy greater chip area. Five memristor based
synapses showed positive, negative and zero weighting,
however, it shows the nonlinearity. Comparatively, the
memristor bridge-based synapse requires less number
of CMOS components than the two-memristor synapse
and this makes the memristor bridge-synapse a better
choice for implementing synapse in neural learning
circuits.
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