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Abstract 
Background: Climate change has emerged as a significant threat to global agricultural 
productivity, affecting food security and economic stability, particularly in agrarian 
economies. The agricultural sector is highly vulnerable to climate variations, including 
changes in temperature, precipitation patterns, and the frequency of extreme weather 
events. Understanding how these climatic factors influence agricultural output is crucial 
for developing effective adaptation strategies. 

Objective: The study assesses the relationship between climate change on agricultural 
productivity and to identify effective adaptation strategies that can mitigate the adverse 
effects of changing climatic conditions on agriculture.

Methods: This study utilizes a variety of secondary data sources. In this study 
quantitative modeling of climate change and its adaptation in agricultural sector is 
conducted by considering the time period of 32 years from 1991 to 2022 using the 
autoregressive distributed lag approach (ARDL) followed by TY Non-Granger 
Causality Test.

Results: The analysis shows that annual average maximum temperature boosts 
agricultural productivity in the long run, supported by positive irrigation effects. 
Conversely, minimum temperature negatively impacts crop growth over time. CO2 
emissions and precipitation are insignificant in the long run but have short-term effects. 
Surprisingly, chemical fertilizers reduce productivity, while improved seeds only 
enhance it in the short term. Irrigation has a small positive long-term effect.

Conclusion: The study reveals that the annual average maximum temperature boosts 
agricultural productivity in the long run due to farmers' adaptation strategies, while 
minimum temperature negatively impacts crop growth. CO2 emissions and precipitation 
show no significant long-term effects, though they have short-term impacts. Chemical 
fertilizers reduce productivity over time, likely due to soil degradation, while irrigation 
has a marginally positive long-term effect. Improved seeds enhance short-term 
productivity but show no significant long-term impact

Implication: The study highlights the need for sustainable practices and holistic to 
address both immediate and long-term agricultural challenges posed by climate change 
approaches for boosting agricultural output
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JEL Classification: C32, Q1, Q5 
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Introduction
Nepal’s diverse topography is characterized by distinct agricultural zones, including plains, hills, 
mid-hills, high hills, and mountains. These zones each support specific cropping patterns that are 
adapted to their unique climatic conditions (Krupnik et al., 2021). Climate change is an ongoing global 
phenomenon characterized by long term alterations in the temperature, precipitation patterns, and other 
climatic factors. The Intergovernmental Panel on Climate Change (IPCC) has documented substantial 
evidence of climate change highlighting rising global temperatures, shifting weather patterns, and 
increasing frequency of extreme weather events (IPCC, 2021) and previously also projected that by 
2050 in East and Southeast Asia, crop yields could increase up to 20% while it could decrease by up to 
30% in Central and South Asia (Kumar & Singh, 2014; Devkota & Phuyal, 2015) .
Climate change acts as both a stressor and risk multiplier (Gitz & Meybeck, 2012) leading to increased 
crop failures (Kim & Mendelsohn, 2023) and extreme weather events (Newman & Noy, 2023). Farmers 
face higher temperatures that stress crops and livestock and make agriculture labor more difficult and 
dangerous (USAID, 2022). Nepalese farmers are also experiencing unpredictable weather patterns, 
increased frequency of extreme weather events, and shifting agricultural zones, which threaten their 
livelihoods and food security (Gentle & Maraseni, 2012; Krishnamurthy et al., 2013; Poudel et al., 
2017).
The impact of climate change on agriculture can be understood directly as agro sector is more dependent 
on natural nurture. This concern is equally applicable to Nepal too as early symptoms of climate cruelty 
and alarmingly increased temperature have been observed almost in double pace within a shorter time 
horizon compared to global temperature rise (Acharya & Bhatta, 2013). 
Agriculture is a critical sector that supports livelihoods and ensures food security for billions of 
people worldwide. This sector is considered to be the backbone of Nepalese economy and contributes 
24% of GDP and approximately 62% of household’s main occupation is agriculture (MoF, 2023). 
It is intrinsically linked to climate conditions, making it vulnerable to climate change. Temperature, 
precipitation and co2 level directly affect crop growth, water availability, soil health and pest and 
disease dynamics (Lobell & Field, 2007). 
In the highest altitudes, population depends entirely on agriculture for their livelihood and extreme 
climatic conditions will economically stress these areas by affecting agricultural production and food 
security (Pokhrel & Thapa, 2005). Climate change is leading to longer growing seasons in many 
regions, which can have both positive and negative effects on agricultural productivity. On the positive 
side, a longer growing season extends the period during which crops can be cultivated (Hakala et al., 
2011). This allows farmers to plant crops that require a longer time to mature and even potentially 
harvest more than one crop cycle per year. This diversification in crop cultivation can enhance 
agricultural productivity and profitability, contributing positively to local economies and food security. 
Additionally, prolonged growing seasons may result in the proliferation of pests and diseases that 
thrive in warmer climates, increasing the need for pest control measures and raising production costs 
Plant development relies significantly on both high and low temperatures (Atkinson & Porter, 1996). 
Crops have particular temperature thresholds that are conducive to their growth and reproduction 
(Parker et al., 2020). When temperatures rise within this optimal range, crops can benefit significantly. 
Excessively high temperatures can also affect the quality of the production. Crops that are subjected to 
heat stress may develop smaller fruits, lower nutritional value, and poorer storage qualities (Moretti et 
al., 2010). This not only affects the marketability of the produce but also its suitability for consumption 
and processing. Conversely, increased minimum temperatures can negatively impact crops by altering 
metabolic processes and increasing respiration rates, leading to lower net productivity (Hatfield et al., 
2011). Thus, the relationship between temperature and crop productivity is a double-edged sword (Yan 
et al., 2024). The key to managing these risks lies in understanding the specific temperature requirements 
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of each crop and implementing adaptive strategies to mitigate the adverse effects of excessive heat. 
This may include developing heat-tolerant crop varieties, optimizing irrigation practices, and adopting 
agronomic techniques that enhance crop resilience to temperature extremes (Govindaraj et al., 2018; 
Ahmed et al., 2019).
Precipitation patterns are equally important for agriculture, influencing water availability for crops. 
Both excessive and insufficient rainfall can adversely affect crop yields (Ogenga et al., 2018; Li et 
al., 2019). While adequate precipitation is essential for crop growth, extreme weather events such as 
droughts and floods can lead to crop damage and loss. Changes in precipitation patterns due to climate 
change are expected to exacerbate these challenges, making water management a critical aspect of 
agricultural adaptation (Nelson et al., 2009). 
 In this regard, this paper aims to explore the short-term and long-term impacts of variations in 
temperature, precipitation, and CO2 emissions on agricultural productivity. Additionally, it seeks 
to examine the influence of agricultural inputs, including improved seeds, irrigation, and chemical 
fertilizers, in shaping agricultural productivity within the context of changing climatic conditions.
The structure of the study is as follows: Section two provides a review of relevant literature, while 
section three outlines the methodology used in the research. Section four presents the results along with 
their discussion, and section five offers the study’s conclusions.

Literature Review
Several studies have projected the adverse impacts of climate change on agricultural production, 
particularly for tropical commodities. The study of (Kandel et al., 2024) investigated the role of 
adaptation strategies in mitigating food insecurity among smallholder farm households in Nepal under 
climate change extremes. Using data from 400 households across the Mountains, Hills, and Terai 
regions, the study found that 12% of households were food insecure, while 22% relied on short-term 
coping strategies. Results from ordered logit models revealed that drought negatively impacts food 
security, while adaptive measures like irrigation, agroforestry, and temporary migration improve it. 
The research also emphasized the importance of education, market access, credit, and information 
in enhancing farmers’ adaptive capacity. The study recommends tailoring adaptation strategies to the 
socio-economic and institutional contexts of each agro-ecological zone. Nelson et al. (2009) argued 
climate change is expected to have both positive and negative effects on crop production and yields, 
leading to significant benefits or challenges for agriculture. Higher temperatures are likely to reduce 
crop yields and exacerbate the spread of weeds and pests, posing a substantial threat to agricultural 
productivity. Additionally, changes in precipitation patterns may increase the risk of short-term crop 
failures and contribute to long-term declines in agricultural output.
Schroth et al. (2017) used site-level to inform regional adaptation planning, revealing projected losses 
in cacao production in West Africa. Similarly, Bunn et al. (2015) examined the global impacts of 
climate change on Arabica coffee production, with both studies concluding that these production losses 
pose significant threats to national economies and the regional and global supply chains reliant on 
cocoa and coffee. Knox et al. (2012) studied climate change effects on agriculture in South Asia and 
Africa, projecting that major grain crops like wheat, maize, and sorghum could experience production 
losses of up to 8% by 2050, with Africa seeing a 17% reduction. The study highlighted that these 
losses threaten crop yields in regions already facing food insecurity. In India, Auffhammer et al. (2012) 
reported that climate-induced monsoon disruptions from 1966 to 2002 led to a 4% reduction in rice 
yields. Other researchers, including (Morton, 2007; Harvey et al., 2014; Ayanlade et al., 2017; Kreft 
et al., 2017), have projected that climate change will significantly impact local, national, and global 
industries. However, they emphasize that marginalized and impoverished communities in developing 
countries, which depend on small-scale agriculture, will be the most vulnerable.
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In Nepalese context, Charoenratana and Kharel (2024) examined the impacts of climate change on 
rainfall, temperature, and agricultural productivity using data from 110 household surveys, focus 
groups, and interviews. The study highlights increased household vulnerability due to declining 
productivity and emphasizes the need for efficient farm and livestock management. It provides insights 
into Nepalese farmers’ adaptation strategies and their correlation with local government roles. The 
findings suggest practical policies to enhance farmers’ resilience to climate change at the local level. 
Rayamajhee et al. (2021), examined the effects of climate change on rice production in Nepal using 
NLSS panel data from 2003 and 2010. The study found that a 1°C rise in average summer temperature 
significantly reduces rice yields by 4,183 kg, while extreme temperature days had no direct impact. 
Extreme rainfall variations negatively affected productivity, though average monsoon rainfall did not. 
Despite climate challenges, districts with better road and river access showed higher technical efficiency, 
highlighting the importance of improved irrigation and market access for adaptation. Another study in 
Nepalese context conducted by Bista et al. (2021) revealed that, developing countries, including Nepal, 
face greater vulnerability due to lower adaptive capacities, with low-income groups disproportionately 
affected. Vulnerability varies by income level and is higher in lower-altitude regions. The research 
highlights that climate change poses a significant threat to Nepal’s low-income populations and 
agricultural sectors, where costs outweigh potential benefits from production.
Existing literature often emphasizes the negative effects of climate change on agriculture, such 
as rising temperatures, erratic precipitation, and increasing CO2 levels. However, this approach 
oversimplifies findings across diverse regions and crops. The observed short-term positive impact of 
maximum temperature and CO2 emissions reveals a gap in understanding the complex and sometimes 
contradictory effects of climate variables on agriculture.

Research Methodology
This paper estimates the short- and long-term impacts of climate change and adaptation in Nepal’s 
agriculture sector using the Auto Regressive Distributed Lag (ARDL) model, based on time series 
data from 1991 to 2022. Agricultural productivity (% of GDP) is the dependent variable, with data 
sourced from the World Development Indicators (WDI). Independent climatic variables annual average 
maximum and minimum temperatures (°C) and precipitation (mm) were obtained from Nepal’s 
Department of Hydrology and Meteorology. CO2 emission data (kt) were also sourced from WDI, 
while agricultural inputs, representing adaptation measures such as irrigation (hectares), chemical 
fertilizers, and improved seeds (metric tons), were extracted from the Economic Survey published by 
Nepal’s Ministry of Finance.

Econometric Model
This study used the following economic functions to determine the interaction between agriculture, 
climatic factors, and agriculture inputs as an adaptation.
LAGR=f(LMAT, LMIT, LPREC, LCO2, LIMPS, LFERT, LIRRIG)
 The next equation presents the empirical model
LAGR=α0+β1LMAT+β2LMIT+β3LPREC+β4LCO2+β5LIMPS+β6LFERT+β7LIRRIG                    (1)
Further, the above equation can be expanded as the econometric model in the following form:
LAGR=α0+β1LMAT+β2LMIT+β3LPREC+β4LCO2+β5LIMPS+β6LFERT+β7LIRRIG+ut              (2)

where,
LAGR = logarithm form of agriculture
LMAT = logarithm form of average maximum temperature
LMIT = logarithm form of average minimum temperature
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LPREC = logarithm form of precipitation
LCO2 = logarithm form of co2 emission
LIMPS = logarithm form of improved seeds
LFERT = logarithm form of chemical fertilizer
LIRRIG = logarithm form of irrigation

Unit Root Testing
Before analyzing time series data, it is crucial to determine its stationarity. Failing to do so can lead to 
misleading results, known as spurious regression. The statistical test used to check for stationarity is 
called a unit root test. A stationary series is integrated at level, denoted as I(0), while a non-stationary 
series can become stationary by differencing. If stationarity is achieved after the first difference, the 
series is integrated at the first order, or I(1). If it requires differencing twice, it is considered integrated 
at the second order, or I(2).

Bounds test of co-integration
If the data series are integrated at different levels some, being I(0) and others I(1) the autoregressive 
distributed lag (ARDL) model should be applied according to (Pesaran & Shin, 1995) due to its several 
significant advantages. Unlike traditional cointegration methods like the Engel-Granger and Johansen-
Juselius tests, which require variables to be integrated of the same order, ARDL can be applied 
regardless of whether variables are integrated of order I(0), I(1), or a combination of both (Jalil & Rao, 
2019) and also ARDL uses a single-equation approach, it simplifies the estimation process, especially 
when compared to more complex multivariate systems such as Johansen’s cointegration method. This 
flexibility makes ARDL particularly useful in empirical research. A key feature of ARDL is the ability 
to assign different optimal lag lengths to each variable, ensuring that the model captures the specific 
dynamics of each variable more effectively. This flexibility in lag structure improves model accuracy 
by addressing important lag effects that might otherwise be overlooked. ARDL also handles the issue 
of endogeneity better than many traditional models because it includes lagged values of both dependent 
and independent variables, reducing the bias associated with endogenous regressors (McCann et al., 
2010). 
Additionally, ARDL can detect cointegration even in non-stationary time series data, using the Bound 
Testing approach to confirm the existence of long-run relationships despite potential stationarity 
issues. Another advantage is that from the ARDL model, an error correction model (ECM) can be 
derived, which captures both short-run and long-run dynamics within a single framework, making the 
interpretation of results more straightforward. Furthermore, by allowing different lag structures for 
different variables, ARDL minimizes serial correlation in the residuals, thus improving the robustness 
of the model and ensuring that the estimates are consistent and reliable. Overall, ARDL stands out as 
a highly flexible and efficient model, ideal for small samples, non-stationary data, and dealing with 
endogeneity, making it a widely recommended choice for econometric analysis. Since, the data series 
employed in this paper are integrated at different levels. Hence, it is necessary to conduct ARDL 
cointegration test as follow:



Bista: Climate Change and its Adaptation in Agricultural Sector

QJMSS (2024)577

In equation (3) , Δ represent short run parameters and εt  is the error term.
Technically, an F-test is performed to test the null hypothesis δLAGR = δLMAT = δLMIT= δLPREC= δLCO2 = 
δLIMPS = δLFERT= δLIRRIG = 0 against the alternative hypothesis δLAGR ≠ δLMAT ≠ δLMIT ≠   δLPREC ≠ δLCO2 ≠ 
δLIMPS ≠ δLFERT ≠ δLIRRIG = 0. The null hypothesis posits that there is no long-run relationship among the 
variables. If we fail to reject the null hypothesis, it indicates that no long-run relationship exists among 
the variables. Conversely, rejecting the null hypothesis suggests a long-run relationship is present. It is 
important to note that the conventional F-statistic is used because the distribution is nonstandard and 
even asymptotic (Jalil & Rao, 2019). Therefore, (Pesaran et al., 2001) provided critical values for I(0) 
and I(1) at different significance levels. If the calculated F-statistic is below the critical value for I(0), 
there is no cointegration. If the F-statistic exceeds the critical value for I(1), a long-run relationship 
exists. If the calculated F-statistic falls between the critical values for I(0) and I(1), no definitive 
conclusion about cointegration can be made.
Once the co-integration is identified, ARDL framework can be used to estimate the elasticities of both 
long run and short run coefficients using equation (4) and (5).

Where, ECTt-1 indicates the error correction term, which must be negative and the value of its coefficient 
must lie between 0 and 1. From equations (4) and (5), both the short-run and long-run elasticity can be 
estimated, respectively. The negative sign of error correction implied the system stability to revert back 
to its normal position after a short-run shock.

TY Granger non-causality test
This study used the Toda-Yamamoto (TY) technique to conduct a Granger causality test that remains 
valid regardless of whether the time series are integrated at levels I(0), first differences I(1), or even 
second differences I(2). Traditional cointegration tests can be sensitive to the selection of lags and the 
exclusion of relevant variables, potentially introducing bias. By utilizing an augmented VAR model, 
the TY method applies a Wald test statistic, which follows an asymptotic chi-square distribution 
irrespective of the integration order or cointegration properties of the variables. The modified Wald test 
imposes restrictions on the parameters of the VAR(k), where k represents the chosen lag length of the 
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system. The fundamental idea behind the TY approach is to augment the correct lag order k with the 
maximum order of integration, denoted as dmax.
Equation (6) below shows the estimated relationship based on the TY test.

.

     

Data Visualization
For visualization of time series data, time series plots are commonly used. Time series plots of the 
variables used in this paper are presented in figure 1.
Figure 1: Data Series used in the study
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The agricultural productivity graph shows a long-term positive trend, with rapid growth around 2010, 
likely due to improved farming practices and climate adaptation. In contrast, maximum temperatures 
fluctuate more, peaking between 2010 and 2016, possibly reflecting global warming, followed by a 
cooling phase around 2018, and a slight rise toward 2020-2022, though not as high as earlier levels. 
Minimum temperatures remained stable until a sharp drop in 1995, then recovered, with a significant 
rise peaking in 2014, followed by a decline around 2016 and another rise by 2020-2022. CO2 
emissions consistently increased, with steady growth in the 1990s and early 2000s, a sharper rise from 
the mid-2000s, and a spike around 2013-2014 due to industrial expansion, continuing at a moderated 
pace through 2022. Precipitation exhibited notable variability, peaking in the early 1990s, stabilizing 
through the mid-1990s to early 2000s, and then fluctuating more from the mid-2000s onward, peaking 
in 2021 before a slight decline in 2022. 
Chemical fertilizer usage initially declined until 2007, followed by a sharp dip and a rapid recovery 
peaking in 2013, stabilizing at higher levels post-2013. Improved seed adoption followed an upward 
trend, with modest rises in the mid-2000s due to increased awareness and support, spiking around 2013-
2014, followed by fluctuations and stabilization by 2021-2022. Irrigation levels were stable initially, 
then gradually declined from the late 1990s, briefly recovered between 2007 and 2010, but dropped 
sharply post-2015. A slight recovery occurred after 2020, though overall levels remained lower than 
pre-2015, reflecting long-term challenges for sustainable agricultural productivity.

Descriptive Statistics
Table (1) summarizes the statistics of 32 variables used in the study. Skewness indicates that LAGR, 
LMAT, LMIT, LFERT, and LIRRIG are negatively skewed (< 0), while LPREC, LCO2, and LIMPS 
are positively skewed (> 0). Kurtosis values reveal that LAGR, LMAT, LPREC, LCO2, and LFERT 
are platykurtic (less than 3), whereas LMIT, LIMPS, and LIRRIG are leptokurtic (greater than 3). 
Normality testing using the Jarque-Bera test rejects the null hypothesis of normal distribution for 
LIMPS and LIRRIG (p < 0.05), but not for the other variables.
Table 1: Descriptive Analysis

Variables LAGR LMAT LMIT LPREC LCO2 LIMPS LFERT LIRRIG
Mean 6.023 2.977 2.262 7.424 8.340 8.438 11.065 9.995
Median 6.012 2.979 2.265 7.424 8.072 8.209 11.113 10.181
Maximum 6.271 3.028 2.356 7.651 9.74 10.452 12.900 10.799
Minimum 5.668 2.918 2.138 7.211 7.075 7.492 8.057 8.008
S.D. 0.185 0.029 0.043 0.099 0.800 0.888 1.389 0.684
Skewness -0.4177 -0.024 -0.671 0.0299 0.395 1.278 -0.418 -1.449
Kurtosis 1.945 2.356 3.874 2.840 2.055 3.535 2.388 4.738
Jarque-Berra 2.411 0.555 3.424 0.038 2.026 9.096 1.431 15.239

Probability 0.299 0.757 0.180 0.980 0.363 0.010 0.488 0.000
Sum 192.753 95.273 72.386 237.59 266.886 270.033 354.105 319.867
Sum Sq. Dev 1.067 0.026 0.0581 0.308 19.858 24.451 59.870 14.541
Observations 32 32 32 32 32 32 32 32
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Empirical discussion
Stationarity tests results
It is essential to define the sequence of integration before looking into the cointegration among the 
variables. Furthermore, using more than one unit root test to determine the integration order of series is 
also very important  because efficiency of the unit root differs on the basis of sample size. This paper 
applied Augmented Dickey-Fuller (ADF), Phillips-Perron (PP) and Kwiatkowski-Phillips-Schmidt-
Shin (KPSS) tests to check the stationarity of the variables. The results of the tests are presented in 
table 2 which shows LMAT, LMIT, LPREC are stationary at I(0), whereas LAGR, LCO2, LIMPS, 
LFERT and LIRRIG are stationary at I(1). Hence, suggesting to apply the ARDL model to explore long 
run and short run relationship among the selected variables.
To get the structural breaks in the data, (Zivot & Andrews, 2002) structural break trended unit root test 
is implemented and the results are presented in table 3 and the results also verify the standard unit root 
tests.
Table 2: Results of ADF, P-P, and KPSS unit root tests

Variables
Unit Root Tests

ADF PP KPSS
Levels
LAGR -2.0712 -2.0712 0.1455
LMAT -3.8046* -3.7925* 0.5331*
LMIT -4.1721* -4.1746* 0.1287*

LPREC -4.2322* -4.2322* 0.1064*
LCO2 -2.6044 -1.6450 0.1331
LIMPS 1.0268 -1.8670 0.6382
LFERT -1.1346 -1.2241 0.1601
LIRRIG -1.1362 -2.5634 0.3811

First Differences
ΔLAGR -6.0275* -6.0870* 0.5771*
ΔLMAT -8.7421* -15.7798* 0.1493*
ΔLMIT -6.8600* -15.5867* 0.2786*

ΔLPREC -10.1502* -10.5021* 0.3612*
ΔLCO2 -3.9002* -5.1881* 0.1123*
ΔLIMPS -11.6312* -11.6312* 0.2104*
ΔLFERT -6.5057* -6.4409* 0.2063*
ΔLIRRIG -7.3245* -5.1057* 0.3101*

Note:- * exhibits significance at 1% level.
Table 3: Zivot-Andrews (Z-A) structural break unit root test

Variables
ZA Test for Level ZA Test for 1st Difference

T-statistic T i m e - 
Break

Outcome T-statistic T i m e -
Break

Outcome

LAGR -3.434 2016 Unit Root -6.593* 2011 Stationary
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LMAT -5.212* 2017 Stationary -6.245* 2011 Stationary
LMIT -4.574*** 2010 Stationary -5.205** 2014 Stationary
LPREC -5.846* 2004 Stationary -10.831* 1997 Stationary
LCO2 -3.965 2016 Unit Root -5.561* 2008 Stationary
LIMPS -3.008 1998 Unit Root -7.007* 2013 Stationary
LFERT -3.848 2009 Unit Root -10.344* 2009 Stationary
LIRRIG -3.504 2008 Unit Root -8.063* 2005 Stationary

Note:- *, **, *** exhibits stationarity at 1%, 5% and 10% significance level respectively.

ARDL Bounds Test
Results of the cointegration test with ARDL bound is presented in the table 4, the results show that the 
estimated F-statistics value (5.838000) is larger than 10%, 5%, 2.5%, and 1% of the critical upper limit 
in the order zero and one respectively, rejecting the null hypothesis by demonstrating that the variables 
have a long-run association.
Table 4: ARDL cointegrating results

F-Bounds Test Null Hypothesis: No levels relationship

Test Statistic Value Signif. I(0) I(1)

Asymptotic: 
n=1000

F-statistic  5.838000* 10%   2.38 3.45
k 7 5%   2.69 3.83

2.5%   2.98 4.16
1%   3.31 4.63

Note:- * exhibits significance at 1% level

Long run and Short run estimates
Overall results of the ARDL model for long run and short run estimates is presented in the table 5 
and table 6 respectively. It provides insights into the long-run and short-run relationships between 
agricultural productivity, various climatic variables and various agricultural input factors.
The coefficient for LMAT (2.775077) is positive and statistically significant at the 1% level, indicating 
that higher annual average maximum temperatures are associated with increased agricultural 
productivity in the long run. This relationship is plausible in regions where crops benefit from warmer 
temperatures, assuming that other conditions such as water and soil quality are optimal. Moderate 
temperature increases may boost yields, especially in cooler climates. Farmers’ adaptation strategies, 
such as adjusting planting schedules or crop varieties, could also mitigate potential negative impacts 
(Lobell & Field, 2007). 
In contrast, coefficient for LMIT (-1.184312) is negative and significant, indicating that higher 
minimum temperatures harm long-run agricultural productivity by increasing respiration rates that 
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reduce net carbon assimilation or shortening the growing season . This aligns with studies showing that 
excessive increases in minimum temperatures negatively impact crops, especially those needing cooler 
nights (Peng et al., 2004).
For other climatic factors such as the coefficient for LCO2 and LPREC the coefficient is  (0.074655) 
and (0.139982) respectively both representing statistically insignificant, indicating CO2 emissions have 
no significant long-run impact on agricultural productivity in this model. Although CO2 can enhance 
photosynthesis, its effect may be offset by other factors like nutrient availability. Studies show mixed 
results on CO2’s impact, depending on crop type and environmental conditions (Long et al., 2006) and 
the reason for precipitation may be due to the complexity of precipitation’s impact, which depends on 
timing, intensity, and soil water retention. Studies indicate that the relationship between precipitation 
and crop yields is often nonlinear and region-specific (Mahadevan et al., 2024).
The short-run coefficients for climatic variables is presented in table 5, which are all statistically 
significant, indicating that changes in these variables have immediate impacts on agricultural 
productivity. A short-run increase in maximum temperature Δ(LMAT) positively affects productivity, 
while an increase in minimum temperature Δ(LMIT) and precipitation Δ(LPREC) negatively affects it, 
consistent with their long-run effects.
Discussing on the long run coefficient of agricultural input factors as the measures of adaptation, 
the coefficient for LFERT (-0.040978) is negative and significant, indicating that increased use of 
chemical fertilizers reduces long-term agricultural productivity. This may be due to the negative effects 
of excessive or improper fertilizer use, which can degrade soil health. Literature supports this, showing 
over-reliance on fertilizers can cause soil acidification, nutrient imbalances, and pollution, harming 
productivity as per the study of (Shrestha et al., 2021). 
The coefficient for LIRRIG (0.028942) is positive and marginally significant, suggesting that improved 
irrigation enhances long-term agricultural productivity. Adequate irrigation is crucial for stable crop 
yields, especially under irregular rainfall patterns. This aligns with the view of (Misra, 2014) that 
reliable water supply mitigates climate change risks.
The coefficient for LIMPS (0.064088) is positive but not statistically significant, indicating that 
improved seeds may enhance productivity, though the effect is weaker than irrigation. The impact of 
seed use depends on factors like soil fertility and water availability. Study like (Choudhary et al., 2020) 
suggest improved seeds boost productivity when combined with other agricultural best practices, but 
their effectiveness can be limited by environmental conditions.
For the agricultural inputs in the short run, The coefficient for Δ(LIMPS) (0.024460) is positive and 
significant, showing that improved seeds have a positive short-run impact on agricultural productivity. 
This suggests immediate yield gains due to enhanced resistance to pests, diseases, and climate stresses. 
Improved seeds contribute to better short-term agricultural outcomes. The short-run coefficient for 
Δ(LFERT) was not reported, but given the long-run negative relationship, its short-run effects may be 
insignificant or context-dependent. The short-run impact of irrigation, though not directly provided, 
likely aligns with the long-run positive effect, helping stabilize productivity amid climatic variability.
The Error Correction Term CointEq(-1) is negative and statistically significant (-0.643144, p = 0.0000), 
indicating that deviations from the long-run equilibrium are corrected by approximately 64.31% in 
the following period. This significant and negative coefficient confirms the existence of a long-run 
relationship, with the system adjusting back to equilibrium fairly quickly.
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Table 5: Long run coefficient using the ARDL approach (1,1,1,0,1,0,1,1)

Variable Coefficient Std. Error t-Statistic Prob.
LMAT 2.775077* 0.733112 3.785339 0.0015
LMIT -1.184312* 0.361488 -3.276217 0.0045
LCO2 0.074655 0.063284 1.179681 0.2544
LPREC 0.139982 0.116373 1.202877 0.2455
LFERT -0.040978** 0.016029 -2.556582 0.0204
LIMPS 0.064088 0.038178 1.678685 0.1115
LIRRIG 0.028942*** 0.014097 2.053154 0.0558
R-squared 0.989865     Mean dependent var 6.033828
Adjusted 
R-squared 0.982115     S.D. dependent var 0.179135

S.E. of regression 0.023957     Akaike info criterion -4.322694
Sum squared 
resid 0.009757     Schwarz criterion -3.675087

Log likelihood 81.00176     Hannan-Quinn criteria -4.111590
F-statistic 127.7223     Durbin-Watson stat 2.338456
Prob(F-statistic) 0.000000

Table 6:- Error correction representation of ARDL model (1,1,1,0,1,0,1,1)

Variable Coefficient Std. Error t-Statistic Prob.
C -1.098457* 0.138585 -7.926215 0.0000
@TREND 0.005089* 0.000790 6.445484 0.0000
Δ(LMAT) 0.622630* 0.142723 4.362513 0.0004
Δ(LMIT) -0.193092* 0.078552 -2.458134 0.0250
Δ(LPREC) -0.097296* 0.031181 -3.120354 0.0062
Δ(LIMPS) 0.024460* 0.006299 3.883432 0.0012
CointEq(-1)* -0.643144* 0.079205 -8.120041 0.0000
R-squared 0.755558     Mean dependent var 0.018283
A d j u s t e d 
R-squared 0.694447     S.D. dependent var 0.036475

S.E. of regression 0.020162     Akaike info criterion -4.774307
Sum squared resid 0.009757     Schwarz criterion -4.450503
Log likelihood 81.00176     Hannan-Quinn criteria -4.668755
F-statistic 12.36378     Durbin-Watson stat 2.338456
Prob(F-statistic) 0.000002

Note:- in table 5 and table 6 *, **, *** exhibits stationarity at 1%, 5% and 10% significance level 
respectively.
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Diagnostic Tests 
The estimated ARDL model also requires diagnostic testing for robustness. Table 7 presents the 
diagnostic tests, where the value of  F-statistic in BG test is (1.363044) with a Prob F(1,16) of (0.2601). 
This probability value is greater than the usual significance levels (i.e, 0.05 or 0.01), implying that we 
fail to reject the null hypothesis of no serial correlation in the residuals. Again, the Obs *R-squared 
(2.433580), with a Prob. Chi-Square (1) of (0.1188). Again, since this p-value is higher than common 
significance levels, confirming that there is no evidence of serial correlation in the residuals. 
The results of BPG test for heteroskedasticity indicates that there is no evidence of heteroskedasticity in 
the model. It is because the value of F-statistic (1.007599) with p-value (0.4850) is greater than common 
significance levels like 0.05 which means we fail to reject the null hypothesis of homoscedasticity. 
Value of Obs *R-squared is (13.49099) with Prob Chi-Square (13) is (0.4106) also indicating that 
we fail to reject the null hypothesis, further supporting the conclusion of no heteroskedasticity and at 
last scaled explained SS of (3.664315) has a Prob Chi-Square(13) of (0.9943)  indicating no evidence 
of heteroskedasticity and confirming that the ARDL model is properly fitted and the residuals are 
normally distributed (p > 0.05) as shown in figure 2 
Table 8 presents multicollinearity tests. The Variance Inflation Factor (VIF) values presented indicate 
the level of multicollinearity between the independent variables in your model. LMAT (1.81), LMIT 
(1.17), LPREC (1.15), LFERT (1.98), and LIRRIG (1.54) these VIF values are all below 5, which 
is generally considered a safe threshold. This suggests that there is low multicollinearity for these 
variables. LIMPS (2.99), while this is higher than the others, it’s still below the threshold of 5, indicating 
manageable multicollinearity. LCO2 (4.57), although this is the highest VIF value, it is still below 5, so 
it doesn’t raise major concerns but indicates higher multicollinearity compared to the other variables.
An overall mean VIF of (2.17) is considered acceptable and suggests that multicollinearity is not a 
severe issue in our model. In summary, none of the variables have problematic multicollinearity, as all 
VIF values are below the common threshold of 5. Therefore, multicollinearity does not seem to pose a 
major issue in our model.
Additionally, figure 2 displays the results of both the CUSUM and CUSUM of squares tests, indicating 
that the estimated long-run and short-run parameters of the model remain stable throughout the study 
period.
Table 7:- Results of the diagnostic tests

Breusch-Godfrey Serial Correlation LM Test:

F-statistic 1.363044 Prob F(1,16) 0.2601

Obs *R-squared 2.433580 Prob. Chi-Square 
(1)

0.1188

Heteroskedasticity Test: Breusch-Pagan-Godfrey
F-statistic 1.007599 Prob F(13,17) 0.4850

Obs *R-squared 13.49099 Prob. Chi-Square(13) 0.4106

Scaled explained SS 3.664315 Prob. Chi-Square(13) 0.9943
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Figure 2:- Normality of the residuals
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The normality test of the residuals in the above figure 2, suggests that they are approximately normally 
distributed. The histogram shows a symmetric distribution centered around zero, indicating no 
significant deviations from normality. Key statistics further support this observation. The skewness 
value of -0.633723 indicates a slight negative skew, while the kurtosis value of 3.318247 is close 
to 3, suggesting the residuals have tails similar to a normal distribution. The Jarque-Bera statistic 
of 2.205782, with a p-value of 0.331910, confirms that the null hypothesis of normality cannot be 
rejected, as the p-value is greater than the 0.05 significance level. Overall, the residuals meet the 
normality assumption required for the model.
Table 8:- Variance Inflation Factor (VIF) test for multicollinearity
Variable VIF 1/VIF

LMAT 1.81 0.5510

LMIT 1.17 0.8538

LCO2 4.57 0.2188

LPREC 1.15 0.8727

LFERT 1.98 0.5042

LIMPS 2.99 0.3343

LIRRIG 1.54 0.6488

Mean VIF 2.17
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Figure 3:-Plots of Cumulative Sum (CUSUM) of recursive residual and Cumulative Sum 
(CUSUM) of Squares of residuals

Toda-Yamamoto Granger Causality Test
The results of TY Granger Causality Test also reveals that LMAT, LMIT, LIMPS, LFERT,  have 
unidirectional causality towards LAGR implying that past values of these variables provide useful 
information to predict LAGR, and this results are also consistent with ARDL estimation results  
presented in table 5 and table 6 .Variables LPREC and LIRRIG are found to have bidirectional causality 
with LAGR.

Variables LAGR LMAT LMIT LPREC LCO2 LIMPS LFERT LIRRIG

LAGR - 8.397* 2.576** 13.836* 8.753 11.674* 23.72* 8.272*

LMAT 3.069 - 4.579*** 1.368 8.284* 1.327 7.780** 3.026

LMIT 0.419 2.770 - 2.820 0.566 0.307 0.093 2.405

LPREC 31.49* 1.126 8.511** - 22.36* 3.713 5.879** 18.079*

LCO2 1.805 3.412 3.031 2.733 - 6.976 0.806 6.349**

LIMPS 1.8205 4.261 1.102 3.248 2.297 - 1.774 2.110

LFERT 12.11* 4.313 21.81* 7.857** 16.647* 16.703* - 4.95***

LIRRIG 0.5393 8.270* 8.171* 2.863 12.689* 7.541** 0.431 -
 Table 9:- Toda-Yamamoto Granger Causality Test

Note:- *, **, *** exhibits stationarity at 1%, 5% and 10% significance level respectively.

Generalized Impulse Response Function
The study uses generalized impulse response analysis to examine how shocks in one variable affect 
another and to understand the short-run impact of innovations across all variables in the system of 
agricultural productivity. This approach provides insights into the dynamic responses between variables 
(Pesaran & Shin, 1995). The generalized impulse responses of climatic variables and other selected 
variables to one standard deviation innovations in agriculture productivity are visualized in figure 4.
A positive shock to maximum temperature initially boosts agricultural productivity, peaking shortly 
after and then gradually declining. In the long run, the positive effect diminishes but remains slightly 
above zero, indicating a sustained yet reduced benefit. This may be due to enhanced photosynthesis 
or longer growing seasons. Minimum temperature shocks also initially increase productivity, but 
the effect turns negative over time, possibly due to increased plant respiration or pests. Precipitation 
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shocks initially enhance productivity, but excessive rainfall leads to long-term negative impacts such as 
waterlogging and soil erosion. For CO2 emissions, positive shocks consistently improve productivity 
due to the CO2 fertilization effect. Improved seeds show immediate and significant gains, stabilizing 
over time as the benefits of resilient seed varieties become consistent.
Chemical fertilizers provide a substantial short-term boost, though the effect slightly declines, 
emphasizing the need for balanced use. Irrigation increases productivity initially, but over time, 
inefficient management can lead to negative effects like soil salinity, stressing the importance of 
sustainable irrigation practices.
Figure 4:- Generalized impulse responses
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Conclusion and Recommendation
In this study, the analysis revealed a complex relationship between these climatic variables and 
agricultural output in Nepal. The annual average maximum temperature positively affects agricultural 
productivity in the long run, indicating that an increase in temperature can boost crop yields in regions 
where crops are sensitive to higher temperatures. 
This positive effect is likely due to farmers’ adaptation strategies, such as adjusting planting schedules 
and using heat-tolerant crop varieties. On the other hand, the annual average minimum temperature 
negatively impacts productivity, as higher night-time temperatures can disrupt crop growth by 
shortening the growing season and increasing respiration rates, which reduces net carbon assimilation.
Interestingly, the study found that CO2 emissions and precipitation did not have statistically significant 
long-term effects on agricultural productivity. While CO2 fertilization can enhance photosynthesis, its 
impact in this context may be offset by other limiting factors such as nutrient availability. Similarly, 
precipitation’s effect on productivity is complex and highly dependent on timing, intensity, and soil 
water retention capabilities.
In the short run, however, changes in maximum temperature, minimum temperature, and precipitation 
were all found to have significant and immediate effects on agricultural productivity, indicating the 
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system’s quick adjustment to climatic variations. These findings underscore the importance of adaptive 
strategies in agriculture to mitigate the adverse effects of climate change, emphasizing the need for 
flexible, context-specific approaches that address both the immediate and long-term challenges posed 
by shifting climatic patterns.
In the long run, the analysis of agricultural input factors reveals a nuanced impact on productivity. 
The use of chemical fertilizers, while often associated with increased crop yields, shows a negative 
and statistically significant effect on agricultural productivity over time. This suggests that excessive 
or improper use of chemical fertilizers may lead to soil degradation, ultimately reducing long-term 
productivity. Such findings highlight the potential adverse effects of relying heavily on chemical inputs 
without sustainable practices.
Conversely, irrigation practices exhibit a positive, albeit marginally significant, impact on agricultural 
productivity in the long run. This underscores the importance of reliable water supply in maintaining 
and enhancing crop yields, especially in regions facing variable climatic conditions. Effective irrigation 
systems are crucial for ensuring that crops receive adequate water, particularly in the face of increasing 
temperature and unpredictable rainfall patterns.
The adoption of improved seeds, while expected to boost productivity, does not show a statistically 
significant effect in the long run. This indicates that the benefits of improved seed varieties might 
be influenced by other factors such as soil fertility, climate conditions, and the integration of other 
agricultural practices. However, in the short run, the coefficient for improved seeds is positive and 
significant, demonstrating that the adoption of these varieties has an immediate and beneficial impact 
on agricultural productivity. This finding suggests that while improved seeds can enhance yields 
quickly, their long-term success depends on a holistic approach that considers the broader agricultural 
environment.
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