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Abstract
We have developed the Modified Exponential power distribution, a new and adaptable probability distribution, 
in this work. An additional shape parameter is added to the exponential power distribution to create this 
distribution. Numerous statistical properties of suggested model are derived and analyzed. Cramer-Von-Mises 
(CVME), maximum likelihood (MLE), and least-squares (LSE) are used to estimate the model's parameters. P-P 
and Q-Q charts are used to assess the validity of the model. Several information criteria are applied in model 
comparisons, including the  Bayesian Information Criterion (BIC), the Hannan-Quinn Information Criterion 
(HQIC), the Corrected Akaike Information Criterion (CAIC), and the Akaike Information Criterion (AIC). These 
criteria help determine the best model by balancing goodness-of-fit with model complexity. Test statistics, together 
with their corresponding p-values, are also utilized to evaluate the recommended model's goodness of fit. These 
tests consist of the Kolmogorov-Smirnov (KS), Cramer-Von Mises (CVM), and Anderson-Darling (An) tests. R 
programming is used for the dataset analysis and visualization.
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Introduction
Statistics has been getting wide scope in every field. Statistics is backbone of the research either in scientific 
and non-scientific studies. It is being applied in theory building, theory testing, model formulation, information 
gathering, programming, data analysis, actuarial science, and in environmental science etc. Probability distribution 
is one of the statistical tools that help in decision-making and model formulation. In modern age of statistics, 
researchers are formulation new probability models using different techniques. Formulating of models using 
family of distribution, modifying the existing probability model, adding some extra parameters to existing models, 
exponentiation the models and combining two or more models are the important methods.
Over the past few decades, the exponential distribution has garnered significant attention from researchers for 
its versatility in modeling lifetime data. This model is known to perform exceptionally well across various 
applications, as it offers numerous closed-form solutions for survival analysis. Even though it's reasonable to 
assume a constant failure rate, failure rates are often not constant in practice. Therefore, using the exponential 
lifetime model randomly seems impractical and inaccurate. Some of the modification of the exponential distribution 
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found in the literature are Beta Exponential distribution (Nadarajah & Kotz, 2006), Generalized Exponential (GE) 
distribution with an increasing and decreasing failure rate function (Gupta & Kundu, 1999), Logistic-exponential 
distribution with  an increasing, decreasing, bathtub (BT)-shaped, and upside-down bathtub (UBT)-shaped failure 
rate function  (Lan &Leemis, 2008), the Exponentiated Exponential distribution (Nadarajah, 2011), an Extension 
of the Exponential distribution having mode at zero and allowing increasing, decreasing and constant hazard 
rates (Nadarajah & Haghighi, 2011), the Marshall-Olkin exponential Weibull distribution having increasing and 
bathtub shaped hazard rate (Pogány et al., 2015), the exponentiated generalized extended exponential distribution   
having the classic shapes: bathtub, inverted bathtub, increasing, decreasing and constant hazard rates (de Andrade 
et al., 2016), the Extended Exponential Distribution having decreasing, increasing or bathtub shaped hazard rate 
(Afify et al., 2018), the Marshall-Olkin logistic-exponential distribution having increasing, decreasing, bathtub 
and upside-down bathtub hazard rate functions (Mansoor et al., 2019), the Truncated Cauchy Power Exponential 
distribution having a variety of shape and monotonically increasing, increasing-decreasing, and constant hazard 
rate (Chaudhary et al., 2020) and the Logistic-exponential Power distribution (Joshi et al., 2020).
Chaudhary et al. (2021) developed the Exponentiated Weibull inverted exponential distribution which exhibits 
inverted bathtub shape and increasing – decreasing hazard rate. Using the half Cauchy family of distributions as a 
baseline, Chaudhary and Kumar (2022) also presented the half Cauchy modified exponential distribution. 
Modified Generalized Exponential Distribution, as defined by (Telee & Kumar, 2023), is a modification of the 
Generalized Exponential distribution first presented by (Gupta & Kundu, 1999). Depending on the model's 
parameter values, it displays an inverted bathtub or a reverse j-shaped hazard rate. Telee and Kumar (2023) also 
introduced Modified Inverse Generalized Exponential Distribution which displays increasing and decreasing or 
inverted bathtub shaped hazard rate based on set of parameters. Otoo et al. (2023) proposed Odd Chen Exponential 
Distribution which exhibits different shapes, including the well-known bathtub shape hazard rate. Chaudhary et 
al. (2024) suggested novel flexible distribution called Modified Arctan Exponential distribution with revealing 
its remarkable flexibility in accommodating both increasing and decreasing hazard functions, as well as an 
inverted bathtub-shaped hazard function. The Cauchy modified generalized exponential distribution suggested by 
(Chaudhary et al., 2024) also displays both a rising trend and an inverted bathtub shape hazard rate. The Cauchy 
modified generalized exponential distribution, which displays both a rising trend and an inverted bathtub shape 
hazard rate, was also developed by (Chaudhary et al., 2024).
Chaudhary et al. (2023) have developed innovative model called Inverse Exponential Power (IEP) distribution by 
inverse transformation technique. The Inverse Exponential Power distribution's cumulative distribution function 
(CDF) and probability density function (PDF) are defined, respectively, by

( ; , ) exp 1 exp ; 0, 0, 0IEPF x x
x

αλα λ α λ
   = − > > >  

   
; (1)

1
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+        = − > > >      
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The hazard rate function of IEP distribution displays increasing, inverted bathtub and decreasing shape.
Based on the Exponential Power (EP) lifetime distribution that was first suggested by (Smith & Bain, 1975), we 
suggest a unique distribution called Modified Exponential Power (MEP) distribution in this study. The CDF of EP 
distribution is defined by the equation (3).
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And the associated PDF of EP distribution is defined by the equation (4).
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The subsequent sections are organized as follows: Section 2 introduces the Modified Exponential Power (MEP) 
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distribution and explores its statistical properties. In Section 3, we examine estimation techniques such as Cramer-
Von-Mises (CVME), maximum likelihood (MLE)and least-squares (LSE. Section 4 applies these techniques to 
a real dataset, presenting the estimated model parameters and demonstrating various test criteria used to evaluate 
the model's goodness of fit. Finally, Section 5 provides concluding remarks.

Modified Exponential Power distribution
The Exponential Power (EP) distribution, which was first presented by (Smith & Bain, 1975), with equations 
(3) and (4), has been modified to create the novel distribution known as the Modified Exponential Power (MEP) 
distribution, which we have described in this section. The CDF of the MEP distribution may be obtained as 
follows if X is a non-negative random variable that follows the MEP distribution:

( ; , , ) 1 exp{1 exp( ) } ; 0, 0, 0, 0F x x x
λαα β λ β α β λ = − − > > > >   (5)

And the associated PDF of equation (5) is obtained as follows:
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The Survival function:
The MEP distribution’s survival function is

( ; , , ) 1 1 exp{1 exp( ) } ; 0, 0, 0, 0S x x x
λαα β λ β α β λ = − − − > > > >   

(7)

The Hazard rate function:
The hazard rate function of MEP distribution is 

( ) ( ) 11 [1 exp( ) ] 1 exp[1 exp( ) ]
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And the Cumulative hazard rate function of MEP distribution is

( ) log 1 1 exp{1 exp( ) } ; 0, 0, 0, 0H x x x
λαβ α β λ  = − − − − > > > >     

For the MEP distribution across different parameter sets, Figure 1 displays the PDF and hazard rate plots. The 
shape of the density function, as illustrated in the left panel of Figure 1, can vary significantly with different 
parameter values. It can be right-skewed and unimodal, among other possible shapes. The hazard rate is depicted 
in Figure 1's right panel as an increasing, inverted bathtub and decreasing shape.
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Fig. 1: PDF plots (Left) and Hazard rate plots (right) for β= 0.25

Reversed hazard rate function
The reversed hazard rate function of MEP distribution is
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The Quantile function:     
The MEP’s quantile function is given by 

{ }( )1/1/1 ln 1 ln(1 ) ; 0 1.px p p
αλ

β
= − − < <

 
(10)

Random deviate generation:
Random deviate generation is given by

{ }( )1/1/1 ln 1 ln(1 ) ; 0 1.x u u
αλ

β
= − − < <

 
(11) 

where u has the uniform U (0, 1) distribution.

Skewness and Kurtosis: 
Kenney and Keeping (1962) created the following Bowley's measure of skewness, which is based on the quartile:

( ) ( ) ( ) ( )
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and the coefficient of kurtosis ,as determined by (Moors ,1988) with octiles, is as follows:
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Estimation of Parameters: Parameter estimation of the model is most essential work of the probability distribution. 
There are various techniques of parameter estimation. In this study, we have used three important methods namely 
MLE, CVE and LSE methods of estimation.
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Maximum Likelihood Estimation
Here, we've demonstrated the MLE method for parameter estimation in the MEP model. Assume that 

( )1  , , nx x x= …  is a sample containing n MEP items. The MEP's log likelihood function is given by the 
equation (12).

( ) ( )
1 1 1 1

( ; , , ) log log lo 2g ( 1) log exp ( 1) exp[1 exp( )  1
n n n n

i i i i
i i i i
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= = = =
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By calculating the derivative of (12) in the first order w.r. to α, β, and λ and solving for 0l l l
α λ β
∂ ∂ ∂

= = =
∂ ∂ ∂

,for the 
α, λ, and β simultaneously, we may get the MLE of the MEP. 

Least-Square Estimation 
Consider the random sample { }1 2, ,  , nX X X…  which has n units and is drawn from an ordered random variable  

( ) ( ) ( )1 2 nX  X   X< < …< , where the cumulative distribution function (CDF) of Xi F(Xi). It is then possible to get 
the LSE of α, β, and λ a by minimizing the relation (13) w.r.to α, β, and λ.
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Once the relation (13) is differentiated w.r. to α, β, and λ, the simultaneous equations for α, β, and λ may be solved 
to get the estimated parameters. 

Cramer-Von Mises estimation 
Through use of the Cramer-Von Mises estimation approach, we may get estimated values of the unknown 
parameters α, β, and λ by minimizing relation (14).
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Equation (14) can be differentiated with respect to α, β, and λ, and the equations 0, = 0, = 0  C C Cand
α β λ
∂ ∂ ∂

=
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may be solved and then the CVM estimators of the parameters may be derived.

Applications to Real Dataset
We examine a real data set of waiting times (in minutes) for 100 bank clients reported by (Ghitany et al.,2008) in 
order to demonstrate the flexibility of the MEP distribution. 

33.1, 38.5, 27.0,31.6, 0.8, 0.8, 1.5,  1.3, 3.5,  3.3, 4.0, 3.6, 6.7,  6.3, 7.1, 6.9, 7.1,7.1, 7.1, 7.6,  7.4, 5.3,  5.0, 5.7, 
5.5, 6.1, 5.7, 8.0, 7.7, 8.6, 8.2, 12.5,  8.6, 13.0, 12.9, 13.3, 13.1, 8.6, 13.6, 8.8, 8.8, 1.9, 1.8, 2.1,  1.9, 2.7,  2.6, 3.1, 
2.9, 8.9, 3.2, 9.5,  8.9, 9.7, 9.6, 10.9,  10.7, 11.0, 11.0, 11.2, 11.1, 11.5, 11.2, 12.4, 11.9, 4.2, 4.1, 4.3, 4.2, 4.4, 4.3, 
4.4, 4.7, 4.6, 4.8,  4.7, 4.9, 4.9, 6.2, 6.2, 9.8, 6.2, 113.9, 3.7, 18.4, 21.3,  14.1, 18.9,  19.0, 21.4, 15.4,  15.4, 17.3, 
19.9, 17.3, 18.2, 20.6, 18.1, 23.0,21.9.

Using the R software's optim() function as explained by the (R Core Team ,2023), maximizing (12) has allowed 
us to approximate the MLEs of the MEP distribution. The computed Log-Likelihood value is l = −316.9897. The 
standard errors (S.E.) and MLEs for alpha, beta, and lambda are displayed in Table 1.
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Table 1

MLE and S.E., of MEP
(Parameters) MLE SE

α 0.3406 0.1028
β 0.2309 0.1518
λ 7.6184 5.0291

Boxplot and TTT are shown in Figure 2 to study the nature of the data.

Figure 2: The box plot(left) and TTT plot(right). 

The estimated parameters α, λ, and β using R are presented in Table 2.

Table 2: Estimated parameters for α, β, and λ

 Method α̂ β̂ λ̂ LL AIC KS(p-value)

MLE 0.3406 0.2309 7.6184 -316.9897 639.9793 0.0358(0.9995)
LSE 0.2969 0.3083 9.9523 -317.1191 640.5982 0.0389(0.9981)
CVE 0.2988 0.3107 10.1546 -317.0868 640.1736 0.0354 (0.9996)

A P-P plot and a Q-Q plot are shown in Figure 3 to evaluate the model’s normality, respectively, in the left and 
right panels. The MEP distribution fits the data quite well, as demonstrated by these plots.



Pravaha (2023), Vol 29, No. 1 7

Modified Exponential Power distribution...

Figure 3: The MEP distribution's P-P plot in the left panel & Q-Q plot in the right panel. 

Model Comparison
We assessed the MEP model’s goodness of the fit in contrast to five other models utilizing the same dataset. 
The models compared include: Modified Inverse NHE (Chaudhary et al., 2023), Exponentiated Power Lindley 
(EPL) (Ashour & Eltehiwy, 2015), Marshall-Olkin Extended Exponential (MOEE) (Marshall & Olkin, 1997), 
Exponential Extension (EE) NHE (Nadarajah & Haghighi, 2011), Generalized Rayleigh (GR) (Kundu & Raqab, 
2005) and Power Lindley (PL) (Ghitany et al., 2014). goodness of the fit
The estimated parameters of the suggested model are shown in Table 5, along with the rival models under 
consideration.

Table 5: Estimated parameters of MEP and other models

Estimated parameters with standard error of estimations (S.E.) for the competing models and the suggested model
Models α β λ θ δ
MEP 0.3406(0.1028) 0.2309(0.1518) 7.6184(5.0291)

MINH 0.4858(0.0415) 0.1099(0.0160) 37.5129(6.4768)
EPL 2.6277(1.7794) 0.7472(0.1879) 0.5086(0.3379)
PL  1.0834(0.0704) 0.1529(0.0282)

MOEE 4.1180(1.3544) 0.1924(0.0260)
GR 0.6298(0.0777) 0.0694(0.0053)

NHE 3.4195(1.9166) 0.0205(0.0137)
  
We also showed the dataset's histogram, the MEP model's goodness-of-fit graph, and the models that were taken 
into account in Figure 4's left panel. Fitted CDF and empirical CDF are displayed in the graph's right panel. Plots 
show that, when compared to the other models taken into consideration, the MEP distribution offers a superior fit 
to the dataset.
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Figure 4: The MEP distribution's empirical vs. estimated CDF plots (right panel), as well as the fitted density 
plot & histogram (left panel).

The MEP distribution's applicability may be ascertained using examples of the HQIC, BIC, AIC, and CAIC. These 
figures are shown in Table 6. The validation criteria indicate that the MEP model has lower values compared to the 
other models considered. This suggests that, in comparison to the other models considered, the suggested model 
fits the data better.

Table 6: HQIC, BIC, CAIC, log-likelihood (LL)  and AIC
Models LL AIC BIC CAIC HQIC
MEP -316.9897 639.9793 647.7948 640.2293 643.1424

MINH -317.0699 640.1398 647.9553 640.3898 643.3029
EPL -317.1008 640.2016 648.0171 640.4516 643.3646
PL -318.3186 640.6372 645.8475 640.7609 642.7459

MOEE -320.7120 645.4241 650.6344 645.5453 647.5328
GR -321.5182 647.0364 652.2467 647.1601 649.1451

NHE -323.4487 650.8973 656.1077 651.0185 653.0060

A crucial section of statistical modeling is determining the fitted model's goodness of fit and contrasting it with 
alternative models. We created the statistics for the Kolmogorov-Smirnov (KS), Cramer-Von Mises (CVM), and 
Anderson-Darling (AD) tests to evaluate the MEP distribution's goodness-of-fit relative to other distributions. 
Table 7 shows the values of these test statistics. It is discovered that in all goodness of fit methods, the MEP and 
MINH distribution have higher p-values and smaller test statistic values. This leads to the conclusion that, when 
compared to other models considered, the MEP and MINH distribution matches the real data set more consistently.

Table 7: The KS, AD, CVM statistics and their corresponding p-value
Model KS(p-value) AD(p-value) CVM(p-value)
MEP 0.036 (0.9995) 0.1273 (0.9996) 0.017 (0.9989)
MINH 0.036(0.9995) 0.1274(0.9996) 0.0173(0.9990) 
EPL 0.038(0.9989) 0.018(0.9987) 0.128(0.9996)
PL 0.052(0.9498) 0.046(0.9025) 0.303(0.9359)
MOEE 0.06(0.8690) 0.08(0.7164) 0.64(0.6150)
GR 0.095(0.3337) 0.204(0.2595) 1.09(0.3126)
NHE 0.107(0.2028) 0.21(0.2499) 1.554(0.1642)
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Concluding Remarks
In this work, we introduce the Modified Exponential Power (MEP) distribution, a new and versatile probability 
distribution. An additional shape parameter is added to the Exponential Power (EP) distribution to create this 
distribution. The distributional and statistical characteristics of the suggested model have been thoroughly 
examined. There are three possible geometries for the MEP distribution's hazard function: increasing, inverted 
bathtub, and decreasing, while its probability density function (PDF) can be right-skewed and unimodal. As can 
be seen from the P-P and Q-Q plots, the MEP distribution matches the original dataset considerably better. Using 
a real dataset, we evaluated three popular estimation procedures: CVM, LSE, and MLE estimation. Our findings 
indicate that MLE outperforms both LSE and CVM. Additionally, the application demonstrates that the MEP 
and MINH distributions consistently surpass competing distributions in terms of fit and flexibility. This model 
is expected to be a valuable alternative in the fields of probability theory and applied statistics. Its applicability 
across various fields highlights its potential as a powerful tool for researchers and practitioners seeking to model 
complex data accurately. Future research could focus on extending the MEP distribution to multivariate cases or 
exploring its applications in new domains.
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