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Introduction 
The history of linear algebra is deeply rooted in the broader development of mathematics, with its origins 
tracing back to ancient civilizations. The earliest forms of linear algebra can be seen in the work of ancient 
Egyptians and Babylonians, who developed methods to solve simple linear equations (Birkhoff, & Mac Lane, 
1996). However, it was the ancient Greek mathematician Euclid who, in his “Elements,' laid some of the 
foundations by discussing geometric solutions to linear equations. The study of determinants began with the 
work of Japanese mathematician Seki Kōwa and, independently, with the work of the German mathematician 
Gottfried Wilhelm Leibniz in the 17th century. Their work focused on solving systems of linear equations 
using what would later be formalized as determinants, a crucial concept in linear algebra.

The formalization of linear algebra as a distinct branch of mathematics occurred in the 19th century, primarily 
through the contributions of mathematicians such as Carl Friedrich Gauss and Augustin-Louis Cauchy. Gauss 
developed methods for solving systems of linear equations, including Gaussian elimination, a fundamental 
algorithm in linear algebra today. The term “linear algebra' itself was coined in the mid-19th century, with the 
discipline evolving rapidly due to its applicability in various scientific fields (Berman, & Shvartsman, 2016). 
Later, the development of vector spaces by Giuseppe Peano and the formalization of matrix theory by Arthur 
Cayley solidified linear algebra as a key area of study within modern mathematics. 

 The branch of mathematics known as linear algebra studies vectors, vector spaces, commonly referred to as 
linear spaces, and linear mappings between these spaces (Trigueros, &Wawro, 2020). It includes a number 
of ideas that are used to solve linear equation systems, carry out transformations, and examine geometrical 
properties, including matrices, determinants, eigenvalues, and eigenvectors (Kleiner, 2007).

In linear algebra, a vector is defined as a component having both magnitude and direction. Additionally, vectors 
are typically represented as an array of numbers (Lay, 2003). An illustration of a vector in two dimensions 
would be 𝑿 = (2,3), V= (2,3), which can be seen as an arrow in the Cartesian plane that points from the origin 
(0,0) to the point (2,3) (Beezer, 2021). The set of all vectors in 2D space, R2 is a vectors space. Any linear 
combination of two vectors in R2 where V1 =

  and V2 =
   will also be a vector in R2, as well as a 3D vector space 
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called R3 with basis vectors like e1 = (1,0,0), e2 = (0,1,0), and e3 = (0,0,1) holds the rule as per 2D (Bhattacharya, 
Jain, & Nagpaul, 1983). Again, it has shown the extent of these vector spaces, the vectors are depicted as 
arrows pointing from the origin so, vector spaces V and W over a field K (Mirsky, 2012). If addition and scalar 
multiplication are preserved, then a function α from V to W is a linear map; that is, if α(v1+v2) =α(v1) +α(v2) 
for all v1, v2 ∈V; or if α(cv)=cα(v) for all v ∈V and c ∈ K (Broida, & Williamson, 1989).

Assume that α is a linear map on V. If v= 0 and α(v) = λv, then a vector v ∈ V is considered an eigenvector of 
α, with an eigenvalue λ ∈ K. The λ-eigenspace of α is the set {v: α(v) =λv} that includes the zero vector and 
the eigenvectors with eigenvalue λ (Cheney, & Kincaid, 2009). In linear algebra, eigenvalues and eigenvectors 
are essential ideas, especially when studying matrices and linear transformations (Ford, 2014). When an 
eigenvector in a linear transformation is stretched or compressed, the resulting scalar is called an eigenvalue. 
For a square matrix A, if v and λ are non-zero vectors such that if Av=λv, then 𝜆 represents the eigenvalue 
of the matrix 𝐴 and 𝑣 its associated eigenvector (Olver, Shakiban, & Shakiban, 2006). A non-zero vector is 
called an eigenvector if it retains its direction after undergoing a linear transformation. There is a possibility 
to scale the eigenvector using a factor, which is the corresponding eigenvalue. For example, we consider 
2x2 matrix such as A=which scales vectors by stretching them in the x-direction by a factor of 2 and in the 
y-direction by a factor of 3 (De Micheaux, Drouilhet, & Liquet, 2013). The eigenvalues are λ1=2 and λ2=3 
corresponding to the eigenvectors V1=  and V2=  respectively (Newman, & Odell, 1969). 

This indicates that all vectors on the x- and y-axes are scaled by two (eigenvalue 2) and three (eigenvalue 3), 
respectively. These vectors are stretched or compressed by their corresponding eigenvalues but do not change 
direction. The degree of stretching or compression of the eigenvector is indicated by the eigenvalue. When 𝜆 
> 1, the eigenvector is stretched; when 0 < λ< 1, it is compressed; when 𝜆 = 1, the vector's amplitude 
stays constant; and when 𝜆 < 0  the vector's direction is reversed (Blyth, & Robertson, 2013).
Visuality of linear algebra over transformation 
Visualizing linear algebra transformations helps students understand how linear operations affect geometric 
structures in vector spaces. This perspective allows for deeper comprehension of abstract concepts, making 
linear algebra more accessible and applicable to real-world problems requiring spatial intuition. Linear 
maps, often called linear transformations, are the fundamental concepts of linear algebra. They describe the 
relationship between two vector spaces. A linear map 𝑇: 𝑉→𝑊 preserves the vector addition and scalar 
multiplication operations between vector spaces V and W (Berberian, 2014). This means that for any 
vectors 𝑢, 𝑣 ∈𝑉and any scalar 𝑐, the map satisfies the following equations: 𝑇 (𝑢 + 𝑣) = 𝑇    (𝑢) +  𝑇 (𝑣)  and 
𝑇 (c𝑢) = 𝑐 𝑇 (𝑢). 

Matrix representations of linear mappings are possible after the bases for the vector spaces are chosen, so 
the use of matrices in linear algebra computations is essential, as they provide a tangible depiction of linear 
maps (Berberian, 2014). Matrix multiplication is the process of applying a linear map on a vector when 
the linear map is written as a matrix. For example, given a matrix A that represents a linear map T and a 
vector x that is a coordinate vector in the domain of T, T(x) = T(𝑌) +  Ax yields T(𝑥) (Ben-Israel, 1980). By 
using matrix operations, including determining determinants, eigenvalues, and eigenvectors, to examine the 
characteristics of the original linear map, this matrix representation streamlines the study and application of 
linear transformations (Carrell, 2005).

Regardless of the abstract character of its principles, linear algebra has been identified as a challenging subject 
for student comprehension over the concepts and various pedagogic strategies to enhance its teaching and 
learning are the two primary study areas concerning the teaching and learning of linear algebra (Tucker, 
1993). Moreover, university-level linear algebra courses are often perceived by students as challenging 
mathematics courses. In contrast to what students may be attracted to from earlier mathematics courses, the 
subject is frequently abstract and formal. This could cause a gap between linear algebra and previously taught 
mathematical concepts for the students. This is unfortunate because linear algebra can be applied outside of 
pure mathematics and has the ability to unify mathematics. 

The fundamental ideas of linear algebra emerged and were applied in many branches of mathematics and 
its applications, making it an extremely valuable topic (Kleiner, 2007). In discussion of the history of linear 
algebra, Lang focuses on the use of systems of linear equations in ancient societies such as the Babylonians. 
The formalization of linear algebra as we know it, however, dates back to the 18th and 19th centuries. Carl 
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Friedrich Gauss (1777–1855) made important advances to the theory of linear equations during his lifetime. 
He also popularized the Gaussian elimination method, which is still a key tool in linear algebra today.

Once more, Augustin-Louis Cauchy (1789–1857) created the theory of determinants, which was essential 
to the advancement of linear algebra and matrix theory. In addition, the mid-19th century development of 
the theory of matrices is attributed to Arthur Cayley (1821–1895). He discovered that matrices could be 
operated upon algebraically, establishing the foundation for contemporary linear algebra. In addition, Cayley's 
contemporary James Joseph Sylvester (1814–1897) presented numerous ideas that are essential to linear 
algebra and made important contributions to matrix theory. The disputes peaked in the 1990s when the Linear 
Algebra Curriculum Study Group (LACSG) released a set of recommendations for the first linear algebra 
course. The guidelines were created taking into account the pedagogical and epistemological challenges that 
come up when teaching linear algebra, as well as research-based understanding of how mathematics is learned 
and should be taught. The recommendations were also influenced by the diverse client disciplines' participation 
and the unique teaching experiments of the LACSG members.

Additionally, Lang (2012) visualizes how developments in other branches of mathematics, including vector 
spaces, eigenvalues, and eigenvectors, which arose in the late 19th and early 20th century, were closely related 
to the development of linear algebra. The formalization of these ideas assisted in the development of linear 
algebra as a separate academic discipline. According to Lang (2012) linear algebra is not merely a collection of 
methods but rather a cohesive mathematical theory with close ties to functional analysis, abstract algebra, and 
geometry. Rather than concentrating solely on the computational side of the subject, he frequently highlights 
the abstract character of vector spaces and linear transformations. 
Connection of linear algebra with other mathematics  
Linear algebra's connectivity pertains to its profound links with many mathematical domains and its practical 
uses in a range of scientific domains. A fundamental tool that connects many fields, both inside and outside 
of mathematics, is linear algebra (Ames, 1970). This is the way that this interconnection appears in following 
ways. Linear algebra is frequently used to solve systems of linear differential equations. The eigenvalues and 
eigenvectors of the system-related matrices can be used to express the solutions. For instance, if A is a matrix, 
then solving the system  = 𝐴 𝑥 can be achieved by determining the eigenvalues and eigenvectors of A (Axler, 
2024).  By reducing differential equations to more manageable independent equations, linear algebra offers 
techniques for diagonalizing matrices which makes solving differential equations easier.

Vector spaces are geometric objects that can be understood with the help of linear algebra. Geometric 
interpretations are available for concepts like as eigenvalues, eigenvectors, and linear transformations (Strang, 
2022).  In a geometric space, for example, linear transformations might be viewed as scaling, rotations, or 
reflections. In projective geometry, linear algebra plays a crucial role in helping to comprehend the characteristics 
of figures that remain unchanged after projection.

Principal Component Analysis (PCA), a key technique in statistics for reducing the dimensionality of data, 
relies on the eigenvectors and eigenvalues of the covariance matrix. The principal components are the 
eigenvectors that capture the most variance in the data. Linear algebra provides the tools to decompose data 
into principal components, enabling more effective data analysis and interpretation.

Linear algebra is the foundation for many numerical techniques, including detecting eigenvalues (e.g., power 
iteration) and solving systems of linear equations (e.g., Gauss-Seidel method). In computer mathematics, 
these techniques are essential for approximating solutions to issues that cannot be solved analytically. The 
foundation and mechanisms for creating effective computing strategies to tackle challenging mathematical 
problems numerically are provided by linear algebra. By using algebraic techniques to combine geometry 
and topology, linear algebra contributes in the comprehension of the algebraic structures that characterize the 
topological features of spaces. Linear algebra finds direct application in linear programming, where a linear 
objective function is optimized while taking linear constraints into account. Within the context of linear algebra, 
the Simplex algorithm is utilized to resolve linear programming issues. Optimization problems are essential in 
operations research, engineering, and economics, and linear algebra offers the mathematical building blocks 
for creating and resolving them.  
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Methods 
This study employs a quantitative research design within a post-positivist paradigm to analyze the connection 
between linear algebra and the enhancement of visual reasoning through with vector spaces. A sample of 
90 participants, post graduate students of mathematics selected through probability sampling, was surveyed 
using Likert-type questionnaires, administered both online and offline, to gather data on their understanding 
and application of vector spaces in linear algebra. The reliability of the questionnaire was confirmed with a 
Cronbach's alpha coefficient, ensuring internal consistency. Expert opinions were required to establish the 
content validity of the instrument. To analyze the data, a one-sample t-test was conducted to determine whether 
the sample mean differed significantly from a hypothesized population mean, with effect size measured using 
Cohen's d to quantify the magnitude of the observed effect. The findings provide insights into the effectiveness 
of visual reasoning in enhancing the comprehension of linear algebra concepts, particularly vector spaces.

Theoretical Framework

The Analyzing the Connection of Linear Algebra: Enhancing Visual Reasoning through Vector Spaces' 
highlights how students actively create their comprehension of difficult mathematical concepts by contextual 
and visual interaction with vector spaces, which is related to constructive learning theory. According to the 
principle of constructive learning, knowledge is not absorbed passively but is instead created via active 
investigation and interaction with the subject matter. By relating abstract ideas to geometric representations 
in this context, visual reasoning enables students to get a deeper grasp of vector spaces and motivates them to 
investigate, contemplate, and work together to make sense of the subject matter. This approach is in line with 
the fundamental ideas of constructivism, which holds that students construct knowledge through a process of 
discovery, visualization, and active participation. It does this by placing learning inside relevant contexts and 
encouraging student participation.
Conceptual Framework
This conceptual framework emphasizes how linear algebra is intertwined decisive geometric interpretations 
through comprehending.  This dimension highlights the significance of geometric interpretations in 
understanding linear algebra. The link between abstract algebraic concepts and their real-world applications 
is created through visualization. It facilitates deeper comprehension and analytical reasoning by enabling 
students to mentally construct and manipulate vector spaces. Application establishes a link between theoretical 
understanding and real-world practice. Post graduate level students can recognize the value of linear algebra 
and cultivate problem-solving techniques based on workout examples by learning how it is applied in various 
circumstances. 

The development of abstract reasoning abilities required to tackle challenging linear algebraic problems is 
the main focus of this context. It involves the capacity to think abstractly about linear transformations, vector 
spaces, and their properties with critical skill for solving difficult mathematical problems. Analytical and 
critical thinking abilities are improved through addressing abstract problems geometrically. Students who 
work with abstract concepts develop methodical problem-solving skills by recognizing underlying principles 
and using them to guide their approach. When I applied factor loading process then I got four factor such as 
Geometric Interpretation, Visualization over the Vector Space, Abstract for Problem Solving and Applicability 
which are given following figure (Figure 1). 

Figure 1. Conceptual Framework of the Analyzing the Connection of Linear Algebra: Enhancing Visual 
Reasoning through Vector Space 



178
Results and Discussion 
In the context of the study, Analyzing the Connection of Linear Algebra: Enhancing Visual Reasoning through 
Vector Spaces, a one-sample t-test was used to evaluate the mean value of students' visual reasoning scores 
against a neutral value (Test Value 3), which represents a baseline level of knowledge. The analysis produced a 
mean score that was notably higher than the neutral value (p < 0.05), suggesting that the educational intervention 
was successful in improving visual thinking. The effect size was evaluated using Cohen's d, and the result was  
0.85, which denotes a significant effect. The increase in students' visual reasoning abilities in relation to linear 
algebra ideas was shown to be both statistically significant and educationally meaningful, as evidenced by the 
huge impact size. Here, I have total 32 items and two items were excluded in dimension reduction and only 
30 items were loaded in factor analysis. The item wise value of reliability (Cronbach Alpha) and the detail 
structure of the four factors is given (Table 1).

Table 1. Principal component analysis of analyzing the connection of linear algebra: Enhancing visual 
reasoning through vector spaces
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A test or questionnaire's internal consistency or reliability is assessed by a set of items or scales using 
Cronbach's alpha. It shows how well test questions measure the same underlying construct, in this case, the 
visual reasoning abilities associated with comprehending linear algebra's vector spaces. 

Table 2: Reliability value total items and factor wise items  

Geometrical interpretation

The one-sample t-test results provide a detailed understanding of how respondents perceive various geometric 
concepts in linear algebra. The first statement, I clearly understand how vector addition can be interpreted 
geometrically as combining arrows in space,' shows a strong comprehension with a mean of 3.79, significantly 
higher than the test value of 3 (t = 6.265, p = .000). The effect size (Cohen's d = 0.66) is large, indicating a 
substantial deviation from the test value. The 95% Confidence Interval (CI) for the mean difference ranges 
from .54 to 1.04, reinforcing the significance of this result and suggesting that respondents have a clear 
understanding of vector addition. In contrast, the statement “The concept of scalar multiplication as stretching 
or shrinking vectors is intuitive to me' has a lower mean of 3.30, with a smaller t-value (t = 2.186, p = .031) 
and effect size (Cohen's d = 0.23). This indicates that while participants find scalar multiplication somewhat 
intuitive, their confidence is less robust compared to vector addition. The class interval for this statement is 
narrower, ranging from .03 to .57, suggesting less variability in the responses but also a smaller impact.

 Again, for the statement I can easily picture how a matrix transformation changes the shape and orientation of 
vectors in space, the mean is 3.43 (t = 3.539, p = .001), with a small effect size (Cohen's d = 0.37). This reflects 
a solid understanding of matrix transformations, with a class interval ranging from .19 to .68, indicating that 
most respondents can visualize this concept effectively.

Participants also show confidence in their understanding of eigenvectors, diagonalizing unitary operators, 
and geometrically interpreting linear algebra issues. These statements have averages ranging from 3.36 to 
3.41 with statistically significant p-values between.002 and.007. The effect sizes show moderate practical 
significance, ranging from 0.29 to 0.33. The relatively low confidence intervals (CIs) indicate that respondents' 
comprehension is consistent. 

The concept of the null space and the visualization of vector spaces having different dimensions are slightly 
less understood, with means of 3.30 (t-values around 2.078 to 2.295, p-values .041 and .024, respectively) and 
smaller effect sizes (Cohen's d = 0.22 and 0.24). The class interval for these statements indicates a smaller but 
still statistically significant difference from the test value, suggesting that while these concepts are understood, 
they may be more challenging for respondents.

Moreover, on average, the overall mean of 3.3812 and the significant p-value of .000, coupled with a moderate 
average effect size (Cohen's d = 0.56), suggest that respondents generally have a good understanding of geometric 
concepts in linear algebra, though some areas, such as scalar multiplication and null space, may benefit from 
additional focus to strengthen comprehension. The class interval across all statements consistently suggests 
that the observed differences from the test value are not only statistically significant but also meaningful in 
practice. (Table 3).
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Table 3. Descriptive statistics and one sample t-test of the components in geometrical interpretation

Visualization over the vector space

This one-sample t-test's significance values (p-values) show unequivocally that respondents' comprehension 
of different geometric ideas in linear algebra is statistically significant overall. 

For example, the statement I can easily visualize vector addition as the geometric combination of two vectors 
within a vector space' has a mean of 3.95 with a t-value of 8.14 and a p-value of 0.000. This very low p-value, 
well below the common threshold of .05, indicates a highly significant difference from the test value of 3, 
suggesting that respondents have a strong ability to visualize vector addition in a geometric context. Similarly, 
other statements, such as I can determine the matrix for the inverse of a given linear map when it exists and I 
am able to visualize how different types of transformation matrices affect vectors within a vector space, also 
have p-values of .000, indicating strong statistical significance.

Even for concepts that might be more abstract, such as “Even though it's abstract, I can conceptualize and 
visualize vector spaces in dimensions higher than three and inear independence as vectors not lying on the 
same line or plane in a vector space, the p-values are .000 and .008, respectively. These results show that the 
respondents are statistically significantly confident in their understanding of these advanced topics. However, 
the statement I understand how to use polynomials, such as minimal polynomials, to analyze and decompose 
vector spaces has the highest p-value of .048, which, while still statistically significant, indicates a relatively 
weaker but still notable understanding compared to the other concepts. The overall average p-value of .000 
across all statements suggests that, on the whole, the respondents' understanding of these geometric and 
abstract linear algebra concepts is both statistically significant (Table 4).
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Table 4. Descriptive statistics and one sample t-test of the components in visualization over the vector space

Abstract for problem solving

The significance values in this one-sample t-test indicate that respondents generally find it significantly 
easier to grasp and apply abstract concepts in linear algebra compared to the baseline test value of 3. For the 
statement it is easy to grasp the abstract concepts presented in linear algebra, the mean is 3.95, with a very 
high t-value of 8.143 and a p-value of .000. This suggests a highly significant difference from the test value, 
indicating that respondents strongly agree with this statement. The mean difference (MD) of .955, coupled 
with a confidence interval ranging from .72 to 1.19, further supports this high level of agreement, showing a 
strong and statistically significant understanding of abstract concepts.

The abstraction of vector spaces and the comfort with matrices as abstract representations also show strong 
significance, with p-values of .000 for both statements. The t-values of 4.153 and 4.101, respectively, and the 
mean differences of .427 and .482, reflect a solid understanding. The confidence intervals (.22 to .63 for vector 
spaces, and .25 to .71 for matrices) confirm that these concepts are well-understood by the respondents. For 
more complex or less intuitive concepts, such as performing abstract operations on vectors is easy without 
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relying on geometric interpretation and I am confident in applying abstract concepts from linear algebra 
to solve complex problems in mathematics and related fields,' the p-values are .008 and .048, respectively. 
Although these p-values are higher than the others, they are still below the .05 threshold, indicating statistically 
significant but somewhat weaker confidence among respondents in these areas. The lower t-values (2.689 and 
1.997) and narrower confidence intervals for these statements suggest that while these concepts are understood, 
they are less intuitive or more challenging.

Overall, the average mean is 3.4909, with a p-value is 0.000 and a moderate effect size, indicates a generally 
strong and statistically significant understanding of abstract linear algebra concepts among respondents. The 
consistently low p-values across the board confirm that the respondents' confidence in these concepts is not 
due to chance but reflects a real and meaningful comprehension (Table 5).

Table 5. Descriptive statistics and one sample t-test of the components in abstract for problem solving

Applicability

The one-sample t-test results for the various applications of vector spaces in fields like physics, engineering, 
and computer science reveal several significant insights. All the significance values (Sig. 2-tailed) are well 
below the conventional threshold of 0.05, indicating that the mean responses differ significantly from the test 
value is 3. For instance, the statement vector spaces are useful for solving real-world problems in fields like 
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physics, engineering, and computer science has a very high t-value of 8.14 and a significance value of .000, 
with a mean difference (MD) is .955, showing a strong positive deviation from the test value. This suggests a 
strong consensus among respondents about the importance of vector spaces in these fields.

Regarding Cohen's d, which measures the effect size or the magnitude of the difference, the values range 
from small to large effects. The highest Cohen's d is associated with the first statement (.955), indicating a 
large effect size, meaning that the respondents strongly agree with the usefulness of vector spaces in solving 
real-world problems. The other statements also show positive effect sizes, though smaller, indicating that 
respondents generally recognize the importance of linear algebra in data science, computer graphics, and other 
applications, even though the intensity of agreement varies across different contexts. These results collectively 
emphasize the significant and varying impact of linear algebra across multiple disciplines (Table 6).

Table 6. Descriptive statistics and one sample t-test of the components in applicability

Conclusion

In conclusion, the research on “Analyzing the Connection of Linear Algebra: Enhancing Visual Reasoning 
through Vector Spaces' demonstrates All items have mean scores significantly higher than the test value of 3, 
according to the one-sample t-test results for the components of geometrical interpretation in linear algebra. This 
suggests that participants generally agree with the statements regarding their comprehension of geometrical 
concepts in vector spaces. All components had significant t-values (p <.05), with the comprehension of vector 
addition as combining arrows in space exhibiting the largest effect size (Cohen's d = 0.66), indicating a good 
understanding in this domain. The average impact size of 0.56 indicates that participants' understanding of 
geometric ideas in linear algebra is significantly improved by visual reasoning. This suggests that a key element 



184
in the efficient comprehension and implementation of these mathematical ideas is the visual representation of 
linear algebraic problems. 

The study reveals that visualization skills significantly improve participants' understanding of vector spaces 
and related concepts. Vector addition, transformations, and higher-dimensional vector spaces were the most 
well-understood concepts. However, understanding polynomials in vector space analysis was a challenge. The 
results suggest that visual reasoning is crucial for linear algebra, and enhancing visualization skills can enhance 
comprehension of abstract mathematical concepts. The understanding of matrices as abstract representations 
and the generalization of systems of equations also showed significant agreement with moderate effect sizes. 
However, the lowest mean (3.23) and effect size were noted in applying abstract concepts to solve complex 
problems, suggesting that while participants understand the abstractions, there is some difficulty in applying 
them to more advanced problem-solving scenarios. The findings suggest that participants are comfortable with 
abstract reasoning in linear algebra, but there is room for improvement in applying these concepts to complex 
mathematical problems. 

Again, the components related to the applicability of linear algebra indicate that all mean scores are significantly 
above the test value of 3, suggesting that participants recognize the importance of linear algebra in various 
real-world applications. The highest mean (3.95) and a strong effect size (Cohen's d = 0.72) were observed 
for the usefulness of vector spaces in solving problems in fields such as physics, engineering, and computer 
science, indicating a strong acknowledgment of its relevance in these areas. Participants also agreed that 
linear algebra is essential for data analysis, dimensionality reduction, and computer graphics, with moderate 
effect sizes supporting these views. However, there was slightly less agreement on the application of linear 
algebra in financial modeling and optimization problems, though the means were still significantly above the 
test value. Finally, the findings suggest that participants highly value the applicability of linear algebra across 
multiple disciplines, though they might be less familiar with its use in specific areas like financial modeling 
and optimization.
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