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Inter-Basin Water Transfers: Balancing Water Scarcity Solutions with 
Environmental and Socio-Economic Impacts from Nepalese Perspective

A r t i c l e  I n f o A b s t r a c t

Inter-basin water transfer (IBWT) involves moving water across drainage divides to address 
water scarcity, support agriculture, industry, recreation, and generate hydropower. While 
practiced since ancient times, modern IBWTs gained momentum in the 19th century and 
have since expanded globally. These projects range from small-scale transfers to large water 
transfer megaprojects (WTMPs). IBWTs can help mitigate water shortages, enhance food 
and energy security, and support ecosystem restoration, but also pose risks such as habitat 
degradation, biodiversity loss, and socio-economic disruptions. Though Nepal has practiced 
IBWT since the 17th century, the complex environmental and socio-economic consequences 
observed globally have yet to be fully assessed in the country. Furthermore, a number of 
IBWTs in the country are in pipeline. Therefore, this review is an attempt to shed light on 
diff erent aspects of IBWTs including a brief historical perspective; the scale; and to evaluate 
the environmental and; socio-economic impacts globally and describe the scenario and 
associated implications in Nepalese context. This study selected articles based on IBTWs, 
their relevance to environmental impacts, socio-economic eff ects, and the role of IBWTs. 
Sources include peer-reviewed journals, government reports, and case studies, focusing 
on global examples and specifi c challenges in Nepal. The major fi ndings of this study is 
that IBWTs are gaining popularity and are becoming important in water-food-energy nexus 
despite their environmental and socio-economic implications. However, if such projects are 
undertaken with comprehensive environmental assessments, sustainable water management 
practices, with inclusive policy frameworks, countries can leverage IBWT projects to meet 
their growing demands for water, energy, and food, while safeguarding ecological integrity 
and community welfare.

Keywords: Environmental impacts, inter-basin water transfer, socio-economy

smriti@ku.edu.np

Introduction

Freshwater ecosystems cover less than 1% of Earth's surface, yet it is incredibly diverse encompassing more 
than 400 large-scale ecoregions harbouring at least 10% of the earth's species (Grooten & Almond, 2018).  
Inland waters and freshwater biodiversity constitute a valuable natural resource, in economic, cultural, aesthetic, 
scientifi c and educational terms (Arya, 2021). The global distribution of freshwater shows tremendous spatio-
temporal variation (Rodell et al., 2018; Wetzel, 2001) attributed to seasons, locations, total precipitation events 
(Qin et al., 2019; Zhang et al., 2014) along with the magnitude and frequency of extreme climatic events 
(Kalyan et al., 2021; Yu & Ma, 2022). The present world is facing a lot of challenges to ensure the access of 
suffi  cient water resources because of the increasing dependency of human societies on water (Larsen et al., 
2016); and non-uniform distribution of freshwater (Somlyódy & Varis, 2006) and climate change (Heino et 
al., 2009). This is further exacerbated by humans' developmental activities (Cosgrove & Loucks, 2015; Pittock 
et al., 2009). Humans have explored and developed several ways to minimize the issues of water scarcity 
such as recycling wastewater, damming rivers, groundwater extraction, cloud seeding, seawater desalination, 
virtual water trade, inter-basin water transfer, adoption of rain water harvesting technologies, and restoration 
of wetlands (Hutchinson et al., 2010; Opare, 2012; Zhuang, 2016). Out these diff erent practices, the concept 
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between river basins and implementation of IBWT peaked in the 1980s.  IBWT is defi ned as “the purposeful 
arrangement of natural hydrologic patterns via engineering works (dams, reservoirs, tunnels and pumping 
stations) to move water across drainage divides to satisfy human and other needs' (Micklin, 1984). Therefore, 
IBWTs have been recognized as engineering solutions to store, redistribute and treat water resources and 
involves transfer of excess water over extended distances (Rollason et al., 2021) from geographically separated 
water-surplus basins to water defi cit basins (Golubev & Biswas, 1978; Snaddon et al., 1999) to cater to water 
needs for irrigation, power generation, industrial development and recreation (Grant et al., 2012; Pittock et 
al., 2009; Rollason et al., 2021).

Although IBWTs prove to be benefi cial, these projects come with price as they can have a number of 
environmental and socio-economic impacts (Liu et al., 2023). Environmental impacts include change upstream 
change in water quality; biotic assemblages; hydromorphology whereas the socio-economic impacts include 
water confl icts, community displacement associated with loss of livelihood (Annys et al., 2019). Despite 
their environmental and socio-economic implications, IBWTs are on the rise. In this context, this review 
attempts to shed lights on the brief history of IBWTs, their scales; associated environmental and; socio-
economic implications of IBWTs globally with focus in Nepalese context as the latter has a number of IBWTs 
in pipeline. For this review, a range of peer-reviewed articles; national and international reports were cited 
relevant to IBWTs.

IBWTs: Past and present

Although IBWTs as modern engineering interventions peaked only in the 1980s (Rollason et al., 2021), 
diff erent modes of water transfer were already in practice in ancient civilizations in Egypt, Jericho in Jordan, 
China during 3100 -2100 BC (Liang & Greene, 2019; Snaddon et al., 1999). In ancient Mesopotamia, it was 
practiced during the Bronze Age as early as 4000-11000 BC where several canals were connected from the 
Euphrates River for regions of Sumer and Akkad (Mays, 2010; Tamburrino, 2010). In those days, diff erent 
water transfer practices included transfer through canals, aqueducts, underground cisterns, rainwater harvesting 
etc. (Table 1) 

Table 1: Sources of water for cities of the early civilizations (4000–1100 B.C.)

Source: Ancient Water Technologies 2010.

Australia, the USA and India are considered as the 19th century pioneers of inter-basin water transfer. In 
Australia, the Goulburn Valley Irrigation Scheme implemented in 1886 is considered as one of the earliest 
irrigation schemes in the country aimed at diverting water from the Goulburn River to irrigate the fertile 
Goulburn Valley (Oldham & Moody, 1913). Likewise, in India, the Ganges Canal, completed in 1854, diverted 
water from the Ganges River to irrigate the fertile Doab region between the Ganges and Yamuna rivers (Lata, 
2019).  The Erie Canal in the USA completed on October 26, 1825, connected the Great Lakes with the Hudson 
River, facilitating transportation and commerce (Morton & Olson, 2019). Since then, a number of IBWTs have 
been developed and implemented in several other countries as well including Israel, Canada (Gleick, 2000; 
Shiklomanov & Rodda, 2004). In 2005, approximately 14% of the total water withdrawal from rivers in the 
world involved IBWT and the development of IBWTs; and water transfer in near future is expected to rise by 
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diff erent scales being operated in about 40 countries and regions across the world, with the total annual water 
transfer amounting to around 500 billion m3 (Su & Chen, 2021). 

Scales of IBWT

Scales of IBWT varies in terms of distance, regions, amount of water being transferred; accordingly, IBWTs 
maybe long-distance water transfer, inter-regional water transfer, large-scale water transfer, inter-catchment 
water transfer, inter-basin water transfer and intra-basin water transfer (Fang et al., 2015; Golubev & Biswas, 
1978; Purvis & Dinar, 2020; Shumilova et al., 2018; Verma et al., 2009).  In recent times, a newer concept 
on IBWT scale – water transfer megaprojects (WTMPs) -  have been developed based on construction costs 
(>USD1 billion); distance of transfer (>190 km) or volume of water (>0.23 km3 per year) (Shumilova et 
al., 2018). There are about 34 existing and 76 future (planned, proposed or under construction) WTMPs 
globally focusing on agricultural, domestic supply, hydropower development, mining, ecosystem restoration 
and transformational routes (Shumilova et al., 2018). Some of the notable WTMPs include the California State 
Water Project (SWP) which is one of the largest state-built water and power development and conveyance 
systems in the United States. Initiated in 1960 and managed by the California Department of Water Resources 
with an estimated cost of 9 billon US$, it involved the construction of 1128 km long canal, transferring about 
of 3.33 km3a-1 of water. It provides water to over 27 million people and irrigates approximately 750,000 acres 
of farmland. It supports both urban and agricultural areas with generating hydroelectric power, contributing to 
the state's energy supply and helping to off set the project's operational costs (Sabet & Coe, 1986). 

Likewise, the South-to-North Water Transfer Project (SNWTP) in China is one of the world's largest and most 
ambitious water diversion projects. It aims to connect the southern Yangtze River and northern Yellow River 
with a total of 2,700 miles tunnels and canals via three distinct routes through western, central and eastern 
China. The SNWTP has already signifi cantly improved water availability in northern China, supporting urban 
and industrial growth and improving living standards in water-scarce regions (Berkoff , 2003; Miao et al., 
2018). The National River Interlinking Project in India is another ambitious WTMP.  It was fi rst proposed in 
the 1970s by K.L. Rao but the project offi  cially started to take shape only in 2002. It aims to divert a staggering 
174 Billon m3 of water through a canal network of 14900 km with an estimated cost US$120 Billon. It aims 
to connect 37 rivers across the nation through a network of nearly 3000 storage dams to build a gigantic South 
Asian Water Grid. This project is expected to irrigate around 35 million hectares of land, raising the ultimate 
irrigation potential from 140 million hectares to 175 million hectares and generation of 34000 megawatts of 
hydropower, apart from the incidental benefi ts of fl ood control, navigation, water supply, fi sheries, salinity 
and pollution control (Alagh et al., 2006; Joshi, 2013). Considering the current global population growth and 
scarcity of land; but the growing needs of food, water and electricity for growing populations, IBWTs and 
WTMPs are gaining popularity and are becoming important in water-food-energy nexus.

Impacts of IBWT 
IBWTs have been considered benefi cial because of their multi-purpose uses and benefi ts (Laassilia et al., 
2021; Sun et al., 2023).  However, the current state of knowledge indicates that large dams, along with their 
positive impacts, inter-basin transfers and water withdrawal have a number of negative impacts on environment 
(Snaddon et al., 1999; Zhuang, 2016) as well as on economy and communities (Flyvbjerg, 2014; Gupta & van 
der Zaag, 2008). Any IBWT system can result in complex physical, chemical, hydrological and biological 
implications for both the donor and receiving basins (Davies et al., 1992). The Aswan High Dam (AHD) of 
the Nile in Egypt undoubtedly off ers prime example of how river damming and diversion have complicating 
impacts (Biswas & Tortajada, 2011; Kashef, 1981; Zeid, 1989). The nature and the extent of the impacts vary 
widely depending on the type and characteristics of water transfer, biophysical and socio-economic factors. 
Positive impacts include adding new basins for water defi cient areas (Purvis & Dinar, 2020; Shao et al., 
2003), facilitating water cycle (Yano et al., 2018), improving meteorological conditions in the recipient basins 
(Khadem et al., 2021; Murgatroyd & Hall, 2020), mitigating ecological water shortage (Duan et al., 2022), 
repairing the damaged ecological system and preserving the endangered wild fauna and fl ora (Dadaser-Celik et 
al., 2009; Wang et al., 2014), generating hydroelectric power (Erskine et al., 1999), controlling fl ood (Khadem 
et al., 2021), irrigation (Wang et al., 2021), transport routes (Liang & Greene, 2019) and water recreation and 
tourism (Akron et al., 2017). However, the magnitude of recent water transfer projects in response to fast 
increased demand has overlooked the severe ecological, environmental, economic and social risks associated 
with water transfer (Daga et al., 2020; Li et al., 2017). Concerns about the environmental, societal and economic 
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consequences of inter-basin water transfers has been raised in recent periods (Laassilia et al., 2021; Pittock 
et al., 2009; Wilson et al., 2017; Zhang et al., 2015). A large number of studies have examined the negative 
impacts of inter-basin water transfers on ecosystem impacts and socio-economic disruptions such as forest 
depletion, soil and water contamination, waterborne diseases, livelihood, human displacement and migration 
(Bui et al., 2020; Das, 2006; Gallardo & Aldridge, 2018; Gleick, 1993). Following sections briefl y summarize 
the environmental and socio-economic impacts of IBWTs. 

Environmental impacts

Environmental impacts of IBWT are mostly attributed to change in natural fl ow(Zhuang, 2016) and include 
change in diff erent physico-chemical and biological parameters of both donor and recipient basins and water 
bodies. Global reviews on the negative impacts of IBWTs have revealed implications on terrestrial dynamics; 
biodiversity and water quality (Ghassemi & White, 2007; Snaddon et al., 1998; Snaddon et al., 1999; Zhuang, 
2016).

Impacts on physico-chemical parameters

Changes in natural fl ow aff ects a range of water physico-chemical parameters such as water temperature, 
salinity, turbidity, erosion, sedimentation, waterlogging, mineral and nutrient concentrations, hydrology, 
oxygenation, inorganic substrate composition, sediment dynamics, land use changes in both donor and 
recipient basins (de Lucena Barbosa et al., 2021; Gallardo & Aldridge, 2018; Marak et al., 2020; Tian et 
al., 2019). The change in the fl ow conditions of rivers and lakes in the receiving basin although can lead 
to increased water levels but it can also cause potential fl ooding in areas adjacent to the water bodies (de 
Lucena Barbosa et.al., 2021). Furthermore, changes in fl ow can also aff ect the pattern and magnitude of 
sediment transport and deposition (Hamidifar, 2024). Likewise, changes in natural fl ow aff ect riparian eco-
system health as it diminishes the water bodies' ability to assimilate pollutants and thus cause pollution, 
eutrophication, salinization and acidifi cation (Zhuang, 2016). The transfer of water between basins can also 
introduce new geochemical elements and compounds into the receiving basin. This can aff ect the mineral 
composition of the water and sediments, potentially leading to changes in the aquatic chemistry (Jiao et.al., 
2021). For instance, water transfer from the Yellow River to the Fen River in China has resulted in increase in 
the concentrations of Na+ and Cl+ ions along with increased conductivity values in the Fen River (Yuan et al., 
2020). Apart from these, IBWTs result changes in water levels; and renewal rates decline in downstream main 
channels (Pittock et al., 2009); disrupt river connectivity and; fl ood plains and channels connectivity (Bunn 
& Arthington, 2002; Grant et al., 2012). Changes in water transparency, nutrient and sediment loads, channel 
morphology and granulometry are some of the long-term physico-chemical eff ects of dams on environments 
downstream (Granzotti et al., 2018; Kamidis et al., 2021; Szatten et al., 2021; Yang et al., 2021), potentially 
leading to long-term nutrient loading (He et al., 2020; Stockner et al., 2000). 

Impact on aquatic organisms

The changes in the physico-chemical parameters associated with IBWTs in turn aff ect the biological parameters 
and almost all groups of biotas are aff ected (Rehman et al., 2015; Sharma et al., 2016). Sediment deposition 
can result in excessive algal growth thereby compromising water quality resulting in  eutrophication; aff ect the 
food web; alter habitats for organisms (Glibert & Burford 2017; Li et.al., 2023). The changes in water quality 
and hydrology can have cascading eff ects on the aquatic ecosystems and the associated biota (Li et.al., 2023).

Fish assemblages are one of the most aff ected communities due to IBWTs. A large number of studies have 
revealed change in fi sh assemblages both in the donor and recipient basins (Gallardo & Aldridge, 2018; Schmidt 
et al., 2020). IBWTs aff ect fi sh assemblages through isolation, alteration and degradation of habitats, blockade 
of migratory routes, change in nutrient concentrations and food webs, fl ow and temperature (Ghassemi & 
White, 2007; Snaddon et al., 1998). Habitat alteration and degradation are resulted because of the disruption 
of the river continuum (Doretto et al., 2020; Ward & Stanford, 1995) followed by drowning of channel and 
erosion of riparian habitats which often act as fi sh spawning pockets (Ghassemi & White, 2007). In addition, 
introduction of invasive species during IBWTs and spread of diseases also aff ect the fi sh assemblages. There 
are several reports of loss of native species and establishment of invasive/exotic species which are likely to be 
established in altered habitats (Dudgeon et al., 2006; Gallardo & Aldridge, 2018). Isolation of fi sh assemblages 
and populations can increase competition among the resident species for food and breeding sites (Andrades et 
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al., 2021; Belmaker et al., 2005). It may also lead to decrease in genetic diversity and therefore puts species 
at greater risk from disease, altered predation pressure, behavioral changes and increased vulnerability to 
environmental changes (Coleman et al., 2018; Kano et al., 2016; Lymbery et al., 2020; Ruzich et al., 2019). 
Furthermore, long-term isolation could lead to interspecifi c hybridization and thus have serious consequences 
on fi sh biota genetic diversity particularly the native species (Allendorf et al., 2001). Studies suggest that 
reduction in the nutrient concentrations in reservoirs due to damming aff ect food webs resulting in the change 
in the structure of primary producer communities, detritivores as well as the consumers (Maavara et al., 2020; 
Macura et al., 2019; Wang et al., 2022). If fi sh movement occurs, it can lead to invasion or altered regional 
connectivity patterns, spread of non-native species which could induce biotic and genetic homogenization or 
synchronization (Li et al., 2022; Schmidt et al., 2020; Shao et al., 2019). In contrast, habitat alterations may 
favour introduce invasive species in recipient basins. For instance, fi ve new fi sh species (Labeobarbus aeneus, 
Clarias gariepinus, Labeo capensis, Austroglanis sclateri and Labeo umbratus) have been transferred to the 
Great Fish River in the Eastern Cape from the Orange Orange/Vaal River (Zhang et al., 2015). Likewise, 
fi sh species like Gobio gobio, has been introduced into the Segura River from the donor Tajo River in Spain; 
Catostomus fumeiventris, was transferred to the Los Angeles Basin from northern donor rivers (Snaddon et al., 
1999). The introduced species can become invasive and eliminate native fauna through predation, competition, 
and higher reproductive success (Mayfi eld et al., 2021). Furthermore, the invasive species can modify the 
behaviour (such as habitat usage, diel activity) of the native species. Thus, invasive species can have negative 
impacts on the native species attributed to disruption of food webs, loss of biodiversity, hybridization and 
spread disease (Bernery et al., 2022; Ellender & Weyl, 2014; Olden et al., 2022).

Impacts on macroinvertebrates include loss of headwater species (Clarke et al., 2008; Guerold et al., 2000), 
hindering of macroinvertebrate passage along a stream/river stretch (Guareschi et al., 2014), decreased macro-
benthic diversity (Rolls et al., 2012), change in food webs (Murphy et al., 2019; Panikkar et al., 2021; van der 
Zee et al., 2016) and eventually altering the community composition (Ko et al., 2020). For instance, dominant 
Chironomidae, Hydropsychidae and Simuliidae taxa were replaced by Simulium chutteri in Great Fish River 
from Orange River, South Africa (O'keeff e & De Moor, 1988). Change in relative abundance of diff erent 
functional feeding groups of macroinvertebrates have also been reported by several authors with increased 
abundance of scrapers and collector fi lterers (Brittain & Saltveit, 1989; Vallania & Corigliano, 2007). Thus, it 
is evident that IBWTs aff ect macro-benthic communities by changing the latter's assemblages.

Socio-economic impacts

Apart from the environmental impacts, IBWTs also have upstream as well as downstream socio-economic 
impacts (Liu et al., 2023; Snaddon et al., 1998). The socio-economic impacts vary from individual impacts to 
entire community and society attributed to construction work, infl ux of people and increased fringe urbanization 
(Mutanga et al., 2013). Individual impacts include loss of one's property and livelihood whereas impacts on 
communities include displacement of people and their homes, disturbance and loss of local livelihoods, loss 
of productive farmland, loss of cultural heritage sites and monuments, health hazards etc. (Das, 2006; Pittock 
et al., 2009; Zhuang, 2016). 

Upstream communities relying on agriculture sector on donor basins often face negative consequences on their 
agricultural economy due to reduced quality and quantity of water (Gichuki & McCornick, 2008). Confl icts 
may arise mostly due to disputes in water sharing though other factors such as increased pollution has also 
been reported as a causal factor (Guardiola‐Avila et al., 2018; Madani et al., 2011). Such confl icts may be 
global, regional or local depending on the scale, extent and impacts of IBWTs (Hernández-Mora et al., 2014; 
Yevjevich, 2001). For instance, construction of a dam on Ethiopian Nile resulted in confl icts between the 
neighbouring countries of Egypt, Sudan and other upstream nations (Madani et al., 2011); construction of 
the Farakka Barrage on the Ganges has resulted confl icts between Bangladesh and India as it compromised 
water availability and water demand for Bangladesh (Islam, 2012). The South-North Water Diversion Project 
(SNWDP) is one of the most recent transboundary water disputes over water sharing of the Brahmaputra River 
between the neighbouring countries of India and China (Ho et al., 2019).

  IBWTs in Nepalese Scenario: Past, Present and Future

In the context of Nepal, the history of river diversion dates back to 17th century during the Malla regimes, when 
people diverted water through canals called “Raj Kulos' (kulo means canal in Nepali) (Becker-Ritterspach, 
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1990; Parajuli & Sharma, 2003). A number of such canals still exist in diff erent parts of the country such 

as Tikabhairav, Bageswori, Budhikanta Canal etc (Shrestha & Dahal, 2020).   The fi rst large water transfer 

project was constructed in 1923  AD and completed in 1928 AD which drew water from the Triyuga River in 

Udaipur District (Pradhan, 1989). However, the idea of large water transfer projects dates back only to the 

1970s when the Government of Nepal commissioned a study to explore the Babai Irrigation Project to irrigate 

fertile land on the western plains of  Nepal during the non-monsoon period. It involved the construction 

of highway weir cum bridge over the Babai River at Parewa Odar in western Nepal. A 5.5 km canal was 

constructed and it started feeding the traditional canals -Budhi kulo, Majro Kulo, Raj Kulo and Dhadhawar 

Kulo - and the water irrigated about 4000 ha land on the western plains during the non-monsoon period (GoN/

BIP, 2001). Similarly, the Kulekhani Storage Hydropower project is the only storage-type hydropower project 

of Nepal which is the fi rst project that transfers water from Kulekhani river of Bagmati basin to East Rapti 

river of Gandaki Basin (Pradhan et al., 2012).

The Government of Nepal (GoN) guided by the National Planning Commission has initiated more than 20 

ambitious infrastructural developmental projects as National Pride Projects to enhance the quality of life 

in terms of social, economic, cultural and environmental aspects (GoN/NPC, 2022). These projects are 

strategically important for the development of diff erent sectors viz. hydroelectricity, irrigation, transportation, 

tourism, cultures & religion, etc. Infrastructural development to improve socio-economic status of the country 

is a national agenda in Fifth Year Plan (GoN/NPC, 2020).    With rich freshwater resources (WECS, 2011), 

Nepal has huge potential for hydropower generation, the and to expand irrigation (ADB, 2018; GoN/DWRI, 

2019). Irrigation is given a third priority by the Water Resources Act (1992) after the use of water for drinking 

and domestic purposes. This clearly signifi es the importance of irrigation to boost agriculture and achieve 

food security. Thus, water resource-based infrastructural development is being considered as an important 

component of food-water-energy nexus in the country. The Bheri-Babai Diversion Multi-purpose Project 

(BBDMP) is one such national pride project and construction began only in 2015 where water from the 

Bheri River is being diverted to the Babai River via a 12.3 km transfer with design fl ow of 40.0 m3/s (GoN/

BBDMP, 2018).  The Sunkoshi Marin Diversion Multipurpose Project (SMDMP) is another IBWT project 

and the construction began in 2022 where water from the Sunkoshi River to the Marin River, a tributary of the 

Bagmati River transferred via a 13.3 km long tunnel which generate 31.07 MW of electricity (GoN/SMDMP, 

2022)(GoN/SMDMP, 2022). Likewise, the Melamchi Water Supply Project (MWSP) was initiated by the 

Government of Nepal to divert a water volume of 1,70,200 m3 /day through a 26 km underground tunnel from 

the Melamchi River (Koshi Basin) to Kathmandu Valley (Bagmati Basin) to ease the chronic water shortage 

situation within the Kathmandu Valley (Bhattarai et al., 2005). The project has been delivering water in the 

Valley through a temporary structure for certain months in a year. A number of IBWT projects in the country 

are in pipeline focusing on irrigation and hydropower generation (GoN/DWRI, 2019) (Table 2).  However, 

the likely environmental and socio-economic impacts of these projects are yet to be observed and assessed. 
Migratory routes of fi sh species like Tor putitora, Tor tor, Bagarius bagarius, Clupisoma gaura and Anguilla 
bengalensis from many rivers have been reported to be aff ected by damming in the country (ADB, 2018). 
A recent baseline study on fi sh assemblages of the Bheri and the Babai at the diversion and release sites 
respectively failed to capture migratory species like Anguilla bengalensis implies that migratory routes of the 
species may well have already aff ected by the Babai Dam Weir cum Bridge at Parewa Odar at the Babai River 
constructed in 1993 (Khatri et al., 2024)
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Table 2: Some IBWTs in Nepalese context

Conclusion

Inter-basin water transfers (IBWT) serve as crucial solutions for addressing water scarcity, electricity 
generation, supporting agricultural and industrial demands, enhancing energy security and socio-economic 
upliftment. However, the review highlights that these projects often come with signifi cant trade-off s, including 
habitat disruption, biodiversity loss, and socio-economic displacement. While IBWTs contribute to regional 
development by redistributing water resources, they can also lead to habitat alteration, biodiversity loss, 
and socio-economic disruptions, particularly aff ecting upstream and downstream communities. In Nepal, 
the implementation of IBWTs dates back to the 17th century and categorization of recent water resource-
based infrastructural developments as national pride projects by the government suggests that roles IBWTs 
would play in socio-economy of the country is signifi cant. However, the global evidence of IBWT's complex 
environmental and socio-economic consequences necessitates careful consideration before implementation 
in the Nepalese context. This review underscores the need for comprehensive environmental assessments, 
sustainable water management practices, and inclusive policy frameworks to mitigate the risks associated 
with IBWT projects. By balancing the potential benefi ts with the associated challenges, countries can leverage 
IBWT projects to meet their growing demands for water, energy, and food, while safeguarding ecological 
integrity and community welfare. 
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