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Abstract  
This research addresses a limitation in the current "Kamenev-Type" criteria used by 
mathematicians to study the behavior (oscillation) of solutions to a specific kind of equation (even-
order neutral differential equations). These equations describe scenarios where the rate of change 
depends on both the current state and a delayed version of it. By tackling this shortcoming, the paper 
introduces new and enhanced results for understanding oscillation in these equations. This 
advancement not only refines the "Kamenev-Type" criteria but also surpasses many other 
established methods for analyzing oscillation in this area of mathematics. 
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Introduction 

Even-order neutral differential equations with deviating arguments are prevalent in various 
scientific and engineering disciplines. These equations model phenomena where the rate of 
change depends not only on the current state but also on a delayed version of it, making 
them critical for accurately representing systems with inherent delays or memory effects. 
For instance, they are used in control systems, population dynamics, and certain economic 
models, where past states influence future behavior. 
Analyzing the oscillatory behavior of solutions to these equations is crucial for 
understanding the long-term dynamics of the systems they represent. Oscillations can 
indicate stability or instability, periodic solutions, or other significant dynamic behaviors 
that are essential for predicting and controlling the systems' responses. Therefore, robust 
criteria for determining oscillations are of paramount importance. 
Existing methods, particularly the "Kamenev-Type" criteria, provide a foundation for this 
analysis but suffer from limitations that restrict their applicability to specific functions or 
forms of equations. These limitations can impede the analysis of more complex or varied 
equations encountered in practical applications, reducing the effectiveness of the criteria in 
providing comprehensive insights. 
This paper aims to address these shortcomings by presenting novel oscillation criteria that 
extend and enhance the current methodologies. We introduce new theorems that refine and 
strengthen existing results, thereby broadening the scope of equations that can be analyzed. 
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Our approach not only makes the criteria more versatile but also more robust, enabling 
researchers to tackle a wider range of even-order neutral differential equations with 
deviating arguments. 
By expanding the applicability of these criteria, we provide tools that can be utilized in more 
diverse and complex scenarios. This advancement has the potential to improve the modeling 
and analysis of real-world systems, offering deeper insights and more accurate predictions. 
Consequently, this work not only refines the "Kamenev-Type" criteria but also surpasses 
many established methods, contributing significantly to the field of differential equations 
and their applications in science and engineering. Through these improvements, researchers 
can achieve a better understanding of oscillatory behaviors, ultimately leading to more 
effective and reliable solutions in their respective domains. 
The oscillation of some even orders differential equations have been study in the references 
1-5. We deal with the oscillatory behavior of the even order heartily differential equations 
with deviation arguments of the form.  
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where n ≥ 2 is even, throughout this paper, it is assumed that,  
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 q (t)≤ min {q,(t); j = 1,2.....1}  
By a solution of Equation (i) we mean a function x (t) which has  

x (t) + 
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(t)x(τi(t)x) ∈ Cn ([tx, ∞], R))  

For sometx>, to and satisfies equation (1) on [tx, ∞]. Suppose the solution x (t) of (1) 
which exist on some half line [tx, ∞] with sup {|x (t)|: t ≥ T} # 0 for and t ≥ tx. A non trival 
solution of (1) is called oscillatory if it has arbitrary large zeros, otherwise it is said to be 
non-oscillatory. Equation (1) is said to be oscillatory if all of its non-trival solutions are 
oscillatory. Meng and Xu studied [1] the equation  

1. and obtained some sufficient condition for oscillation of due equation (1) we write 
the main result of [1] as follows in [2] we say that a function  

 H=H (t, s) belongs to a function class W denoted by H∈W, if H∈C (D, Rt)  
where D={(t, s): to > s > t},  
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Which satisfies (H1) H (t, t) =0 and H (t,s)> 0 for to<s<t<∞;(H2) H has a continuous 
non-positive partial derivative ∂∂satisfying the condition.  
∂∂ = h (t,s) - H (t, s)  
for some h∈Lloc (D,R) K∈C1 [(To∞), (0, ∞)] is a non living decreasing function,  

Theorem 1  
Assume that (A) and (E) hold let the function H, h, k satiety (H1) and (H2), suppose  
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and λ=1-P, then each solution of Eqn. (1) is oscillatory.  
Theorem 2  
Assume that (A) to (E) hold and H, h, k are the same as the theorem A, suppose  
that  
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Where, M,(t)= Max (m(t),0}then each solution of Equation(1)is oscillatory. In theorem (1) 
and (2) function G(t,r), so each of the condition (2)(4)(5) and (6) has many as 1 conditions. 
The Riccati function w(t) is not well defined and some errors in the proof of theorem. The 
main purpose of this paper is to strengthen oscillation results obtained for equation (1) by 
Meng and XU. In this paper we redefine the functions F(t,r), G(t,r), w(t) and provide some 
new oscillation criteria for oscillation of equation(1)  
Main results  
Lemma 1  
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- Let x (t) be an times differentiable function on [to, ∞] of one sign, xn (t) ≠ 0 on [to, ∞] 
which satisfies x(n)(t)x(t) ≤ 0 then  

i. ∃ t1 > 0 s. t. x(i) are of one sign on [t,∞]: where i=1,2.....n-1  
ii. Also ∃ a number ht[1,3,5 ... ... (n-1)]when n is even or  
    h∈ {2,4,6.....n-1}, when n is odd, ...... s% x (t) x (i)> 0 fori=o,  
   1.......h-1n+i+1 x(t) x(i) (t) > 0 for i = h+1, h+2....n t ≥ t1.  

Lemma 2  
If x(t) is as in Lemma 2.1 and x(n-1)(t)x(t)(n)(t) < 0 for t ≥ to then for every λ 

(0<λ< 1).There exists a constant N>0 St.  
||x(λ(t))||≥ Nt-1(t) | x(n+1)(t) | ∀large t.  
 
Theorem 3  
Assume that (A)-(E) hold, Let the function M,h,k satisfy (H1) and (H2), suppose  
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6. Holds for ∀ r≥ to are for some B≥1 where Theorem F(t,r) & 

G(t,r) as defined in (1)  
Proof  
Suppose to the contrary that x(t) is a no- oscillatory solution of equation(1) and that x(t) is 
eventually positive where x(t) is eventually negative,  
Let z(t) be the function defined as follows  
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Multiplying the above equation width t replaced be s, by H (t,s) and integrating it from T to 
V t ∀ t >T ≥ t for some B≥1  
We obtain  

∫∫ −+≤λ
t

T

t

T

ds)s(w)s,t(h)T(W)T,t(Hds)s(q)s(k)s,t(HM
 

ds)s(w)s,t(H
)s(k

)s()s(
AN 2

i
j

2n

j

1

1j
t

T

σσ
−

=∑
∫

 

= H (t,T) W (T) + 
∫ ∑ σσλ

=
−

t

T
1
j

1

1i
2n

j

2

ds
)s()s()s,t(NH

)s,t(h)s(k

-
∫ ∑ =

−σλt

T

1

1i
2n

j

)s(k
)s()s,t(NH

 

∫ ∫
∑∑

∑





















σσλ
++≤

σσλ

β
−

β

σσλ
−

=

−

=

−

=

−

t

T

t

T
1
j

1

1i

2n
j

2

1
j

1

1i

2n
j

1
j

1

1i

2n
j

)s()s()s,t(NH

)s,t(h)s(k
4
F)T(W)T,t(H)s,k(h

)s()s()s,k(NH4

)s(K
)s(W

)s(K

)s()s()s,t(NH
w2(s)ds

Hence we have  
λ MF (t, T)- G(t, T) ≤ W(T)w(T)∀ t ≥ t1  
This gives  

→∞t
lim

Sup [λMF (t, r) -G(t, T) G(t,r) = ∞ 
This completes the proof,  
The new oscillation criteria for equation......................... (i)  
Statement : Assume that (A)...........(E) hold, que functions H, h, K,F and G be the same as 
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Where m+(t)=max(m(t),0). Then every solution of equation (1) is oscillatory. Proof: 
Suppose to the contrary that (1) is non oscillatory. Following the proof of theorem (3) 
without loss of generality  
Suppose that t ≥ T ≥ to and for some β > 1 we obtain  

λM - ∫ ≤
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By (15) ∃ t2 > t1s.t.∀t > t2  > ∫ 
which implies B (t,to) ≥ η ∀ t > t2 since η is arbitrary we have 
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which contradicts (10) 
This completes the proof. 
Remarks 
Let β=1, in theorem 3, reduces to theorem(1): We obtain the some result in statement 1 in 
which we quit the assumption (4) in theorem (2). 
Therefore Theorem (3) and statement(1) are generalization and improvements of the results 
obtained (1) 
Remark 2 with an appropriate choices of the function H, h, and K, one can derive a number 
of oscillation criteria for equation (1) from our theorems.  
Let K(t) = 1 α > 0 is a constant H(t, s)=(t-s)α h (t, s)=-α(t, s)α-1, t ≥ s ≥ to 
and we have 

1
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Results and Discussion 
This paper improves upon existing methods for analyzing how solutions to a particular kind 
of equation (even-order neutral differential equations) change over time (oscillate). These 
equations describe situations where the rate of change depends not just on the current state 
but also on a delayed version of it. The limitations of prior "Kamenev-Type" criteria are 
addressed. The paper introduces new theorems (Theorem 3 and Statement 1) with improved 
oscillation criteria compared to previous work. These new criteria allow for a wider range 
of functions to be considered. Additionally, the concept of Riccati functions, which were 
problematic before, is redefined here. Lemmas 1 and 2 establish key properties of solutions 
that are essential for proving the new theorems. 
 
Overall, this research offers a significant advancement in analyzing oscillation behavior for 
these equations. The new theorems provide more general and powerful criteria, allowing 
researchers to apply them to a broader class of equations. The refined definitions and 
lemmas ensure a more robust foundation for the analysis. Future research could involve 
applying these new criteria to real-world problems and exploring further generalizations of 
the criteria. 
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Conclusion 
In conclusion, this paper successfully addressed limitations in existing methods for 
analyzing the oscillatory behavior of even-order neutral differential equations. We 
introduced novel oscillation criteria through Theorem 3 and Statement 1, which surpass 
previous results by Meng and Xu [1, 2] in terms of generality. These advancements allow 
researchers to consider a wider range of functions within the analysis. Furthermore, the 
paper rectified the problematic definition of Riccati functions and established crucial 
properties of solutions through Lemmas 1 and 2. These refinements provide a more robust 
foundation for future studies. The improved criteria open doors for applying oscillation 
analysis to a broader range of real-world problems, while further research directions include 
exploring generalizations of these criteria and potential connections to other oscillation 
theories. 
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