Received Date: April 2024

Revised: May 2024

Accepted: June 2024

Weyl Algebra

Himal Belbase himalbelbase@gmail.com doi: <u>https://doi.org/10.3126/ppj.v4i01.70194</u>

Let k be be a field of characteristic zero and $K[x] = K[x_{1,...,x_n}]$ rhe ring of polynomials in n commuting indeterminates over K where nis some positive integer.

Let $\partial/\partial x_{1,...,}\partial/\partial x_n$ be the usal K-linear derivations on K[x].then the K-linear map $\partial/\partial x_i$ map a polynomial into $\partial f/\partial x_i$

We will use the notation $\partial = \partial / \partial x_i$ so that $\partial_i(f) = \partial f / \partial x_i$.

Definitions The ring of K-linear operators on K[x] which is generated by the derivations $\partial_{1,...,}\partial_n$ and the multiplication operators defined by the polynomials in K[x], is called the ring of K-linear differential operators on K[x].

This ring is denoted by $A_n(K)$ and known as Weyl algebra in n variable. For $1 \le i \le n$, consider the operator $\partial_i x_i$ in the ring $A_n(K)$. Apply it to a polynomial $f \in K[x]$. Using the chain rule, we get,

 $\partial_i(x_i f) = \partial_i(x_i) f + x_i \partial_i(f).$

In other words,

 $\partial_i x_i = 1 + x_i \partial_i$

Where 1 is the identity operator. We can re write this formula by using commutators.

If $P,Q \in A_n(K)$ then their commutator is the operator [P,Q] = PQ-QP. Thus, the above formula becomes,

[∂i,xi]=1

In the similar way we can get that

[∂i,xi]=δij,

 $[\partial_i, \partial_j] = [x_i, x_j] = 0$

where $1 \le I, j \le n$. Here, δ_{ij} is the kronecker delta symbol: it equals 1 if i=j and zero otherwise. We will use multi index notation. A multi index is an element of $\mathbb{Z}^n_{\ge 0}$, say $\alpha = (\alpha_1, ..., \alpha_n)$. Now by x^{α} we mean the monomial $x_1^{\alpha 1} ... x_n^{\alpha n}$ and similarly ∂^{β} denotes a ∂ -monomial $\partial_1^{\beta 1} ... \partial_n^{\beta n}$. Here the length $|\alpha|$ of multi-index α is ,

 $|\alpha|=\alpha_1+\ldots+\alpha_n,$

and the degree of X^{α} is $|\alpha|$.

Theorem: The ring A_n (K) is simple. That is, if J is a two-sided ideal, then J=0 or $J=A_n$ (K).

Proof. Let J be a non-zero two sided ideal of $A_n(K)$. Choose $D \neq 0 \in J$. We will use induction on n. If n=0 then $A_0(K) = K$, which is field and the result is obvious. We can suppose that the sub algebra $K < x_{1,...,x_{n-1}}, \partial_{1,...,}\partial_{n-1} > = A_{n-1}$ (K) is simple. Now it is enough to prove that $J \cap A_{n-1}(K) \neq 0$. Then $J \cap A_{n-1}(K) = A_{n-1}(K)$ by induction hypothesis . Since $1 \in A_{n-1}(K)$, $1 \in J$ and hence $J = A_n(K)$ follows. To prove that $J \cap A_{n-1}(K) \neq 0$ we can write $D = \delta_0 + \delta_1 \partial_n + \ldots + \delta_s \partial_n^{-s}$

Where { δ_j } belongs to the sub algebra $A_{n-1}(K)[x_n]$. Here $\delta_s \neq 0$. If $s \geq 1$ we use the Relations $\partial_n^j x_n - x_n \partial_n^j = j \partial_n^{j-1}$

Then,

 $Dx_n-x_nD=\delta_1+2\delta_2\partial_n+\ldots+s\delta_s\partial_n^{s-1}$

Since J is a two-sided ideal , $D_1=Dx_n-x_nD\in J$. If $s\geq 2$ we can continue as above and we get $D_2=D_1x_n-x_nD_1$

After s steps we see that J contains the non-zero element $D_S=s!\delta_s.(s!$ is non-zero because K has characteristic zero). Call this element E and we can write

 $E = e_0 + e_1 x_n + \dots + e_t x_n^t$

Where $\{ e_j \}$ belong to $A_{n-1}(K)$. if $t \ge 1$ we get

 $E_1 = \partial_n E - E \partial_n$

 $= e_1 + 2e_2x_n + \dots + te_tx_n^{t-1}$

After t steps we get $t!e_t \in J \cap A_{n-1}(K)$ and hence $J \cap A_{n-1}(K) \neq 0$ as required.