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Abstract 
Ford and Fulkerson introduce the maximum dynamic flow problems with fixed transit times on 
the arcs and developed the first well known algorithm that sends maximum flow from the source 
to the sink by augmenting along s-t paths and prove the maximum amount of flow is equal to the 
total capacity of the arcs in minimum cut. In flows over time with fixed transit time on the arc, 
the time it takes to traverse an arc does not depend on the current flow situation on the arc. But 
in real situation, the flow units travelling on the same arc at the same time do not necessarily 
experience the same pace, i.e., flow units are in general not entering and leaving an arc in the 
same order. In this paper, we discuss the time expanded graph for load-dependent and inflow-
dependent transit times. We also discuss the discrete and continuous time flow, earliest arrival 
flow and quickest transhipment problem.  

Keywords: Flow-dependent transit times, Discrete and continuous flow over time, Earliest 
arrival flow, Time expanded graph, Relaxation property. 

Introduction 
We use the term flow-dependent transit time to express that transit times depend on the 

flow in one way or another. The travel time in congested road takes more than an empty road. 
This is called flow-dependent transit times. A model of flow-dependent transit times on arcs 
must take density, speed and flow rate evolving along an arc into consideration. This means that 
most world real applications are of dynamic nature.  

The transit time of an arc specifies the amount of time it takes for flow to travel from the 
tail to the head of that arc. A flow over time in a network specifies a flow rate entering an arc 
for each point in time. Transit times of an arc directly depend on the number of vehicles that 
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travel through the arc at that moment in time. This is also known as flow-dependent transit 
times. Flow-dependent transit times can be divided into two ways: load-dependent transit times 
and inflow-dependent transit times. In load-dependent transit times, total amount of flow on the 
arc called load of arc, is used as input of the transit time function (Köhler &Skutella, 2002). In 
inflow-dependent transit times, transit time on arc solely depends on the current rate of inflow 
into that arc. So, the transit times are considered as functions of the rate of inflow. The flow 
units travelling on the same arc at the same time do not necessarily experience the same pace, 
i.e., flow units are in general not entering and leaving an arc in the same order. We will present 
the models of load-dependent and inflow-dependent transit times in detail later. 

In flows over time with fixed transit time on the arc, the time it takes to traverse an arc 
does not depend on the current flow situation on the arc. Flow variation over time is an 
important feature in network flow problems arises in various application such as road or air 
traffic control, production systems, communication networks (e.g., the internet), and financial 
flows. In such situation, the amount of time needed to traverse an arc of the underlying network 
increases as the arc becomes more congested. This characteristic is obviously not captured by 
static flow model. 

Time dependent travel time is the travelling time between two locations which depend on 
the time of departure throughout the day. The travelling time between locations is always 
considered constant. But, the time it takes to travel from one location to another can vary a lot 
during the day due to traffic congestion. Thus, we identify the need of considering time-
dependent data for routing component. 

In inflow-dependent transit time model only the rate of inflow into an arc is explicitly 
bounded; the flow rates evolving along an arc can be arbitrarily large. This model, in general, 
does not obey the first in, first out (FIFO) property (i.e., no overtaking) on an arc. In model of 
Inflow-dependent transit time, the transit time experienced by an infinitesimal unit of flow on an 
arc is determined when entering this arc and only depends on the inflow rate at that moment in 
time.  

Ford and Fulkerson (1958, 1962) introduced the maximum dynamic flow problems 
(MDFP) and developed the first well known algorithm that sends maximum flow from the 
source to the sink by augmenting along s-t paths and proved the maximum amount of flow is 
equal to the total capacity of the arcs in minimum cut. Hoppe (1995), Hoppe and Tardos (1995) 
show that there is a non-trivial generalization of the result of Ford and Fulkerson to the case of 
multiple sources and sinks.  

Fleischer and Tardos (1998) presented natural transformation for many discrete dynamic 
flows based on chain decomposable flows to transform into continuous dynamic flows and 
proved its optimality. Hamacher and TJandra (2002) formulated a continuous linear program for 
general continuous network with cost minimization for given bounded measurable functions of 
cost, upper bounds, rates of demand or supply and levels of storage in each node. 
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One of the first model for time dependent flows with flow-dependent transit times has 
been defined by Merchant and Nemhauser (1978). They proposed a non-linear and non-convex 
program with discretized time steps. In their model, the outflow out of an arc in each time 
period solely depends on the amount of flow on that arc at the beginning of the time period. 
Carey (1987), introduced a slight revision of the model of Merchant and Nemhauser yielding a 
convex problem instead of a non-convex one. In the model of Köhler and Skutella (2002) the 
pace of flow on an arc depends on its current load, i.e., the entire amount of flow which is 
currently travelling along that arc. Carey and Subrahmanian (2000) introduced a generalized 
time-expanded network for flow-dependent transit times. 

An important application of flow over time problem is evacuation planning problem. In 
continuous time setting, different dynamic network flow problems are solved for evacuation 
planning problem. Dhamala and Pyakurel (2015, 2018) studied the continuous time dynamic 
flow and introduced the continuous contraflow models. They have presented efficient 
algorithms to solve maximum dynamic, quickest and earliest arrival contraflow problems with 
natural transformation of Fleisher and Tardos (1998) by inversing the direction of arcs at time 
zero. Dhamalɑ, Pyakurel and Dempe (2019) introduce efficient algorithms for evacuation 
planning problems in inflow-dependent transit times as well as load-dependent transit times 
with contraflow approach.  

This paper is organized as follows: In section two, we define necessary basic definitions 
and Notations. We introduce different models with load dependent and in-flow dependent 
transit times in section three. In section four, we introduced time expanded graph as fan graph 
and related bow graph. Finally, concluding remarks is given in last section.  

Basic Definitions and Notation 
Let G = (V, A) be a directed network with node set V and arc set A. Let s and t be 

source and sink node of V respectively, and D be the positive demand value. Letݑ be positive 

capacity of an arc a  A which is interpreted as an upper bound on the rate of flow entering a, i, 

e., a capacity per unit time, Let a be a positive transit time of an arc a which determines the 
amount of time it takes for flow to travel from the tail to the head node of that arc. 

For any intermediate node v of V, at any time, if inflow may exceed the outflow, then the flow can be stored in node v, it is called flow conservation constraints. For a flow over time with finite time horizon, for any node v V∈ {s, t}, the inflow into node v until time T is equal to the totaloutflow out of node v until time T. The cost c(x) of flow x is the total travel time spentin the network. For any arc ܽ, it can be written as c(x)  = ∑ ܣ∋ܽ (ݔ)ܽ߬ܽݔ  . 

An s-t flow over time (also known as dynamic s-t flow or time dependent s-t flow) f on 

network G with time horizon T is given by function ݂: [0, T) → ,ାࡾ for each ܽ ∈A, where ݂(ߠ)deϐines the rate of ϐlow (per unit time)entering arc ܽ at time ߠ. This ϐlow  
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arrives at the head node of ܽ at time ߠ + ߠ)݂ܽ)ܽ߬  )). The relaxation is defined on ܽn 

expanded graph with fixed transit times on the arcs.  In relaxed model, the relaxation relies on 
an expanded graph with fixed transit times on the arcs. 

Models of Flows 
Here we discuss the different network flow models in graph G as follows: 

Model of  Discrete Flow over Time 
We assume that all transit times are integral values. A discrete flow over time f in G 

assigned to every arc ܽ ∈ A :(ߠ)is a function ݂ ܣ × ାࢆ →  ା. Similarly, We say that theࡾ

flow over time f has time horizon T if no flow is entering an arc ܽ after the time T – 1– ߬ i. e. , ݂(ߠ)  =  0 for all ߠ ≥  T −  ߬, ܽ ∈ A. Flow conservation constraints for discrete flow 
model is ∑ ∑ ݂(ߠ)ఏୀ∈ఋశ(୴)  −  ∑ ∑ ݂(ߠ − ߬)ఏୀఛೌ∈ఋష(୴) ≤ 0.    (1) 

for all ߞ ≤  T − 1 and v ∈  V – {s, t}. If ݂(ߠ)  ≤ ߠ  for allݑ ∈ ܽ ା andࢆ ∈ A then the 
flow f is said to be feasible. The flow over time f satisfies the supplies and demand if    

 ∑ ∑ ݂(ߠ)்ିଵఏୀ∈ఋశ(୴)  −  ∑ ∑ ݂(ߠ − ߬)்ିଵఏୀఛೌ∈ఋష(୴)  = D.     (2) 

for every v ∈{s, t}. The cost of discrete flow over time f is defined as   

 C(f) = ∑ ܥ ∑ ݂(ߠ)்ିଵఏୀ∈         (3) 

Model of Continuous Flow over Time      

The transit time of an arc ܽ∈A is interpreted as the time it takes for flow to traverse arc ܽ. More precisely, flow whichis entering arc ܽ at time , arrives at head (ܽ)at time  + ߬. The flow f is called feasible, if the capacity ࢇݑis an upper bound on the rate of flowentering arc ܽ at any moment in time, i. e. , ݂(ߠ) ≤  .ାand ܽ ∈ Aࡾ ∋ ܽ  ,  for allݑ

The continuous flow over time f in network G is a Lebesgue measurable function ݂: A × ାࡾ → ,ାࡾ for every ܽ ∈A. Here ݂(ߠ)is the rate of flow per unit time that enters arc ܽat time . Clearly, (ߠ)݂ࢇ =  0 for 0 >ߠ. We say that the flow over time f has time horizon T if no flow is entering an arc ܽafterthe time T −  ߬ܽ i. e. (ߠ)݂ܽ  =  0 for all ߠ ≥ T −  ߬ܽ, ܽ ∈ A.. 

If the flow is allowed to storage at intermediate nodes, then it is called flow conservation. 
It means that flow enters a node and holds back for some time before it is sent onward. 
Mathematically, flow conservation is modelled as  ∑  ݂(ߠ)∈ఋశ(୴)  dߠ −  ∑  ݂(ߠ − ߬)ఛೌ∈ఋష(୴)  dߠ ≤0.    (1) 
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for all ߞ ∈  [0, T) and v ∈ V – {s, t}.   

 Inequality (1) becomes equality for v ∈ V – (s, t) at time ߞ= T. the flow f is said to be feasible if (ߠ)݂ࢇ  ≤  .ାand ܽ ∈ Aࡾ∋ for all ݑ

The flow over time f satisfies the supply and demands if    ∑  ݂(ߠ)்∈ఋశ(୴)  dߠ −  ∑  ݂(ߠ − ߬)ఛ்ೌ∈ఋష(୴)  dߠ = D.    (2) 

for every v ∈{s, t}. Similarly, the value of s-t flow over time f is given by  

|f| = ∑  ݂(ߠ)்∈ఋశ(୴)  dߠ −  ∑  ߠ)݂ࢇ −   .until time T (3)  .ߠఛ்ೌ∈ఋష(୴)  d(ࢇ߬

Here |f| is the total amount of flow leaving the source nodes until time T and that, because 
of flow conservation, this value is equal to the total amount of flow arriving in the sink node t 
until time T. The cost s-t flow over time is defined as   

 C(f) = ∑ ࢇܥ  ݂(ߠ)்∈    d(4)        .ߠ  

Example -1: Discrete and continuous flows over time are closely related and we will see many 
results that are true for both kinds of flow. In discrete flow, packages of flow are sent through 
an edge that arrive at the same time but not in continuous flow. Consider the graph G with V 
(G) = {s, t}, E (G) = {(s, t)}, u{s, t} = 1, and ߬{s, t} = 2. Then, with a time horizon of T = 3,  
we could send a flow of  size 2 in the discrete model ( by sending two flow packages of size 1 
at time  0 and 1) but only a flow of size 1 in continuous model (by starting to send flow at time 
0 but stopping to send flow at time 1). 

Model of Earliest Arrival Flow  
An earliest arrival flow in the network is to arrive maximal flow from the source s to the 

sink t for every step of discrete time 0 ≤ ߠ ≤ T. In other word, an earliest arrival flow problem is to determine an s–t flow over time which simultaneously maximizes the amount of flow arriving at the sink before time , for all  ∈ [0, T). The earliest arrival flow computed by the successive shortest path algorithm has the property that it simultaneously maximizes the amount of flow departing from the sourcesafter time , for all  ∈ [0, T). Such a flow is called a latest departure flow. Flows overtime featuring both 
properties (earliest arrival and latest departure flow) are called universally maximal.The model 
of earliest arrival flow can be explained as follows: 

Consider the network N (V , A , ,ݑ ߬, s, t, T ) where the symbols have their usual meaning. Let 0, 1, 2, … , T – 1, T be the given discrete time periods. Let f(θ) denotes the amount of flow that enteringarc ܽ ∈ A at time θ. If D (T) is the net flow leaving v = s or entering v = t, for each v ∈ܸ, during the T time periods 0 to 1, 1 to 2, 2 to 3, ... , T - 1 to T. 
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Then the earliest arrival flow model is    

Max D(θ) for each θ, θ = 0 , 1, 2, ..., T. such that ∑ ∑ f(θ)ఏ்ୀ∈ஔశ(୴)  −  ∑ ∑ f(θ − ߬)ఏ்ୀఛೌ∈ஔష(୴) = D(θ), for v= s  (1)  ∑ ∑ f(θ)ఏ்ୀ∈ஔశ(୴)  −  ∑ ∑ f(θ − ߬)ఏ்ୀఛೌ∈ஔష(୴) =  0,       for v ∈ V-{s, t} (2) ∑ ∑ f(θ)ఏ்ୀ∈ஔశ(୴)  −  ∑ ∑ f(θ − ߬)ఏ்ୀఛೌ∈ஔష(୴) = - D(θ), for v= t   (3)  

0 ≤ ݂( θ) ≤  for all θ ∈ {0, 1, 2, . . . , T} and ܽ ∈ A. Here δା (v)and δି(v)denote theݑ 
set of arcs leaving and entering node v, respectively. A polynomial time approximation scheme 
for computing universally maximal flows overtime was founded by Hoppe and Tardos (1995). 

The algorithm sends a 1-߳fraction of the maximal flow that can reach sink t by time ,  ∈[0, T), and it sends a 1 – ߳fraction of the maximal flow that can leave the source s after time , 
 ∈ [0, T). The algorithm combines capacity scaling with the successive shortest path algorithm. 

Here we mention some consequences of model for earliest arrival flows: 
Theorem -1: All earliest arrival flows are maximal dynamic flows. 

Proof: A flow which is maximal for each discrete time step 0 ≤ ߠ ≤ T is obviously maximal 
for time interval 0, 1, 2, … , T. So that all earliest arrival flows are maximal dynamic flows.  
Corollary -1: Maximal dynamic flows are not necessarily earliest arrival flows.  

Model of Quickest Transhipment Problem  
In quickest flow problem we send a given amount of flow from the source to the sink in 

the shortest possible time. Quickest transhipment problem is the generalization of quickest flow 
problem with given vector of supplies and demands at sources and sinks respectively. The 
problem is to find a flow over time that satisfies all supplies and demands within minimal time.  

Hoppe and Tardos’s strongly polynomial time algorithm produce a solution that does not 
make use of storage at intermediate nodes. Their approach relies on chain-decomposable flows 
which generalize the class of temporally repeated flows. These flows are represented by a set of 
paths, but, unlike temporally repeated flows, these paths may use backward arcs. The downside 
of this algorithm is that it requires a submodular function minimization oracle as a subroutine 
and is therefore not of practical use. 

The model of quickest transhipment flow can be explained as follows: 
A dynamic network ࣨ =  (G, u, ߬, S)consists of a directed graph G = (V, A) with a non – 

negative capacity uyz and integral transit time yz associated with each edge yz ∈A, and a set of 

terminals (i. e. sources or sinks) S⊆V. In dynamic transhipment problem, there are multiple 

sources and multiple sinks and there is given a time bound T, and supplies vx, where vx ≥ 0 for 

every source x∈S+, and vx ≤0 for every sink x ∈ S-. If dynamic flow f with time horizon T 
exists and |f|x = vx for every x then it is feasible flow. If we minimize the time T in problem so 
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that the result ingdynamic transhipment problem is feasible then it is called quickest 
transhipment problem. 

Theorem -2: The dynamic transhipment problem ( ࣨ, ,ߥ T)  is feasible if and onlyif ߧ(A)  ≥  denote (A) ߥ denote the total supply of A and (A)ߧ for every subset A⊆S, where  (A)ߥ
the maximum amount of flow that the sources in A can send to the sinks S\A in time T. 
Model of Load-dependent Transit Times  

Köhler and Skutella (2002) investigate the model of flows over time with load-dependent 
transit times. The load of an arc is the total amount of flow on the arc. The underlying 
assumption of the model is that the speed on an arc is a function of the load. Let ݈ be the load on arc ܽ and ߬(ݔ) be the transit times on arc ܽ for the static ϐlow ݔ rate 
then the relation is   

  ݈  =   (i)  (ݔ)߬ݔ 

If ߬is monotonically increasing and convex, then, in a static flow, the flow rate ݔis a strictlyincreasing and concave function of the load ݈. In this case, the transit time can also beinterpreted as an increasing function ߬of the load ݈, i.e. 

  ߬(ݔ)   =  ߬ෞ (݈)   (ii)  

If we interpret the static flow value ݔas flow rate over time on arc ܽis proportional to the inverse of ߬ෞ(݈)For a time – dependent flow f, -represent the flow over time with load ((ߠ)݈) denotes the total amount of flow (i. e., load) on arc ܽat time . Similarly, ߬ෞ(ߠ)݈ܽ
dependent transit times 

In flow-dependent transit times model, at each point in time, the uniform speed on an arc 
depends only on the amount of flow or load which is currently on that arc. For the case of 
steady state flows which do not vary over time, the constant load of an arc can be determined by 
the constant flow rate on the arc, i.e., by the number of flow units traversing the arc per time 
unit. Therefore, the transit time of an arc is a function of its flow rate in this case.  

A Model for Load-dependent Transit Times  
The in-flow rate is measured at the tail and the outflow rate is measured at the head of 

an arc. The transit time on an arc depends on its current load, which is the amount of flow (i.e., 
number of cars) currently on that arc.  

A flow over time on an arc a with time horizon T can be explained by its flow rate ݂: (0, T]  ା. An s − t flow over time with load − dependent transit times, which is given by flow rateࡾ → 
functions ( ݂)∈, , satisfying the following constraints: 

(i) for all ܽ ∈ ߠ and ܣ ∈  (0, T] such that 0 ≤ ݂(ߠ)  ≤   (capacity constraints)ݑ
(ii) the total amount of flow that has arrived in v until time ߠ is an upper bound in the total 

amount of flow that has left v until time ߠ, for each node v ≠ s and every point in time ߠ 
∈ (0, T] (flow conservation constraints)  



  Vol.12, No. 1, September 2024, ISSN 2505-0613 8 

(iii) for all v ∈V \ {s, t}, equality holds in (ii) for ߠ = T and; moreover ݈(T) =0 for all ܽ ∈   ܣ
(i.e., all flow must have arrived at the sink at time T).  
Here we mention some consequences of model for load-dependent transit times: 

Lemma -1: [Köhler and Skutella, 2002] If there exists a flow over time f with load-dependent 
transit times which sends D units of flow from s to t within time T, then there exists a static flow 
x of value at least D/T for the static flow problem stated above. 
Theorem -3: [Köhler and skutella, 2002] Suppose that there exists a flow over time with 
(LDTT) that sends Q0 units of s-t flow within time period T. Then a flow over time satisfying 
the same demand within time horizon at least 2T exists in the class of temporally repeated flows. 

Also, this solution can be computed polynomially within time (2 + ߳) T for any given ߳> 0.   

Model of Inflow-dependent Transit Times 
Flow over time with inflow-dependent transit times is an extension of the flows over time 

with fixed transit times. In flows over time with fixed transit times, transit times are fixed so 

that flow on arc ܽ progress at constant speed. In inflow − dependent transit times, transit times 
experienced by an infinitesimal unit of flow on an arc is determined when entering this arc and 
only depends on the inflow rate at that moment of time. In the flows over time with inflow − 

dependent transit times, flow entering arc ܽ ∈ A at time ߠ  arrives at head (ܽ )at time ߠ + ߬൫ ൯,, where, ߬(ߠ)݂ࢇ ∶  [0, [ݑ →  ା  is transit time function. In particular, the time of anࡾ

arc only depends on the current flow  rate. Since in time – dependent flow, we require that all 

arcs must be empty from time T, so for all arcs ܽ ∈  A and ߠ ∈ ାࡾ  we have ߠ )ࢇ߬ + ݂(ߠ))  < T whenever  0 < (ߠ)݂ࢇ.In this case, flow conservation model is of the form ∑  − ߠஸఏழ∈ఋశ(୴)  d (ߠ)݂ࢇ  ∑  ఏஹ: ఏାఛೌ(ೌ (ߠ)݂ࢇ (ఏ)) ஸ∈ఋష(୴)  dߠ ≤0.  (1)  

for all ߞ ∈  [0, T] and v ∈  V– {s, t} and equality hold for all v ∈  V– {s, t} at time ߞ = T 

The flow over time f satisfies the supply and demands if    ∑  − ߠஸఏழ∈ఋశ(୴)  d (ߠ)݂ࢇ  ∑  ఏஹ: ఏାఛೌ(ೌ (ߠ)݂ࢇ (ఏ)) ஸ∈ఋష(୴)  dߠ = D.  (2) 

for v ∈{s, t}.The value of s-t flow over time f is given by  

|f| = ∑  − ߠ்∈ఋశ(ୱ)  d(ߠ)݂ࢇ  ∑  ݂(ߠ)ఛ்ೌ∈ఋష(ୱ)  d(3)    .ߠ  

with flow-dependent transit time (߬)ୟ ∈  and underlying path decomposition (ݔ)୮ ∈ , the 

value of a temporally repeated flow f is given by  

 |f| = ∑ (ܶ − ߬୮ ∈  (ݔ))ݔ  =  T|x|  −  ∑ ߬ୟ ∈  (ࢇݔ)ݔ.     (4)  

Example -2: For every arc a ∈ A, let  T.߬ ∶  [0, [ݑ → ା and ߬ᇱ܀  ∶  [0, [ݑ  denote +܀  →

transit time functions on arc ܽ such that ߬  (x) ≤ ߬ᇱ  (x), for all x ∈  [0,  Then, a flow over .[ܽݑ
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time with inflow − dependent transit times (߬ᇱ )∈ and time horizon T naturally defines a flow 

over time with inflow − dependent transit times (߬)∈ and time horizon T. 

Theorem -4: [Köhler and skutella 2002] Suppose that there exists a flow over time sending Q0 
flow units from s to d within time T for non-decreasing piecewise constant transit time 
functions. Then a temporarily repeated flow with (IFDTT) can be computed in strongly 
polynomial time that sends the same amount of flow from s to d within time horizon at most 2T.  

Model of Static Flow Problem 
In static maximum flow problem with bounded convex cost, the cost of flow ݔ on arc ܽ is ݔ߬(ݔ) and total cost must not exceed demand D. The static flow problem can 

be written as follows:  

  Max     ∑ −  ∈ఋష(୲)ݔ  ∑   ∈ఋశ(୲)ݔ

  such that   ∑ −  ∈ఋష(୴)ݔ  ∑ =  ∈ఋశ(୴)ݔ  0 for all v ∈ V \ {s, t},  

  ∑ ∈(ݔ)߬ݔ ≤ D,  

   0 ≤ ݔ ≤ ܽ  for allݑ ∈   .ܣ

 Here ߜା(v) and ିߜ(v) denote the set of arcs leaving and entering node v, respectively.  

Corollary -2: A static flow f is maximal if and only if there is no flow augmenting path with 
respect to f. 

Time Expanded Graph 
Given graph G = (V, A) with integral transit times on the arcs and an integral time 

horizon T, the T-time expanded graph of G, denoted by G(T), is obtained by creating T copies 

of V, labelled V(0) through V(T-1), with the ߠth copy of node v denoted v(ߠ), ߠ ∈ {0, 1, … , 

T − 1}. For every arc ܽ = (v, w) ∈ A and 0 ≤ ߠ ≤ T − ߬ there is an arc ܽ(ߠ) from v(ߠ) to w (ߠ 

+  ߬ܽ) with same capacity as arc ܽ. It storage of flow at node v ∈ V is allowed, we include an 

infinite capacity holdover arc from v(ߠ) to v(1 + ߠ), for all 0 ≤ ߠ ≤ T -1, which models the 
possibility to hold flow at node v. 

Theorem -5: The dynamic flow in the given network is equivalent to the static flow in the 
corresponding time-expanded network. 

Model of Generalized Time Expanded Graph   
Carey and Subrahmanian (2000) consider a generalized time-expanded graph for  flow-

dependent transit times. They assume that each arc ܽ = (v, w)has a piecewise linear transit time 

function ߬  given by break points 0 = ݔ < ଵݔ <  … < (ݔ),  where ߬ݔ =  i, i =  0, … , ݈. 
They introduce a copy ൫v(ߠ), w(ߠ + ݅)൯ with capacity ݔ , for each point in time ߠ and each 
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transit time i =  0, … , T − 1 − .ߠ   They consider static network flow formulation in this 
generalized time − expanded graph with additional bundle constraints linking the flow of the 

arcs  ൫v(ߠ), w(ߠ + ݅)൯, i 0, … , T − 1 − .ߠ   They derive necessary conditions which guarantee 

that at most two neighbouring arcs (v(ߠ), w(ߠ + ݅)) and (v(ߠ), w(ߠ + ݅ + 1)) carry flow. The 
generalized time expanded graphs can be explained as follows: 

(a)  The Fan graph 
The fan graph ܩி is generalized time expanded graph in which transit times indirectly 

depend on the flow rate. The fan graph ܩி  is defined on the set of nodes {ߠݒ: v ∈  V, ߠ =0, 1, … , T − 1} The fan consists of capacitated horizontal arcs and uncapacitated arcs pointing 
upwards.  The capacities of the horizontal arcs try to control the distribution of flow according 

to the transit time function  [Koሷ hler & Skutella, 2002].  In fan graph ߬௦  represent the step 

function character of transit time function ߬ of an arc ܽ where ߬ is a piecewise constant, non 

− decreasing and left continuous function with only integral values. Fan graph is shown in 

figure − 1. In figure 1(a)the flow is at most ݔଵ,  ଷ, for example suppose 2, 4 and 6ݔ ଶ andݔ

respectively, with transit time ߬ as 1, 3 and 6 respectively of an arc ܽ. Figure 1(b) shows the 

fan at 0 = ߠ consisting of capacitated horizontal arcs and uncapacitated arcs pointing upward. 

Figure 1(c) shows the fan graph of arc ܽ as a time expanded graph 
 

(b) The Bow graph:  
The fan graph is defined as the time-expansion of the bow graph. Bow graph captures in-

and out-flow dependent transit times. This can be achieved by introducing regulating arcs also 
at the head node of each arc. Flows over time bow graph model do not constitute a relaxation of 
flows over time with inflow-dependent transit times in G. Fan graph may become very large but 

the bow graph is the time expansion of smaller graph. The bow graph ܩ  =  (ܸ,  ) arisesܣ

from the original graph by expanding each arc ܽ ∈ A according to its transit time function.  

In a bow graph [Köhler & Skutella, 2002], every arc ܽ ∈ ܣ  has capacity ݑ  and a 

constant transit time ߬ ∈ ାࡾ . For arc ܽ  ∈ A, suppose 0 = 0ݔ  < 1ݔ <  …  < ݇ݔ  = ܽݑ   are 

break points and corresponding transit times are ߬ଵ <  ߬ଶ < ⋯ < ߬. Flow entering rate x ∈ (1−݅ݔ,  :needs ߬ time units to traverse arc ܽ. In bow graph, arc ܽ is divided into two arcs [݅ݔ

bow arcs denoted by ܾଵ, … , ܾ and regulating arcs denoted by ݎଵ, … ,   . The bow  arcs ܾݎ
are uncapacited and they represent all possible transit times ߬ of arc ܽ for i = 1, … , k. The 

capacity of regulating arcs ݎ is set to ݔ, i = 1, … , k and their transit times are zero which limit 

the amount of flow entering the bow arcs. The set of bow arcs and regulating arcs associated to 

an arc ܽ ∈  A is denoted by ܣ  and which refer to ܣ  as the expansion of arc ܽ . Figure 

2(b)represents the expansion of an arc ܽ according to transit time function using bow graph.  
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Figure-1: Definition of fan graph, expansion of a single arc ܽ 

 

 

 

 

 

 
 
 

Figure-2 : Definition of the bow graph, expansion of a single arc 
       

  
 
 
 

 

Figure-3: An expansion of single arc ܽ = (u, v) according to modified bow graph 

Relaxation Property of the New Model of Modified bow graphs 
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same time horizon T and same cost C as follows: if, in the original graph G, flowis entering arc ܽ ∈ ܽ then, in the bow graph, this flow is sent onto the bow arc ,(ߠ)with flow rate ݂ ߠ at time ܣ ∈ ) representing transit time ߬௦ܣ ݂(ߠ)). 

The bow graph, denoted by ܩ  =  (ܸ,  .), is defined on the same vertex set as G, iܣ

e., ܸ  =  V, and is obtained by creating several copies of an arc, one for possible transit time 

on the arc. Thus arc ܽ is replaced by creating m parallel bow arcs ܾଵ, ܾଶ, … , ܾ. The transit 

time of bow arc ܾ is ߬ and capacity ݑ for j = 1, 2, … , m. We denote the set of bow arcs 

corresponding to arc ܽ by ܣ and refer to ܣ as the expansion of arc ܽ. The cost coefficient of 

every arc e ܣ are identical to those of arc ܽ, i. e., ܿ  =  ܿ. For every arc e ∈  , let ܽ (e)ܣ

denote the original arc ܽ, which is shown in figure-3. 

The main difference between new modified bow graph and previously defined bow graph 
is as follows: In modified model we omit the regulating arcs which, in previous model, limit the 
amount of flow entering the bow arcs. In particular, all bow arcs representing the same original 
arc share capacity. In the modified model, capacities are directly assigned to the bow arcs. They 
no longer share capacities; moreover we include arc costs in the new model.  

Conclusion 
In this paper, we have studied different models of flow over time and flow dependent 

transit times with load-dependent and inflow-dependent transit times. Ford and Fulkerson’s time 
expanded graph is related to flows over time with constant transit times but the fan graph is a 
generalization of the time-expanded graph which preserves the property of flow over time with 
flow-dependent transit times by standard network flow techniques. The fan graph is only a 
relaxation for the setting of inflow-dependent transit times where flow units entering and 

simultaneously might travel the arc at different paces. Since 2+ ߳ approximation algorithm can 
be used for the quickest s-t flow problem in the setting of both load-dependent and inflow-
dependent transit times.  
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