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self of elderly people in the changing socio-political context and captured the 
changing ethos of the present time in Nepali short fiction. 
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ABSTRACT 

This article discusses fundamental concepts and examples related to topological vector spaces. 
The primary goal of this article is to investigate topological quasi-vector spaces and their 
properties. This research endeavor begins with the discovery of various features of (topological) 
quasi-vector spaces that remain invariant under some kind of transformation. Any such 
transformation should be built in such a way that it can preserve the full quasi-vector spaces -
structure. The features of quasi-vector space are used to characterize specific (topological) quasi-
vector spaces that play an important role in this article and play a vital function in this research. 

Keywords: Homomorphism, Linear Spaces, Order-morphism, Quasi-vector space, Topological 
vector space, Topology. 

Introduction 

Topological vector spaces, particularly Banach and Hilbert spaces, are crucial in various 
mathematical disciplines, including functional analysis, physics, engineering, and other 
scientific fields, providing a platform for studying functional behavior. Aseev (1986) 
defined quasi-linear spaces as classical linear and non-linear spaces with subsets and 
multi-valued mappings. On these spaces, he established norm, quasi-linear operators, and 
functional analysis, encouraging numerous writers to produce more findings. The set  
  (E of all convex compact subsets of a normed space E is a good example. This is 
studied with break analysis. Intervals are outstanding instruments dealing with global 
optimization problems and supplementing recognized plans (Medar, et al. 2005) 
Markow's technique and Aseev's treatment are key approaches for dealing with quasi-
linear spaces. Aseev's treatment provides the best foundation for linear functional 
analysis, extending set-valued algebra and analysis. The primer of normed quasi-linear 
spaces with bounded operators pays to this field (Markov, 2000 & 2004). Topological 
vector space    corresponds to a vector space E that constructed with a topology that 
permits the two continuous mappings below, where    ×E and E×E are shaped using the 
products of the products of the various topologies:  

(1)  Addition of vectors:   E × E → E as (   ,      →    +   ,      

(2) Multiplication of vectors:      × E → E as [ k, x] → k x,    
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If a topology occurs on E, it is said to as compatible with the vector space construction. 
With topology τ, a topological vector space E is embodied by the symbol (E, τ). Two 
topological vector spaces over the same field are isomorphic for a continuous linear one-
to-one mapping from one to the other and its inverse mapping is again continuous. 

A topological vector space's dimension (E, τ) is alike to E. The continuity of the mapping 
suggests that we may reconstruct the TVS (E, τ) provided we are aware of a basic system 
of neighborhoods of zero. Translations do not affect any topological vector space (Aseev, 
1986).  

An improper of neighbors and a ∈ E is the collection of the type a + v. Accordingly, in 
the majority of it’s applications, defining a topological vector space's topology just 
requires accepting a base of neighborhoods of zero (Markov, 2000 & 2004).   

A compact set's scalar manifold is also compact, as is the sum of two compact sets. If the 
collection C(X) of all non-empty compact subsets of X exists, for following findings are 
applicable (Markov, 2000 & 2004).  

                                        (i) A   B                
  (1) 

                                        (ii) (    )·A      (      

The collection C(X) has been shown to possess structural beauty through the use of the 
aforementioned addition, scalar multiplication, and intrinsic set inclusion order, despite 
its simplicity. Jana and Mitra introduced "quasi-vector space," a novel structure with 
compatible semi-group and partial order structures and scalar multiplication. By 
embedding each vector space as its subspace, generalizes it. "Topological Quasi-vector 
Space" (Jana & Mitra, 2004) is the name given to this novel topological algebraic 
structure in which topology was applied and create to be consistent with its characteristic 
forms. 

Research Problem 

Topological quasi-vector spaces are an intriguing area of study in functional analysis and 
topology. These spaces generalize the concept of vector spaces and incorporate 
topological structures, enabling a more comprehensive analysis of continuity and 
convergence in infinite-dimensional settings. This article explores the fundamentals of 
topological quasi-vector spaces, their defining properties, and some significant 
characteristics that distinguish them from other topological and vector spaces.   

Topological Quasi-vector Space and it’s Characteristics
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topological structures, enabling a more comprehensive analysis of continuity and 
convergence in infinite-dimensional settings. This article explores the fundamentals of 
topological quasi-vector spaces, their defining properties, and some significant 
characteristics that distinguish them from other topological and vector spaces.   

Objective and Methodology 

This article explores topological quasi-vector spaces and their properties, a topic of global 
and local relevance in functional analysis. It discusses various analytical methodologies, 
reads works on these spaces, and explores mathematical magazines and research papers. 

Topological Vector Spaces 

 Topological vector spaces are having the following fundamental ideas and examples:  

Topology in Linear Space  

A linear vector space is a topological vector space. Therefore, start by learning the 
fundamental ideas pertaining to topological and linear spaces independently. Let    be an 
algebraic field and C be the complex number field.  

[E × E] → E defines (u, v) → u + v,  

 and [        E] → E, states (λ,  v) → λ v        
 (2) 

 where    is algebraic field and C is complex.  

 Equation (2) Satisfied the below conditions:  

(i)   u  +  v =  v  +  u   for all  u,  v ∈  E.  

(ii) A unique element 0 ∈ E exists for v + 0 = V. 

(iii)  v  +  ( −v) = 0, for v ∈   

(iv)     (u + v) = λ u +λ v, λ (μ v) =  (λ  μ) v,   

 (λ +μ) u = λ u+ μ u and 0 v = λ0 = 0, for all u, v ∈ E ,  λ,  μ ∈  ,      

Let   is scalars field and      ⊂ C, given two vector spaces and let E and F. 

                   A: E → F         
 (3) 

 is a mapping if A (λ u + μ v) = λ A(u) + μ A (v). A set Ker A:       is called the kernel 
and set R is range is   A  :=  A(E) ( Bogachev & Smolynov, 2017).  

A collection τ of subsets of  X is  a topology if  

 (i) X, ∅ are in X. 

 (ii)          are in    for         are in τ.  
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A pair (X, τ) is a topological space on X.  A subset of a topological space X is open 
complement and closed (Bogachev & Smolynov, 2017).  

(i) X, ∅   are in      
(ii)  If          are in   , then           also in   . 

  Metric space (M, d) is a pair and  

 d:  M×M → [0, + ∞)          
 (4) 

is a function to as a metric.  

(i) d  (a, b) = d (b, a)  for  a, b in M, d (a, b) = 0 for a = b, 

(ii) d  (a, c)   d (a, b) + d (b, c)  for a, b,  c ∈  M. 

Norm      on a metric space defined as 

                                     d  (x, y) =              
 (5) 

The definition of (t. v, s) more precisely requires the following: 

                         X × X → X   

                         (X, Y) → x + y      

                            × X   →  X 

                           (λ, x) → λ x  

 Isomorphism X → Y is also a homeomorphism (bijective, linear, continuous, and inverse 
continuous).  

Quasi- linear Space (QLS)  

The     is a topological space   characterizes the neighbors of a   ∈   and X be a 
topological vector space (TVS,) for G ⊂  ,   ∈  .   

If   −   ∈     and   −   ∈    ,  then   ∈      TVS operate on this localization concept 
(Wilansky, 1978). 

Set   is characterized a quasi-linear space (QLS) for  ,  ,  ,   ∈  , and scalars  ,   
satisfy the following conditions:  

    ≤    , 

    ≤    i f    ≤   ,    ≤      

Topological Quasi-vector Space and it’s Characteristics
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   =     if   ≤  ,     ≤     

   +   =   +    

   + (   +   ) = (   +   ) +   , 

 For, 0 ∈  ,   + 0 =   

   ,          =  (      x                                                (6)  

          =             
 1.x = x, 

 0. x = 0 

 (   +   ) ⋅   ≤   ⋅   +   ⋅  ,   

   +   ≤   +   i f   ≤  ,   ≤  ,  

   ⋅   ≤   ⋅   i f   ≤    

Inclusion relation " ," is an algebraic sum,  

   +     =  {  +   ∶   ∈  ,   ∈  }                (7)                                             
  

and  

     = {    ∶   ∈  }                                                                    ( 8 ) 

   +   = {  +   ∶   ∈  ,   ∈  }                                                  ( 9 )  

         ( ) {A ∈   ( ) ∶ convex}. 

0 is the minimal elements of X to its partial order "   ; these elements are called   as one 
order elements of X,   

   = 0 if   ≤ 0.                                                                        (10) 

Definition1.  If   +  x' = 0, for x' ∈ x is an inverse of a   ∈ X. It is unaccompanied for an 
inverse element. An element   is considered regular if it has an inverse; otherwise, it is 
singular.  

Lemma 1. If an inverse element  '∈   and the distributive criteria grip, the partial 
ordering of   equal, and   is a linear. If  '= −   gives   −   = 0 are the elements of   
(Aseev, 1986). 

Definition 2. If   is a quasi-linear space with the same partial ordering on  , and      , 
then   is devoted as subspace of  . 
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Theorem 1.  If  ,   is a subspace of  , 

  ,   ∈  ,  ,   ∈ ℝ, then     +  ,   ∈  . 

Proof.   

Assume   and   is a subspace of  . Assuming that each element   in   has an inverse 
element  '∈  . Lemma 1describes that the partial ordering on   is regular. In this case, 
the distributive requirements on   hold for   is a linear subspace of  .   

Let QLS be  , and let   be a subspace of  . Assuming each   in   has an inverse element 
 '∈  , the partial ordering on   is regular by the equivalence according to Lemma 1.   is 
a linear subspace of  , the distributive conditions on   hold in this instance.  

Definition 3.      and      are regular element in   and each singular element in  . 

Theorem 2.  If          in X   then    ∪ {0} is a subspace. 

Proof.  

Let     is a subspace for    '+  ' is the reverse of     +  .  Also let    ∪ {0} is a 
subspace of   for  ,   ∈    ∪ {0} and   ∈ ℝ then   =   = 0. If   ≠ 0, 
and (  +    ) ∉   ∪ (0) gives (  +     ) +   = 0 for some   ∈    and 
   + (    +  ) = 0 and so  '=     +   gives   ∈      

Clearly, it gives,   ∈      for   ≠ 0. There is inconsistency, 

   +     ∈    ∪ (0). 

The proof for     alike (Markov,2000). 

         and     U {0} are subspaces of  ,  

Lemma 2. Every regular element is negligible for a quasi linear space. 

Proof.  We have to prove that   ≤           ∈    for y = x 

If   ≤   then adding x’ in both sides 
  +  ' ≤   +  ' = 0     +  ' ≤  0.                                              
 (11) 

If from minimality,   +  '= 0 gives the inverse element, y = x.  

The standard way of study the topological vector space Z is basically two realities: 

 Translation (x   a + x, a ∈ Z)                                                                     
 (12) 

 Dilation (x   αx, α   0)  

Topological Quasi-vector Space and it’s Characteristics
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are homeomorphisms from Z onto itself. Using these homeomorphisms, it becomes 
sufficient to think an important system of neighborhood at the origin “θ” only, for, this 
system of neighborhood at θ can describe a workable neighborhood system at any point 
of Z. Then the whole analysis on Z becomes concentrated locally at θ. Sorry to say, such 
a well-established process of examining this space fails to develop a theory. (Markov, 
2000 & 2004).   

A translation x   a + x although is continuous for any a ∈ X (a topological qvs), fails to 
be a homeomorphism unless a ∈    . 
 In fact, if a ∈ X       then x   a + x                                           (13) 

is neither injective nor subjective. Again, although enlargement is still a homeomorphism 
on topological qvs, it can only “resize” a set. It can’t move an open set to some other 
place. These are the immediate hurdles one must face while trying to develop a theory for 
topological qvs. 

Another barrier that distinguishes topological qvs theory from topological vector space 
theory is the non-distributive nature of scalar field addition over scalar multiplication. As 
a result, there is no way to build the notion of it in a topological vector space. A 
fundamental source of difficulty in the preceding difficulties is that a qvs is an additive 
semi-group rather than a group. As a result, it is extremely common to consider 
constructing the theory of topological qvs (Markov, 2000 & 2004).     

But all these efforts were uselessly very soon; it is because, most of the theory of 
topological module be contingent on idempotent, whereas in a topological qvs there 
cannot be any idempotent element other than θ, as the following result shows: 

Lemma 3.  If a = a + x in qvs, then x = θ. 

So in particular, a = a + a   a = θ, i. e a topological qvs cannot contain any idempotent 
other than θ. It therefore becomes almost obvious to find some new method to develop a 
theory for topological qvs. This study attempt in this direction begins with the finding of 
various properties of (topological) qvs which continue invariant under some kind of 
transformation. Any such transformation should be so designed that it possesses the 
capability of preserving the entire qvs-structure; in other words, such transformations 
should be capable sufficient to distinguish between two qvs in view of the qvs-structure 
(Medar,2005). The following is the definition of such a transformation: 

Definition 4.  A mapping φ : X → Y  is  an order-morphisms for  X, Y and two quasi-
vector spaces in the field K, then following axioms holds:  

(i) φ (x + y) = φ(x) + φ(y), ∀  x, y ∈ X  
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(ii)  φ (α x) = α φ(x), ∀ x ∈ X, ∀ α ∈ K 

(iii)   x ≤ y (x, y ∈ X)   φ(x) ≤ φ(y)  

(iv)  p ≤ q (p, q ∈ φ(X))   φ −1 (p)  ↓ φ −1 (q) and φ −1 (q)  ↑ φ −1 (p) 

If moreover φ be bijective then it is called an order-isomorphism.  X, Y are two 
topological qvs  

φ: X → Y                                                                               (14) 

is a topological order- isomorphism. The concept of it between quasi-vector spaces 
produces an equivalence relation in the family of all qvs over a common field, 
distinguishing two qvs belonging to different equivalence classes (Aseev, 1986). It is 
therefore rational to name those properties of a qvs which remain invariant under order-
isomorphism, as “qvs properties”. 

φ: X −→ Y (X, Y                                                          (15) 

are two (qvs),         φ(    )          (16) 

In fact, for any p ∈   , φ(p) − φ(p) = φ (p − p) = φ(   ) = φ (0.p) = 0.φ(p) =      φ(p) ∈ 
  . 

Also, if ∅ be an order-isomorphism then 

φ|   :    −→                                                                     (17) 

is a vector space isomorphism and hence φ (  ) =   . 

An important and very valuable method of construction of a new structure from some 
given structures of same type is the Cartesian product. For (topological) qvs also such a 
method works [1]. The details of this has been described below: 

Lemma 4. Let X be a random family of quasi-vector spaces over the same field K  
symbolized by {    : λ ∈ Λ}.   Let X be the Cartesian product of these quasi-vector 
spaces  

X : = Y     ∈      
x ∈ X iff x : Λ →       ∈   is a map for x(λ) ∈ ,       ∀ λ ∈ Λ.  

Then by axiom of choice, it is obvious that X is non-empty for Λ is non-empty and each 
     contains at least the additive identity (Aseev,1986). 

For each x ∈ X as x = (   ),  
where      =   ∀ λ ∈     ∀   ∈Λ.   

Topological Quasi-vector Space and it’s Characteristics
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For x  =   (   ) , y =     ∈ X ,  α ∈ K,  

(i) x + y  ∶   (          , 
(ii)  α x  ∶   (α   ), 

(iii)  x ≤ y iff     ≤     ∀ λ ∈ Λ.   

The set of all one order elements is given by     =            ∈  , and           being the 
set of all one order elements of     .Again if each   be      a  topological qvs, then  
    ∈      becomes a topological qvs in order to the product topology.  (Aseev,1986). 

Result and Discussion 

The properties of quasi-vector space are useful to characterize some (topological) quasi-
vector spaces which have a important role in this study and which are in the central 
character in this research. The first among these belongs to the class of hyperspaces.  

The main characteristics of topological qvs      is comparable, powerfully comparable, 
compact primitive, reversible compact primitive and additive primitive; non-single 
primitive, non-zero primitive, non-convex, non-homogeneous and non-balanced qvs 
(Ganguly & Mitra,2010).  

Theorem 3.  (i) Assume that X is an additive primitive with strongly similar qvs and 
reversible primitive one and X has an order-isomorphism with    (   ).  

(ii) X is order-isomorphic with   (   ), then topological qvs X is additive primitive, 
compact primitive, reversible compact primitive.  

Proof. (i) Let   φ : X →        
 x       

Here, φ (x + y) =        =     +     ,   

Also, for any α ∈  ,      = α    .  So φ(αx) = α φ(x),   

 x  ≤  y                  φ (x)  ≤  φ(y)                                            (18)     

 X is strongly comparable to qvs, 

(i) q(x)  ≤  φ (y)   Px   P y   x ≤ y.       (19) 

For, x   y   φ(x)   φ(y) showing it is injective. Also, by reversible antiquity, φ converts 
surjective.  

 X                                                                               (20) 
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 (ii) If the map x →    gives an order-isomorphism between X and        with the help 
of these definite qvs properties.  

  In the track of proof of the above theorem, it has been established that any non-trivial 
qvs cannot be simultaneously zero primitive and strongly comparable. So, all the zero 
primitive qvs discussed in this article are not strongly comparable and every strongly 
comparable qvs studied in this article is not zero primitive. In this state, it should also be 
noted that if a qvs X be strongly comparable then it must be comparable. In fact, if      =  
   for any x, y ∈ X then by strong comparability, x = y. So, in a strongly comparable qvs 
distinct elements must have different primitive (Ganguly & Mitra,2010). 

Though, in a comparable qvs distinct elements may have identical primitive; actually, the 
elements of a comparable qvs having identical primitive must have to be comparable to 
the partial order of the qvs (by definition). Thus, the property ‘comparability’ of a qvs is 
weaker than the property of ‘strong comparability’. 

Lemma 5.  If X be a balanced topological qvs where any two members are comparable 
then 

 y =            ∀  x      θ, ∀ y ∈ X,                                       (21) 

   is the comparing function. 

Proof.  

 As X is a balanced topological qvs, we have 

         ≤ y .                                                                                       
 (22) 

Again, by definition of comparing function, for any  

  > 0, (        +   ) x    y.                                (23) 

Since any two members of this space are comparable, then 

 y ≤ (        +   ) x                                                                           (24) 

Randomness of   > 0 shows that  

y   ≤   (      x .  So y = y  ≤  (                                      (25) 

Theorem 4.  A topological qvs X is topologically order-isomorphic with [0, ∞) iff, it is 
homogeneous, convex and comparable. 

 Proof. The topological qvs [0, ∞) is a homogeneous, convex and comparable qvs. As 
these properties are qvs properties, so any qvs which is order-isomorphic with [0, ∞) also 
possesses these properties. Conversely, let X be a homogeneous, convex and comparable 
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  In the track of proof of the above theorem, it has been established that any non-trivial 
qvs cannot be simultaneously zero primitive and strongly comparable. So, all the zero 
primitive qvs discussed in this article are not strongly comparable and every strongly 
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elements of a comparable qvs having identical primitive must have to be comparable to 
the partial order of the qvs (by definition). Thus, the property ‘comparability’ of a qvs is 
weaker than the property of ‘strong comparability’. 

Lemma 5.  If X be a balanced topological qvs where any two members are comparable 
then 

 y =            ∀  x      θ, ∀ y ∈ X,                                       (21) 

   is the comparing function. 

Proof.  

 As X is a balanced topological qvs, we have 

         ≤ y .                                                                                       
 (22) 

Again, by definition of comparing function, for any  

  > 0, (        +   ) x    y.                                (23) 

Since any two members of this space are comparable, then 

 y ≤ (        +   ) x                                                                           (24) 

Randomness of   > 0 shows that  

y   ≤   (      x .  So y = y  ≤  (                                      (25) 

Theorem 4.  A topological qvs X is topologically order-isomorphic with [0, ∞) iff, it is 
homogeneous, convex and comparable. 

 Proof. The topological qvs [0, ∞) is a homogeneous, convex and comparable qvs. As 
these properties are qvs properties, so any qvs which is order-isomorphic with [0, ∞) also 
possesses these properties. Conversely, let X be a homogeneous, convex and comparable 

qvs. Then X becomes a balanced qvs. As every balanced qvs is zero primitive, so is X. 
Now X is a zero-primitive comparable qvs, means any two members of X are comparable 
( Ganguly &Mitra, 2010, 2011, 2004a, 2044b, & 2012). 

Then by the lemma 5, for x ∈ X \ {θ}, the comparing function    is an injective function. 
In fact, if we take any two elements      ∈ X  ∀     (y) =   (z) then 

 y =   (y) x =    (  )  x =    .                                          (26) 

Now     is onto and we have to show that     is an order-morphism (or order-functional). 
To prove this it is sufficient to prove that for any     ∈ X ,           =     (y) +     (  
 )  

  (    =                      
                               =        +            (27) 

So      becomes an order – isomorphism i.e. X    [0,   algebraically. 

This topological qvs is sole primitive, comparable, compact primitive, additive primitive 
and convex. But it is neither reversible compact primitive (Laxmikantham et al. 2006).  

Theorem 5.  A topological qvs X is topologically order-isomorphic with     ×     iff  X 
is a single primitive, comparable, convex qvs and the primitive function P : x →    from 
X to     is incessant.  

Proof.  Let X is topologically order-isomorphic with    ×    . First of all, to show that 
the primitive function    : x → Px of       ×      is continuous. For any open set V in   ,  

U ∶  {0} × V is open in               = {0} ×   .                    (28) 

Now     ∶    {x ∈            : Px   U} =           = ↑ U :  {x ∈           : x ≥ u 
for some u ∈ U}, where          is open in           .  
The primitive function     of            is continuous. As single primitiveness, 
comparability, convexity and continuity of primitive function are qvs properties so X also 
satisfies these properties (Knoles 1967). 

Characteristics 

Non-Hausdorff Topology: One of the key differences between topological quasi-vector 
spaces and topological vector spaces is that the former may have non-Hausdorff topology. 
In such spaces, points may not be separable by open sets, leading to more complex 
convergence and continuity behaviors. 

Quasi-norms and Quasi-metrics: While traditional topological vector spaces are often 
studied using norms and metrics, topological quasi-vector spaces may use quasi-norms or 
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quasi-metrics. A quasi-norm |∥⋅∥ on V satisfies similar properties to norms but allows for 
some relaxation in the triangle inequality, typically in the form  

        C (     +    ) for some constant C   . 

Completeness and Completeness Types: Completeness in topological quasi-vector 
spaces can be more nuanced. A space is quasi-complete if every Cauchy net (or filter) 
converges. There are various types of completeness, such as sequential completeness, 
where every Cauchy sequence converges, and completeness with respect to quasi-norms. 

Topological Dual Spaces: The dual space of a topological quasi-vector space V, denoted 
by V′, consists of all continuous linear functionals on V. The topology on V′ can vary, 
leading to different dual pairs and topologies such as the weak topology or the strong 
topology. 

Locally Convex Structures: While not all topological quasi-vector spaces are locally 
convex, those that are enjoy additional properties. A locally convex topological quasi-
vector space has a topology generated by a family of semi-norms, which allows for the 
application of techniques from convex analysis and optimization. 

Examples and Applications 

Function Spaces: Spaces of functions, such as    spaces and Sobolev spaces, often serve 
as examples of topological quasi-vector spaces, particularly when p≠2.  These spaces 
have quasi-norms induced by integrals and derivatives, making them essential in the 
study of partial differential equations and functional analysis. 

Distribution Spaces: The space of distributions, or generalized functions, extends the 
notion of function spaces to include objects like Dirac delta functions. These spaces are 
topological quasi-vector spaces used in the analysis of differential operators and the study 
of generalized solutions to differential equations. 

Sequence Spaces: Spaces of sequences, such as     spaces, where sequences are 
summable to the p-th power, provide another rich class of examples. These spaces are 
pivotal in the study of series and Fourier analysis. 

Conclusion 

Topological quasi-vector spaces (Tqvs) over a field are assemblies of addition, scalar 
multiplication, and partial order with compatible topology.  

Topological quasi-vector spaces represent a broad and versatile framework in 
mathematics, bridging vector spaces and topological spaces. Their non-Hausdorff nature, 
the use of quasi-norms, and the variety of completeness concepts offer a fertile ground for 
both theoretical exploration and practical applications. Understanding these spaces opens 
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spaces can be more nuanced. A space is quasi-complete if every Cauchy net (or filter) 
converges. There are various types of completeness, such as sequential completeness, 
where every Cauchy sequence converges, and completeness with respect to quasi-norms. 

Topological Dual Spaces: The dual space of a topological quasi-vector space V, denoted 
by V′, consists of all continuous linear functionals on V. The topology on V′ can vary, 
leading to different dual pairs and topologies such as the weak topology or the strong 
topology. 

Locally Convex Structures: While not all topological quasi-vector spaces are locally 
convex, those that are enjoy additional properties. A locally convex topological quasi-
vector space has a topology generated by a family of semi-norms, which allows for the 
application of techniques from convex analysis and optimization. 

Examples and Applications 

Function Spaces: Spaces of functions, such as    spaces and Sobolev spaces, often serve 
as examples of topological quasi-vector spaces, particularly when p≠2.  These spaces 
have quasi-norms induced by integrals and derivatives, making them essential in the 
study of partial differential equations and functional analysis. 

Distribution Spaces: The space of distributions, or generalized functions, extends the 
notion of function spaces to include objects like Dirac delta functions. These spaces are 
topological quasi-vector spaces used in the analysis of differential operators and the study 
of generalized solutions to differential equations. 

Sequence Spaces: Spaces of sequences, such as     spaces, where sequences are 
summable to the p-th power, provide another rich class of examples. These spaces are 
pivotal in the study of series and Fourier analysis. 

Conclusion 

Topological quasi-vector spaces (Tqvs) over a field are assemblies of addition, scalar 
multiplication, and partial order with compatible topology.  

Topological quasi-vector spaces represent a broad and versatile framework in 
mathematics, bridging vector spaces and topological spaces. Their non-Hausdorff nature, 
the use of quasi-norms, and the variety of completeness concepts offer a fertile ground for 
both theoretical exploration and practical applications. Understanding these spaces opens 

new avenues in functional analysis, providing tools to tackle complex problems in 
mathematical physics, differential equations, and beyond.  
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