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Abstract
This work presents the Multi-Parameter Generalized Rayleigh (MPGR) Distribution, a new 

probability distribution that adds a scale parameter to the traditional Generalized Rayleigh distribution. 
This extension aims to enhance the flexibility and applicability of the Rayleigh distribution in various 
statistical modeling scenarios.  The inclusion of the additional scale parameter allows the MPGR to 
accommodate a broader range of data distributions and capture more complex underlying patterns. 
A few of the model's statistical characteristics are examined. The model's parameters are estimated 
via maximum likelihood estimation. We have applied the MPGR to a real dataset, demonstrating its 
capability to provide a superior fit compared to traditional distributions. Sensitivity analysis showed 
that parameters alpha, beta, and lambda significantly influence the model's shape and behavior. 
Through empirical analysis, we have shown that the MPGR offers improved modeling accuracy and 
flexibility, making it a valuable tool for statistical inference and data analysis. Our results highlight 
the practical benefits of this new distribution in various applications, from reliability engineering to 
financial modeling, thus contributing to the advancement of statistical methodologies. All the graphical 
and analytical calculations are performed using the R programming language.
Keywords: bootstrap, estimation, modeling, rayleigh distribution, statistical inference

Introduction
Basically, Surles and Padgett (1998, 2001) introduced the Generalized Rayleigh Distribution 

(GRD), a two-parameter Burr Type X distribution. The generalized Weibull distribution, initially put 
out by (Mudholkar &Srivastava,1993), is a particular instance of this distribution. The Generalized 
Rayleigh Distribution (GRD) is characterized by two parameters, α > 0 &λ > 0 and is defined by its 
density function.

The Generalized Rayleigh distribution, introduced by (Surles & Padgett,1998, 2001) is a well-
known probability distribution used in various fields such as reliability engineering, survival analysis, 
and signal processing. Kundu and Raqab (2005) have studied the GRD extensively. The original 
distribution has demonstrated its utility in modeling data with specific characteristics, such as those 
exhibiting a peak near zero and heavy tails.
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Extensions of the Rayleigh distribution have been explored to address its limitations and enhance 
its applicability. For example, the Generalized Rayleigh distribution was extended by adding a shape 
parameter to accommodate a wider range of data shapes and improve the fit for different types of 
empirical data. These extensions typically involve incorporating additional parameters to modify 
the tail behavior or adjust the distribution’s central tendency, thereby offering greater flexibility in 
statistical modeling. 

Further advancements include the work of, who introduced a two-parameter generalized Rayleigh 
distribution. This modification aimed to provide a better fit for data exhibiting more complex patterns 
than those captured by the standard Rayleigh distribution. Their approach included parameters that 
adjust both the scale and shape of the distribution, improving its robustness and adaptability in various 
applications. 

In the context of customized models, the addition of parameters to classical distributions is a 
common practice to enhance their modeling capabilities. For instance, the generalized Weibull 
distribution, another well-known extension, incorporates multiple shape and scale parameters to fit a 
wider range of data.  Similarly, the introduction of additional parameters to the Rayleigh distribution is 
expected to yield a more flexible model that can better capture the nuances of real-world data (Jaggia 
& Hegde, 2020). Chaudhary and Kumar (2020) proposed the logistic–Rayleigh distribution. Also; 
Joshi and Kumar (2021) introduced a Poisson generalized distribution, Ren et al., (2023) studied the 
estimation of entropy for Generalized Rayleigh Distribution under Progressively Type-II Censored 
Samples and Norouzirad et al., (2023) created Neutrosophic Generalized Rayleigh Distribution. 
Another modification of the Rayleigh distribution was Modified Generalized Rayleigh distribution 
applied ion a real data set (Telee and Kumar, 2022).

The Multi-Parameter Generalized Rayleigh Distribution (MPGR), as proposed in this study, builds 
upon these previous works by integrating an additional shape parameter into the Generalized Rayleigh 
distribution. This new model is designed to offer enhanced flexibility and accuracy in fitting empirical 
data by accommodating a broader range of data patterns and characteristics. The empirical application 
of the MPGRD demonstrates its potential advantages over traditional models, highlighting its relevance 
in modern statistical analysis and applications.

Research Gap
a. Existing Rayleigh-based models lack flexibility to fit complex real-world data.
b. Most models do not include an additional scale parameter for better adaptability.
c. Limited comparative studies validating new distributions against existing ones.
d. Lack of real-world applications; most models are tested on simulated data.
e. Computational challenges in parameter estimation need efficient solutions.

Research Objectives
a. Develop a more flexible Multi-Parameter Generalized Rayleigh Distribution (MPGRD).
b. Analyze its statistical properties, including density and survival functions.
c. Use Maximum Likelihood Estimation (MLE) for parameter estimation and validate results.
d. Apply MPGRD to real datasets and compare it with existing models.
e. Conduct sensitivity and predictive analysis for model robustness.
f. Establish MPGRD’s superiority through comparative goodness-of-fit analysis.
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Material and Methods
The Cumulative distribution (CDF) of Generalized Rayleigh distribution by (Surles & Padgett 

,1998, 2001) is given by expression (1). 
“   ”                                                                  (1)

To formulate the proposed probability distribution MPGRD, an extra scale parameter β is added 
to (1) and then modified as;     

   “ ”       
(2)

Here, x is the input variable for which the CDF is being evaluated. It represents the value at 
which we have aimed to compute the cumulative probability. Here, x is non-negative. Parameter α is 
a shape parameter for the distribution. Shape parameters influence the form and characteristics of the 
distribution. The β is another parameter that influences the distribution's shape. It often represents a 
rate or scale parameter in many distributions. Here, β appears in the term exp (-beta * x), indicating its 
effect on how rapidly the cumulative probability accumulates as x increases. Here, λ is another shape 
parameter influencing the shape of the distribution. 

Equation (3) provides the relevant probability density function (pdf) of MPGR. 
 “  ”   (3)

Survival function and Hazard rate function
“Survival function S(x) of the proposed distribution is”

                                                

(4) “Equation (5) provides the model's hazard rate function as”
“     

             (5)

“Figure 1 displays the pdf curves and hazard rate curves for different sets of parameters.”

Figure 1 Pdf (left) and hrf (right) plots for beta = 0.97

Multiple Parameter Generalized Rayleigh distribution with Application to Real Dataset
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Parameter Estimation 
“The model's parameters are estimated using Maximum Likelihood Estimation (MLE).” The 

MPGRD's probability function is provided as
             (6)

First order and second order partial derivatives were obtained with respect to estimate the unknown 
parameter to estimate the parameters. We have utilized the R programming language's optim () function 
(R Core Team, 2023) to estimate the parameters because it is quite challenging to do so analytically.

The examination of a real data set to validate the suggested model is presented in this section. 
The dataset was chosen because it provides real-world applicability for validating the proposed 
Multi-Parameter Generalized Rayleigh Distribution (MPGRD). It allows for assessing the model's 
fit, flexibility, and superiority over existing distributions, ensuring practical relevance in statistical 
modeling. Hinkley (1977) provided the data set, which is provided as

“0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47,1.43, 3.37, 2.20, 3, 3.09, 1.51, 2.10, 0.52,1.62,1.31, 0.32, 
0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, 2.05”

Exploratory data Analysis
Finding valuable insights in the dataset under study is the main objective of data analysis. 

Exploratory data analysis (EDA) is a common feature of contemporary statistical tools for data analysis. 
EDA comprises various techniques designed to visually represent and summarize data effectively.
i. Presenting data through graphical representations, such as boxplots, histograms, and density 

curves, to highlight overall patterns and identify any anomalies.
ii. Calculating descriptive statistics to summarize key characteristics of the data, including measures 

of central tendency, variability, skewness, and kurtosis.
Basic exploratory data analysis (EDA) techniques were utilized, and the outcomes are displayed 

in Table 1. 
Table1: Summary statistics of the selected dataset
“Min. 1st Qu. Median Mean 3rd Qu. SD Skewness Kurtosis Max.
0.320 0.915 1.470 1.675 2.087 1.000616 1.086682 4.206884 4.750”

The boxplot and Total Time Test (TTT) plot for the aforementioned data are shown in Figure 2. 
To determine whether our data set can be applied to a specific model, we utilize a Total Time Test 
(TTT) plot. The concave shape of the TTT plot for the data suggests an increasing hazard rate for the 
suggested model.
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Figure 2: Boxplot (displayed on the left) and TTT plot (displayed on the right) for MPGRD
Table 2 displays the model parameters that were calculated using the Maximum Likelihood 

Estimation (MLE) technique.
Table 2: Estimated parameters and standard error of estimate (SE)”
“Parameters MLE SE
Alpha 0.4596542 0.4373663
Beta 0.9746569 0.3972896
Lambda 14.0969001 49.2417437

Figure 3 displays the histogram vs fitted pdf, ecdf verses fitted cdf (b) and residuals vs. fitted 
cdf(c). Graphs shows that given dataset fits MPGR better. Since the residuals values concentrates near 
the central line, we can say that data fits MPGR more adequately.

Figure 3: Histogram vs pdf (left), ecdf vs fitted cdf (center), and residuals vs fitted cdf (right) of MPGR

Sensitivity analysis of the parameters
Sensitivity of parameters involves understanding how changes in parameters affect the model's 

output. In the context of your custom cumulative distribution function (CDF), sensitivity analysis helps 
determine the impact of each parameter on the fitted CDF. 
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Table 3: Mean sensitivity of parameter
Parameter Initial value Mean sensitivity of parameter
Alpha 1.0 0.2179
Beta 0.5 0.2727
Lambda 1.0 0.0965

Plots for the sensitivity against the data points for all three parameters alpha, beta, and lambda are 
shown in figure 4.

Figure 4: Sensitively curves for alpha (left), beta (center) and lambda (right)

To assess how well your data fits a theoretical distribution graphically, and using them together 
can give a more comprehensive view of the data’s distributional properties, we have plotted PP and QQ 
plots and displayed in figure 5.

Figure 5: Q-Q plot (left), beta (center) and lambda (right)
To evaluate and compare the goodness of fit of different models, with a focus on balancing model 

fit and complexity, we have calculated log likelihood (LL) and different criteria values, which are given 
in table 3. To test the goodness of fit, KS, CVM and AD are with p-values also mentioned in table 4.
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Table 4: Log likelihood and information criteria with test statistics
“-LL AIC BIC CAIC HQIC KS(p-value) CVM(p-value) AD(p-value)”
38.0929 82.1858 86.3894 83.1089 83.53056 0.0715 (0.9979) 0.01734(0.9991) 0.1181(0.9998) 

For checking the validation and goodness of fit of the proposed model MPGR compared to other 
theoretical models, we have considered four other models found in literatures. Comparing a custom 
probability model to theoretical models is a crucial step in statistical modeling and data analysis. By 
comparing custom model to theoretical models, we can understand the underlying structure of dataset 
used. This comparison can reveal whether your custom model captures important aspects of the data 
that theoretical models do not. The models considered are;

“Table 5 lists the following distributions: Exponentiated Generalized Exponential Geometric 
(EGEG) Distribution (Telee et al., 2021), Weighted Inverted Exponential Distribution (WIED)( 
Hussain,2013); Exponentiated Inverted Weibull Distribution (EIWD)(Flaih et al., 2012); Generalized 
Inverted Generalized Exponential (GIGE) (Oguntunde et al., 2015); Half Logistic Nadarajah Haghighi 
(HLNHE) Distribution (Joshi & Kumar, 2020); and Logistic Inverse Exponential (LIE) (Chaudhary et 
al., 2020).”

Table 5: Estimated parameter values of different models
Models

MPGR 0.4597(0.4374) 0.9746(0.3973) 14.0969(49.2417)
EGEG 15.3245(61.4958) 2.0414(1.9876) 0.5772(0.4707) 0.0846(0.5245)
WIED 2.6782(17.6573) 2.2221(0.4330)
EIWD 1.5496(0.2026) 1.0252(0.1978)
HLNHE 26.818(18.2725) 1.5259(0.2273) 0.0036(0.0013)
GIGE 3.3196(1.06577) 9.8260(96.559452) 0.2261(2.2222)
LIE 1.8792(0.2906) 0.9453(0.1102)

To prove the superiority of the MPGR compared to other model, we have mentioned the Ll as well 
as information criteria values in 6. Least values for MPGR show that model is better for given data with 
respect to considered models.

Table 6: Various models' AIC, BIC, CIAC, HQIC, and Ks values (p-values)
“Models AIC BIC CAIC HQIC -LL
MPGR 82.1858 86.3894 83.1089 83.5306 38.0929
EGEG 83.9457 89.5505 85.5457 80.8422 37.9728
WIED 85.6618 88.4642 86.1062 84.1101 40.8309
EIWD 87.8340 90.6364 88.2784 86.2823 41.9170
HLNHE 84.6577 88.8613 85.5807 82.3300 39.1288
GIGE 85.3192 89.5228 86.2423 82.9916 39.6596
LIE 86.1196 90.3232 87.0427 83.7920 40.0598”

“Figure 6 shows the empirical distribution function vs the estimated distribution function of the 
MPGRL distribution and competitive distributions, as well as the histogram versus the density function 
of fitted distributions.” 
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Figure 6: Histogram Vs pdfs (left) and fitted cdf vs ecdf (right)

Bootstrap Analysis
To assess the variability and accuracy of the parameter estimates for the ̀ MPGR` distribution fitted 

to the applied data, we employed bootstrap resampling techniques. Bootstrapping allows us to estimate 
the distribution of a statistic by re-sampling with replacement from the observed data, providing 
insights into the precision of the estimates and constructing confidence intervals without relying on 
strong parametric assumptions.

Bootstrap Statistics:
     Original            bias                std. error
t1* 0.9985856    0.03797703      0.1654744
t2* 3.7324698   -0.07636493      0.3187996
t3* 0.0000000    0.00000000      0.0000000
Intervals: 
Level     Percentile     
95%   (0.7541, 1.3397)  
A plot showing the bootstrap confidence intervals for the parameter estimates can help visualize 

the uncertainty in the estimates. We have also plotted the bootstrap confidence interval as well as the 
bootstrap histogram and QQ plots of the bootstrap data and displayed in figure 7.

Figure 7: Bootstrap histogram (left), Bootstrap QQ plot (center) and Bootstrap confidence interval (right)
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To visualize the results of bootstrap analysis, we can create several plots to help interpret the 
distribution of the bootstrap estimates, the confidence intervals, and the variability of your parameter 
estimates. Figure 8 contains bootstrap plots for parameters

Figure 8: Bootstrap plots for alpha, beta and lambda of MPGR

Predictive Check
A predictive check is a crucial step in model evaluation. It helps to assess how well a model's 

predictions align with observed data. It helps to confirm that the model's predictions are reasonable and 
consistent with observed data as well as identify any discrepancies or systematic deviations between 
the predicted and actual data and shown in figure 9.

Figure 9: Histograms and QQ plots for observed and simulated data

Multiple Parameter Generalized Rayleigh distribution with Application to Real Dataset
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Histograms compare the distribution of the observed and simulated data. Similarly, QQ Plots 
check if the quantiles of the observed data match those of the simulated data.

How MPGR Outperforms Others
a. Better Fit to Real Data – Lower AIC, BIC, and log-likelihood values confirm MPGRD’s superior 

flexibility (addresses limited model adaptability).
b. Extra Scale Parameter – Captures complex data patterns better than existing models (solves 

adaptability issues).
c. Stronger Goodness-of-Fit – Lower KS, CVM, and AD test values validate its accuracy (fills the 

gap in comparative validation).
d. Real-World Application – Tested on actual data, proving reliability (addresses lack of real-world 

testing).
e. Efficient Estimation – MLE and bootstrap improve accuracy (resolves computational challenges 

in parameter estimation).

Limitations
a. Parameter Complexity – The additional scale parameter increases computational complexity in 

estimation.
b. Data-Specific Performance – MPGR performs well on tested data but needs validation across 

diverse datasets.
c. Assumption Dependence – Model accuracy relies on certain statistical assumptions, which may 

not always hold.
d. Limited Application Scope – While effective in reliability and survival analysis, further testing is 

needed in other domains like climate modeling and healthcare.

Future Work
a. Extension to Multivariate Models – Adapting MPGR for multidimensional data.
b. Bayesian Estimation Methods – Exploring alternative parameter estimation techniques.
c. Application in Different Fields – Testing MPGR in finance, biology, and engineering.
d. Model Generalization – Enhancing MPGR to handle more complex data distributions.
e. Computational Optimization – Developing efficient algorithms for faster parameter estimation

Novelty national priority
The novelty of this study lies in the introduction of the Multi-Parameter Generalized Rayleigh 

Distribution (MPGR), which extends existing Rayleigh-based models by incorporating an additional 
scale parameter. This enhancement increases the model’s flexibility, making it more effective in 
capturing complex data patterns compared to traditional distributions. Unlike previous studies that 
focus solely on theoretical modifications, this research validates MPGR through a comparative analysis 
with established probability models and applies it to real-world data, ensuring practical relevance.

From a national priority perspective, MPGR contributes to data-driven decision-making in areas 
such as policy formulation, risk assessment, and economic forecasting. Its application in reliability and 
risk analysis makes it valuable for sectors like infrastructure, defense, and healthcare, where accurate 
predictive models are crucial. Additionally, MPGR supports advancements in scientific research, 
financial modeling, and engineering, aligning with national objectives to strengthen statistical and 
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computational methodologies. As AI, big data, and advanced analytics continue to shape national 
innovation strategies, MPGR offers a robust statistical tool that enhances probabilistic modeling, 
making it a significant contribution to both academic and applied research. 

Conclusions
This article is a formulation of a novel probability distribution modifying the Rayleigh distribution. 

Several statistical characteristics of the model are discussed. To estimate the model's parameters, the 
maximum likelihood method is employed. The main aim of generating model is to find a more flexible 
the model that may fit the modern data where the classical model does not fit better. By incorporating 
an additional scale parameter, MPGRD addresses the limitations of existing models, making it more 
adaptable to complex data structures. The validity of model is tested graphically and analytically. 
Goodness of fit and the model comparison with other models found in literature verify the superiority 
of the distribution. Bootstrap estimation and simulation is also performed. The model generated here 
is a pure probabilistic model, helps the researcher in various modern data sets, and will help in further 
research. The model is applied on a real dataset also. All the mathematical and graphical calculations 
are performed using R programming.
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