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Abstract

In this paper, we study the solvability of quadratic Diophantine equations x2−Dy2 = N ,

where x and y are unknown integers, and D is a positive integer that is a square free and

N is a nonzero integer. We use elementary and quadratic ring methods to find integer

solutions of these equations. These methods involve concepts like units, fundamental

units, norms, and conjugates in quadratic rings. We propose efficient algorithms to solve

the equations for cases where |N | >
√
D and |N | <

√
D. The algorithms include the

continued fraction algorithm, periodic quadratic algorithm, Lagrange-Matthew-Mollin

algorithm, and brute-force search. These algorithms can be implemented in program-

ming languages. Finally, we compare the algorithms and analyze their time complexity.

Keywords: Algorithms, Solvability, Quadratic Diophantine equation, Integer, Minimal

solution.

AMS(MOS) Subject Classification: 11A07, 11D45, 11A55, 11D75.

1 Introduction

Diophantine equations are polynomial equations with integer variables, in which only integer

solutions are studied. Diophantine equation is named after the ancient Greek mathematician

Diophantus, who thoroughly studied them. Quadratic Diophantine equations are a specific
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type of the Diophantine equation in which the polynomial equation is quadratic. A quadratic

Diophantine equation [14] has a general form:

ax2 + bxy + cy2 + dx+ ey + f = 0, (1.1)

where a, b, c, d, e, f are integer coefficients, x and y are unknown integers. Various mathe-

maticians [14, 15] have investigated these equations, which only have integer solutions. They

were particularly interested in identifying infinitely many integer solutions. Let ∆ = b2−4ac

represent the discriminant of equation (1.1). This discriminant represents a conic section

in the Cartesian plane [7] and plays a key role in identifying the solvability of equation

(1.1). If ∆ = 0, the conic described equation (1.1) is a parabola. When ∆ < 0, the conic

is an ellipse, and has only a finite number of solutions. When ∆ > 0, the equation (1.1)

represents a hyperbola. Thus, the equation (1.1) converts to a general Pell-type equation,

which is expressed as follows:

x2 −Dy2 = N, (1.2)

with x, y ∈ Z and N is a nonzero integer, and D > 1 and is square free. The equation (1.2)

known as the generalized Pell’s equation, was named after Pell, who studied the set of all

nonzero positive integer solutions of equation (1.2) in his work [13].

When N = 1, then equation (1.2) becomes

x2 −Dy2 = 1, (1.3)

which is Pell’s equation and was discovered by Brahmagupta and Bhaskara [13]. Euler

made a mistake [2], and Pell was later wrongly credited with the equation. Lagrange [8]

proved that the equation (1.3) has infinitely many integer solutions, with the trivial solution

always being (x, y) = (1, 0). He was the first to establish the existence of such solutions.

The method of finding integer solutions to the equation (1.2) is referred to as Lagrange

reduction. Li [11] demonstrated that the expression for
√
D as a simple continued fraction

provides the minimal solution to equation (1.3). If (x, y) = (h1, k1) is the minimal solution

to equation (1.3), then the general solutions are given by (x, y) = (hn, kn) for all n ≥ 2,

where

hn =
1

2

[
(h1 + k1

√
D)n + (h1 − k1

√
D)n

]
∈ Z,

kn =
1

2
√
D

[
(h1 + k1

√
D)n − (h1 − k1

√
D)n

]
∈ Z.

Using the minimal solution (x, y) = (h1, k1) of equation (1.3), we can apply the Binomial

Theorem to derive the general solution for equation (1.2). This general solution is expressed

as (x, y) = (xn, yn), n ≥ 2, where

xn =
1

2

[
(s1 + t1

√
D)(x1 + y1

√
D)n−1 + (s1 − t1

√
D)(x1 − y1

√
D)n−1

]
∈ Z,

yn =
1

2
√
D

[
(s1 + t1

√
D)(x1 + y1

√
D)n−1 − (s1 − t1

√
D)(x1 − y1

√
D)n−1

]
∈ Z,
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where (x1, y1) is a solution of equation (1.2).

A continuing fraction [12] is used to express the square root of a positive integer D, which is

not a perfect square as an infinite fraction. This representation is expressed as the following:

√
D = a0 +

1

a1 +
1

a2 +
1

a3 +
1

a4 +
.. .

= [a0; a1, a2, a3, · · ·],

where a0 ∈ Z and a1, a2, · · · ,∈ Z+ representing the terms of the simple infinite continued

fraction.

Counterexample of the simple infinite continued fraction expansion for
√

92 are

√
92 = 9 +

1

1 +
1

1 +
1

2 +
1

4 +
1

2 +
1

1 +
1

1 +
1

18 +
1

. . .

= [9; 1, 1, 2, 4, 2, 1, 1, 18]

where the bar over 1, 1, 2, 4, 2, 1, 1, 18 indicates that these numbers are repeated over and

over. A finite simple continued fraction is rational, and the reverse is also true. Similarly, an

infinite simple continued fraction is irrational [10]. Furthermore, a periodic simple continued

fraction is equivalent to a quadratic irrational number [14]. Any quadratic irrational number

ξ0 can be written as an infinite simple continued fraction:

ξ0 =
p0 +

√
D

q0
= a0 +

1

a1 +
1

a2 +
1

a3 +
.. . ,
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where D, p0, q0 ∈ Z, and q0 6= 0 and D > 1, is square-free, and an is partial quotients of

quadratic irrational ξ0. Defined

a0 = b
√
Dc, q0 = 1, p0 = 0, an =

⌊
pn +

√
D

qn

⌋
,

pn+1 = anqn − pn, qn+1 =
D − p2n+1

qn
.

Theorem 1.1. Suppose that D > 1 is square free. Then [14] for all n ≥ −1

h2n −Dk2n = (−1)n−1qn+1.

Theorem (1.1) gives the integer solutions (hn, kn) to equation x2−Dy2 = N for a certain

value of N . The continued fraction algorithm stops if h2n−Dk2n = 1, where (−1)n−1qn+1 = 1.

The h1 +k1
√
D is the minimal positive integer solution to equation x2−Dy2 = 1. Theorem

(1.1) is useful in the study of quadratic Diophantine equations because it provides a system-

atic way to generate integer solutions to equations of the form h2n − Dk2n = (−1)n−1qn+1,

which are closely related to Pell’s equation.

Theorem 1.2. Suppose that r is the length of the period of the expansion of
√
D. Then

[14] for all n ≥ 0

h2nr−1 −Dk2nr−1 = (−1)nr.

Theorem (1.2) provides infinitely many integer solutions (hnr−1, knr−1) to the equation

x2−Dy2 = 1 using even values of nr. If r is even, all values of nr are even. Conversely, if r

is odd, Theorem (1.2) yields infinitely many solutions to x2−Dy2 = −1 using odd integers

n ≥ 1.

Theorem 1.3. Suppose that D > 1 is square free. Let hn
kn

denote the nth convergents of the

continued fraction expansion of
√
D. Assume there exists a nonzero integer N such that

|N | <
√
D. Then [14] for any positive solution (x, y) = (s, t) of the equation x2−Dy2 = N

with gcd(s, t) = 1, it follows that (s, t) = (hn, kn) for some positive integer n.

Theorem (1.3) shows that every integer solutions (hn, kn) to equation x2 −Dy2 = N

when |N | <
√
D can be obtained from nth convergent of the continued fraction expansion

of
√
D.

2 Using Elementary and Quadratic Ring Methods

In this section, we study the solvability of the quadratic Diophantine equations using el-

ementary and quadratic ring approaches. We use an elementary method [7] to find in-

teger solutions to these equations. If (−1)n−1qn+1 = 1 in Theorem (1.1), then we have
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h2n −Dk2n = 1. Therefore, (hn, kn) is the general solution to equation (1.3). Assume that

(1.2) is solvable. If (x, y) is a solution of equation (1.2). Then we obtain

(hn + kn
√
D)(x+ y

√
D) = (hnx+ knyD) + (hny + knx)

√
D

Therefore, the general solution of the equation (1.2) is (xn, yn) for all n > 0, where

xn = hnx+ knyD, yn = hny + knx.

When |N | <
√
D, Theorem (1.3) is applied to determine the minimal solution, which leads

to infinitely many positive integer solutions. If N 6= (−1)n−1qn+1, for all n ≥ −1 in Theorem

(1.1), then equation (1.2) has no solution. However, if N = (−1)n−1qn+1 for some n, then

(xn, yn) is the general solution to equation (1.2) and we have

x+ y
√
D = (xn + yn

√
D)(h1 + k1

√
D)n, n ≥ 1,

where (h1 + k1
√
D)n denote the minimal solution to equation (1.3).

Conversely, when |N | >
√
D, then N can be expressed as δN0, where δ is either +1 or −1

and N0 > 0. Given that gcd(x, y) = 1 Bezout’s identity ensures the existence of integers x1

and y1 such that

xy1 − yx1 = δ. (2.1)

Now, we can express it in the following form:

(xx1 −Dyy1)2 −D = (xx1 −Dyy1)2 −D(xy1 − yx1)2 = N(x21 −Dy21).

It gives

x21 −Dy21 =
β2 −D
δN0

= ηh, η = ±1, h > 0, N = δN0, (2.2)

where

β = xx1 −Dyy1. (2.3)

Assuming that (x0, y0) is a solution to equation (2.1) with the parameter t ∈ Z, the general

solution to equation (2.1) can be expressed as x1 = x0 + tx, y1 = y0 + ty. Thus, it can be

written as:

|xx1 −Dyy1| = |xx0 −Dyy0 + tδN0|.

We select a parameter t such that |xx1 −Dyy1| ≤ N0
2 . Consequently, we obtain

|tδN0| ≤
N0

2
− |xx0 −Dyy0|. (2.4)

If δ = 1, then inequality (2.4) becomes |tN0| ≤ N0
2 − |xx0 −Dyy0|. On the other hand, if

δ = −1, the inequality (2.4) becomes | − tN0| ≤ N0
2 − |xx0 −Dyy0|. Combining these two

inequalities, we obtain

|t| ≤ 1

2
− |xx0 −Dyy0|

N0
.
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Therefore, to find integer solutions to (1.3), the value of t must satisfy this condition to

create valid solutions. From (2.3), we obtain β < N0
2 , and we have

√
D < N0. From (2.2),

it follows that

h ≤ max{D,β2}
N0

<
max{N2

o ,
N2

0
4 }

N0
=
N2

0

N0
= N0.

Therefore, we obtain h < N0. However, Theorem (1.1), there exists x1 and y1 such that

x21 −Dy21 = ηh. Solving equations (2.1) and (2.3), we find

x =
−δDy1 ± βx1

ηh
, y =

−δx1 ± βy1
ηh

.

Combining these two terms gives:

(x+ y
√
D) =

(x1 + y1
√
D)(β − δ

√
D)

ηh
. (2.5)

Its conjugate is

(x− y
√
D) =

(x1 − y1
√
D)(β + δ

√
D)

ηh
. (2.6)

Combining (2.5) and (2.6), we obtain the following:

(x2 −Dy2) =
1

η2h2
(x21 −Dy21)(β2 −D)) =

1

η2h2
ηh.ηh.δN0 = δN0 = N.

Therefore, (x, y) =
(
−δDy1+βx1

ηh , −δx1+βy1ηh

)
is the integer solutions to the equation (1.2).

Alternatively, we use the quadratic ring approach [4] to solve quadratic Diophantine equa-

tions, applying the structure and characteristics of quadratic rings. We define the quadratic

ring R = {ξ = a + b
√
D : a, b ∈ Z}, which provides integral solutions to equation (1.2),

where the norm N(ξ) = N . The fundamental unit is uniquely significant within the ring

of integers in the quadratic field, and the norm N(ξ) = a2 − Db2 = ξ · ξ = 1 plays a key

role in the unique factorization of integers in this field. If ω0 is the fundamental unit of the

ring R, then if N(ω0) = 1, we have ω = ω0 and if N(ω0) = −1, we have ω = ω2
0. This

relationship between the norm and fundamental units provides insight into the properties

of integers in quadratic fields. The vectors (1, 1) and l(ω) form a basis in the linear space

R2. If η(1, 1) + ζl(ω) = 0, where η and ζ are real numbers, then η + ζ log(ω) = 0 and

η + ζ log(ω) = 0. This implies log(ω) = log(ω), leading to η = ζ = 0.

Given ξ = a+ b
√
D ∈ R with N(ξ) = N , and since N 6= 0 it follows that ξ 6= 0. Therefore,

for η, ζ ∈ R, there exists

l(ξ) = η(1, 1) + ζl|ω|. (2.7)

Thus, we obtain log ξ = η + ζ log |ω| and log ξ = η + ζ log |ω|.

Now,

log |N | = log |N(ξ)| = log |ξ|+ log |ξ| = 2η + ζ log |N(ω)| = 2η.
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Therefore, we have η = log |N |
2 and equation (2.7) simplifies to

l(ξ) =
log |N |

2
(1, 1) + ζl(ω). (2.8)

Assume that t is the nearest integer to ζ. We establish ζ1 = ζ − t under the condition that

ζ1 ≤ 1
2 . Introducing ξ0 = ω−ηξ, we obtain that ξ is equivalent to ξ0 with N(ξ0) = N(ξ) = N ,

where ξ0 ∈ R. With these considerations, we reduce equation (2.8) to

l(ξ0) =
log |N |

2
(1, 1) + ζ1l(ω),

which gives

log |ξ0| =
log |N |

2
+ ζ1 logω, (2.9)

log |ξ0| =
log |N |

2
+ ζ1 logω =

log |N |
2

− ζ1 logω. (2.10)

From equation (2.9), we can write it as follows:∣∣∣∣log |ξ0| −
log |N |

2

∣∣∣∣ ≤ 1

2
logω.

This leads to the inequality

√
|N |
ω ≤ |ξ0| ≤

√
ω|N |. Similarly, equation (2.10) can be

expressed as follows: ∣∣∣∣log |ξ0| −
log |N |

2

∣∣∣∣ ≤ 1

2
logω.

This yields the inequality

√
|N |
ω ≤ |ξ0| ≤

√
ω|N |. Therefore, |ξ0| and |ξ0| can be represented

as r + t
√
D, where r, t ∈ Z+, and we have

t
√
D ≤ max{|ξ0|, |ξ0|} ≤

√
|N |ω. (2.11)

From inequality (2.11), we have t ≤
√
|N |ω
D . Additionally, the maximum value of r in the

expression r + t
√
D is constrained by |ξ0| and |ξ0|, both of which are bounded by

√
|N |ω.

Therefore, we also have r ≤
√
|N |ω.

3 Using Different Efficient Algorithms and Time Complexity

In this section, we present efficient algorithms for finding integer solutions to the equation

x2−Dy2 = N , including counterexamples. We describe how to build these algorithms using

programming languages. The process involves expressing square roots as continued frac-

tions and using specific algorithms to find the integer solutions. Programming languages

can efficiently manage these algorithms, which allows practical computation solutions, es-

pecially with large values of D and N . These algorithms are designed to compute the
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minimal and general solutions for cases where |N | >
√
D and |N | <

√
D. We determine

the time complexity of these algorithms in solving quadratic Diophantine equations. Time

complexity is a computational idea that describes how long an algorithm takes to complete

based on the size of its input. When dealing with algorithms that identify integer solutions

to equations, time complexity determines how long it takes for the algorithm to run as the

problem parameters, such as D and N increases.

3.1 Continued fraction algorithm

The continued fraction plays a crucial role in solving the equation x2 − Dy2 = N . For a

positive integer D that is not perfect square, the continued fraction expansion of
√
D is

√
D = [a0; a1, a2, · · · , ar−1, 2a0], where a0 = b

√
Dc. Here, r represents the period length,

and the terms aj are determined by a recursive formula [10];

ξ0 =
√
D, ak = bξkc, ξk =

1

ξk − ak
, k = 0, 1, 2, · · · ,

ar = 2a0, ar+k = ak, k ≥ 1.

The numerators hn and denominators kn of the nth convergents of the continued fraction

are given by

hn
kn

= [a0; a1, a2, · · · , an] = a0 +
1

a1 +
1

a2 +
1

a3 +
1

a4 +
.. . +

1

an−1 +
1

an.

These satisfy the following recursively relations for all n = 3, 4, 5, · · · ,

hn = anhn−1 + hn−2, kn = ankn−1 + kn−2,

with the initial conditions:

h0 = a0, k0 = 1, h1 = a1, k1 = 1, h2 = a2a1 + 1, k2 = a2.

It follows that hnkn−1 − knhn−1 = (−1)n−1. Therefore, using Theorem (1.2), we obtain

h2n −Dk2n = (−1)n.

We begin by choosing D > 1 and is a square-free and use a simple continued fraction to

expand
√
D as described in Algorithm (1). Next, we compute the convergents following the

steps in Algorithm (2). Finally, using Algorithm (3), we find the integer solutions to the

equation x2 −Dy2 = 1.
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Algorithm 1 An algorithm for simple continued fraction expansion of
√
D

Input: D is a positive square-free integer.

Input: Initialize variables.

1. Compute the integer part a0 = b
√
Dc of

√
D.

2. Initialize variables h0 = 0, k0 = 1, h1 = 1, k1 =
√
D − a0.

3. Initialize an empty list to store the terms of the continued fraction expansion, start-

ing with a0.

Input: Compute the continued fraction.

1. Repeat the steps until the sequence of pairs (hn, kn) begins to repeat.

2. For each n, compute:

(a) an =
⌊
hn+
√
D

kn

⌋
.

(b) Update hn+1 = ankn − hn.

(c) Update kn+1 =
D−h2n+1

kn
.

(d) Add an to the list of terms.

Output: The list now contains the simple continued fraction expansion of
√
D.

Example 3.1. Using Algorithm (1) for simple continued fraction expansion of

√
92 = [9; 1, 1, 2, 4, 2, 1, 18].

After expanding
√
D, the convergents of the continued fraction can be represented as

hn
kn

, providing an approximation of
√
D in Algorithm (2).
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Algorithm 2 An algorithm to compute the convergent of the continued fraction expansion

of
√
D

Input: D is a positive square-free integer, and n is the number of convergents to compute.

Input: Initialize variables.

1. Set a0 to be the integer part of
√
D, i.e., a0 = b

√
Dc.

2. Initialize: h−2 = 0, h−1 = 1, k−2 = 1, k−1 = 0.

Input: Compute convergents for n from 0 to n− 1.

1. If n = 0, set h0 = a0 and k0 = 1.

2. For each subsequent n ≥ 1, compute the continued fraction terms an as follows:

(a) Set hn = an−1kn−1 − hn−1.

(b) Set kn = D−h2n
kn−1

.

(c) Compute an =
⌊
hn+
√
D

kn

⌋
.

3. Compute hn and kn using the recursive relations:

hn = anhn−1 + hn−2, kn = ankn−1 + kn−2.

Output: The fraction hn
kn

is the nth convergent, and the sequence of convergents approxi-

mates
√
D.

Example 3.2. Using Algorithm (2) to compute the convergent of the continued fraction

expansion of
√

92 are

9

1
,
10

1
,
19

2
,
48

5
,
211

22
,
470

49
,
681

71
,
1151

120
.

Algorithm (3) describes how to find the minimal solution and how to use the minimal

solution to the equation (1.3) to obtain other solutions. This algorithm is based on the

properties of the theory of continued fractions.
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Algorithm 3 An algorithm for solving quadratic Diophantine equation x2 −Dy2 = 1

Input: Expansion of
√
D = [a0; a1, · · · , ar] using a continued fraction.

Input: Initialize variables:

1. Set h0 = a0, k0 = 1, h1 = a1a0 + 1, k1 = a1.

2. Compute the continued fraction expansion of
√
D and iterate for each n = 2 to r,

where r is the length of the period in the continued fraction expansion.

3. For each iteration n:

(a) Compute hn and kn using the recursive relations:

hn = anhn−1 + hn−2, kn = ankn−1 + kn−2.

(b) Check if h2n − Dk2n = 1. If true, (hn, kn) is a solution to the Pell’s equation

h2n −Dk2n = 1. Stop the iteration.

Output: (hr−1, kr−1) is the minimal solution to the equation h2n −Dk2n = 1. The general

solutions are given by (xn + yn
√
D) = (hr−1 + kr−1

√
D)n for n > 0.

Example 3.3. In the Algorithm (3), the length of periodic of expansion
√

92 is r = 8 and

we find the minimal solution of equation x2 − 92y2 = 1 is

(x1, y1) = (hr−1, kr−1) = (h7, k7) = (1151, 120).

Using this minimal solution, we obtain other integer solutions.

The continued fraction algorithm is commonly used to solve quadratic Diophantine

equations by finding the integer solutions through the continued fraction expansion of
√
D.

The complexity is typically polynomial in the input size, with a runtime around O(
√
D) in

[1, 3]. However, computing the continued fraction expansion of
√
D generally has a time

complexity of O(logD) in [1, 6] often using techniques that exploit the periodicity of the

continued fraction expansion of
√
D. The main iteration step iterates r times, where r

is the length of period of the continued fraction expansion with time complexity O(r) for

each iteration. Therefore, the overall time complexity of the algorithm can be expressed as

O(logD + r).

Using Theorem (1.3), we apply Algorithm (4), which provides the integer solution to the

equation x2 −Dy2 = N when |N | <
√
D.
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Algorithm 4 An algorithm of equation x2 −Dy2 = N in case |N | <
√
D

Input: If |N | <
√
D, apply the following steps:

1. Use Theorem (1.1), which states that h2n − Dk2n = (−1)n−1qn+1, where qn+1 is an

integer sequence dependent on n.

2. Ensure that D > 1 and D is square-free.

3. Verify that Theorem (1.1) is applicable for all integers n ≥ −1.

4. Recognize that the terms hn and kn represent positive integers as described in The-

orem (1.3).

5. Note that (−1)n−1 alternates sign, being positive for odd n and negative for even n.

Output: Calculate the values for hn and kn that satisfy Theorem (1.3).

Algorithms (4) is designed to search for all integer solutions to equation x2−Dy2 = N

when |N | <
√
D.

On the other hand, using elementary approach and Theorem (1.3), we apply Algorithm (5),

which provides the integer solution to the equation x2 −Dy2 = N when |N | >
√
D.
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Algorithm 5 An algorithm of equation x2 −Dy2 = N in case |N | >
√
D

Input: Fix n and apply the following steps:

1. Case 1: When hn <
√
D

(a) If hn <
√
D, proceed to the next steps. Otherwise, there will be no solution to

x2n −Dy2n = ηnhn.

(b) Given that D > 1 and is square-free, apply Theorem (1.1) to find integer solu-

tions to x2n −Dy2n = ηnhn.

(c) The solutions (x, y) can be determined using the following expressions:

x =
−δDyn ± pnxn

ηnhn
, y =

−δDxn ± pnyn
ηnhn

,

where δ, pn, xn, yn, ηn, hn are values determined based on the equations and pa-

rameters. These solutions (x, y) apply to the specific case considered.

2. Case 2: When hn >
√
D

(a) If hn >
√
D, reapply Algorithm (4) with modifications:

• Replace δ with ηn.

• Replace N with hn.

Modify the expressions for input into Algorithm (4) as follows:

x =
−ηnDyn + pnxn

hn
, y =

−xn + pnyn
hn

.

By making these replacements, continue the process to find all solutions to the

equation x2n − Dy2n = ηnhn. Given the condition 0 < hn < N , after a finite

number of operations, all solutions will eventually be found.

Output: Considering the equation x2n − Dy2n = ηnhn, find the values of xn and yn that

satisfy the given conditions and the range of hn.
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3.2 Periodic quadratic algorithm

The periodic quadratic algorithm, often known as the PQa algorithm [5, 9], is a method used

to solve equation (1.3). This algorithm uses continued fractions to identify a fundamental

solution to equation (1.3) by analyzing the periodic sequences resulting from the recurrence

structure of
√
D. The initial conditions and recursive relations are defined as follows, for

all n ≥ 0

G−2 = −P0, G−1 = Q0, B−2 = 1, B−1 = 0,

Gn = anGn−1 +Gn−2, Bn = anBn−1 +Bn−2.

Sometimes, An is also computed as follows, for all n ≥ 0

A−2 = 0, A−1 = 1, Ai = anAn−1 +An−2.

Then, we have Gn = Q0An − P0Bn. We compute the continued fraction expansion of the

quadratic irrational, where Q0 6= 0, P0, Q0 ∈ Z,

P0 +
√
D

Q0
= a0 +

1

a1 + 1
a2+

1

a3+
1

...

,

where a0 =
⌊
P0+
√
D

Q0

⌋
and an =

⌊
Pn+

√
D

Qn

⌋
for all n ≥ 1. Consequently, we have the relation

G2
n−DB2

n = (−1)n+1Qn+1Q0. If we setting Q0 = |N |, then (−1)n+1Qn+1 = N
|N | . Therefore,

we have the equation G2
n − DB2

n = N . Hence, (Gn, Bn) can be used as a solution to the

equation under consideration. The sequence an represents the simple continued fraction

expansion of quadratic irrational P0+
√
D

Q0
and the fraction Pn

Qn
is the convergents to this

continued fraction. The sequences {Pn}, {Qn} and {an} are periodic and denote the length

of period by r. The mathematical approach detailed in the algorithms provides a clear

and systematic framework for solving quadratic Diophantine equations, providing that each

stage is completed precisely and quickly.
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Algorithm 6 Using PQa algorithm to solve the equation x2 −Dy2 = N

Input: Initialization of variables:

1. D: Positive integer, not a perfect square.

2. P0: Integer.

3. Q0: Positive integer.

4. N : Non-zero integer.

Input: Initial setup:

1. Set P−2 = −P0, P−1 = Q0, B−2 = 1, B−1 = 0, A−2 = 0, A−1 = 1.

2. Compute initial values: G−2 = −P0, G−1 = Q0.

Input: Compute continued fraction expansion:

1. For each n from 0 to the desired number of iterations:

(a) Calculate an =
⌊
Pn+

√
D

Qn

⌋
.

(b) Update the numerators and denominators:

Pn = anPn−1 − Pn−2, Qn =
D − P 2

n

Qn−1
.

Input: Compute the convergents:

1. For each n from 0 to the desired number of iterations:

(a) Calculate:

Gn = anGn−1 +Gn−2, Bn = anBn−1 +Bn−2.

Input: Compute An:

1. For each n from 0 to the desired number of iterations:

(a) Calculate:

An = anAn−1 +An−2, Gn = anQ0 − P0Bn.

Input: Verify the quadratic Diophantine equation:

1. For each n from 0 to the desired number of iterations:

(a) Check if G2
n −DB2

n = (−1)n+1Qn+1Q0.

(b) If G2
n −DB2

n = 1, output (Gn, Bn) as a solution to the quadratic Diophantine

equation.

Output: The algorithm outputs a solution to the quadratic Diophantine equation, repre-

senting the pair (x, y).
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The complexity of the PQa algorithm is determined by the size of D and the level of

accuracy required for continued fraction expansion. The PQa algorithm is recognized for

its efficiency, and its time complexity has been proposed as a polynomial to the input size.

The length of the period of the continued fraction expansion for
√
D is O(logD) in most

cases, but in the worst case, it can be as large as O(
√
D). Therefore, the overall worst-case

time complexity of the PQa algorithm is O(
√
D logD). The complexity of using the PQa

algorithm to solve equation (1.3) is primarily determined by the size of the input and the

specific implementation.

3.3 Lagrange-Matthew-Mollin algorithm

Euler used the continued fraction expansion of
√
D to create a more accessible method for

solving quadratic Diophantine equations. Building on this concept, the Lagrange-Matthew-

Mollin (LMM) algorithm [5, 9] was designed to identify the fundamental solution to equation

(1.2) using continued fractions. The LMM algorithm aims to find primitive solutions for

each equivalence class associated with equation (1.2).

We create a list of positive integers h such that h2 divides N . For each h in this list, we set

t = N
h2

and find all integers z, satisfying − |t|2 < z ≤ |t|2 and z2 ≡ D(mod|t|). For each such

z, we apply the PQa algorithm with P0 = z, Q0 = |t|, D = D. The process continues until

either an index n ≥ 1 is reached where Qn = ±1 or the end of the first period in the sequence

an is completed without finding n where Qn = ±1. If the first period completes without

finding n where Qn = ±1. Then no such n exists. However, if n is reached with Qn = ±1,

we set r = Gn−1, s = Bn−1. If the equation r2− ds2 = t, then we add x = hr, y = hs to the

list of solutions. If the equation r2−ds2 = −t, then we add x = h(ru+svD), y = h(rv+su)

to the list of solution, where (u, v) is the minimal solution to r2 −Ds2 = −1.
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Algorithm 7 Using LMM algorithm to solve the equation x2 −Dy2 = N

Input: Consider the following variables:

1. Positive integer N and h, where h > 0.

2. Calculate t = N
h2

.

Input: List generation:

1. Generate a list of positive integers h such that h > 0 and h2 divides N .

Input: Solving quadratic congruence:

1. For each h in the list:

(a) Calculate t = N
h2

.

(b) For each z in the range
(
− |t|2 < z ≤ |t|2

)
and z2 ≡ D (mod |t|):

i. Apply the PQa algorithm with initial values P0 = z,Q0 = |t|, D = D.

ii. Iterate the PQa algorithm to obtain an for n ≥ 1.

iii. Check if there exists n such that Qn = ±1.

iv. If such n with Qn = ±1 is found, then set (r, s) = (Gn−1, Bn−1).

Input: Adding solutions:

1. If there exists n with Qn = ±1:

(a) Add x = hr, y = hs to the solution set if r2 −Ds2 = t.

(b) Add x = h(ru + svD), y = h(rv + su) to the solution set if u2 − Dv2 = −t,
where (u, v) is the minimal solution to r2 −Ds2 = −1.

Output: The algorithm produces the complete set of solutions z.

Example 3.4. Using Algorithm (7), to solve the equation x2 − 13y2 = 108, we first note

that h > 0 and h2 divides 108. The possible values of h are 1, 2, 3, 6. Setting h = 1, we get

t = 108. Next, we evaluate z within the range −108
2 < z ≤ 108

2 and find that the solutions

to z2 ≡ 13(mod 108) are ±11 and ±43.

Using PQa algorithm (6) with P0 = 11, Q0 = |t| = 108, D = 13, the first occurrence of

Qn = ±1 is at Q1 = −1. Therefore, we add the solution (x, y) = (G0, B0) = (−11, 1) to the

list of solution for the equation x2 − 13y2 = 108. Similarly, using PQa algorithm (6) with

P0 = 43, Q0 = 108, D = 13, the first occurrence of Qn = ±1 is at Q3 = 1, but G2
2 − 13B2

2 =

232 − 13.72 = −108. Since the equation h2 − 13k2 = −1 has a solution with the minimal

solution (h, k) = (18, 5), we add x = 1(23.18 + 7.5.13) = 869, y = (7.18 + 23.5) = 241 to the

list of solution to equation x2− 13y2 = 108 and so on. Similarly, by setting h = 2, 3, 6 with

corresponding values t = 27, 12, 3 and applying the PQa algorithm, we find the additional

solutions to the equation x2 − 13y2 = 108.
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Selecting a list of positive integers h such that h2 divides N takes runtime O(
√
N). The

PQa algorithm depends on the value of t, with a range for z given by R. We know that time

complexity of the PQa algorithm is O(
√
N log |t|), where |t| represents the absolute value

of t. Let S be a generating solution of equation and a time complexity is O(S). Therefore,

the time complexity of the LMM algorithm becomes O(
√
N log(|t|)R+ S).

3.4 Brute-force algorithm

The brute-force search algorithm [5, 9] is a simple problem-solving method for solving

equations by systematically studying all possible integers (x, y) until a solution satisfies the

equation. The algorithm iterates through every possible y value within a certain range,

computing the corresponding x values if they satisfy the given equation, and then finds a

solution. Let (h, k) be the minimal solution to the equation x2 −Dy2 = N .

If N > 0, the search range is defined by l1 = 0 to l2 =

√
(h−1)N

2D . If N < 0, the range is

from l1 =

√
|N |
2 to l2 =

√
(h+1)|N |

2D . If l1 ≤ y ≤ l2 and N +Dy2 is square, the corresponding

x value can be computed as x =
√
N +Dy2. If l2 is not excessively large, and

√
(h±1)|N |

2D

remains manageable, searching within the bounds l1 and l2 is sufficient and to find all integer

solutions.

Algorithm 8 Using Brute-force algorithm to solve the equation x2 −Dy2 = N

Input: Initialize variables:

1. Set N, D, h, l1, l2.

2. Initialize an empty list for solutions: (x, y).

Input: Define the search range for y:

1. If N > 0, set l1 = 0 and l2 =

√
N(h−1)

2D .

2. If N < 0, set l1 =

√
|N |
2 and l2 =

√
|N |(h+1)

2D .

Input: Perform a brute-force search:

1. Iterate through values of y from l1 to l2.

2. For each y, calculate x using x =
√
N +Dy2 if N +Dy2 is a perfect square.

3. Check if x and y satisfy the equation x2 −Dy2 = N .

4. If the equation is satisfied, add the pair (x, y) to the list of solutions.

Output: The algorithm produces all integer pairs (x, y) that satisfy the equation x2 −
Dy2 = N for the given N, D, h.

Example 3.5. Using Algorithm (8), we solve the equation x2 − 13y2 = 108, and obtain

the minimal positive solution of equation h2 − 13k2 = 1 is (h, k) = (649, 180). Given
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N = 108 > 0, the search range for l1 begins at 0 extends to l2 =
√

108(649−1)
2×13 ≈ 51.882. Thus,

the range for y is 0 ≤ y ≤ 51.882. The values of y for which 108 + 13y2 is a perfect square

are y = 1, 3, 6, 11, 22, 39. The solutions for (x, y) are (±11, 1), (±15, 3), (±24, 11), (±80, 22),

and (±141, 39).

A brute-force algorithm to solve the equation (1.2) typically has exponential time com-

plexity. This is due to the exhaustive nature of the brute-force algorithm, which involves

verifying many possibilities to identify those that satisfy the equation. As a result, the time

complexity is usually O(2n), where n is the size of the input data.

The differences between these algorithms have a specific purpose and technique for solving

quadratic Diophantine equations, particularly Pell’s equation. The continued fraction algo-

rithm is more efficient and systematic in finding solutions, especially for a small value of D.

The PQa algorithm efficiently uses the periodicity properties of integer solutions to identify

periodic solutions to quadratic Diophantine equations. We can describe the LMM algorithm

as expanding the PQa algorithm’s results. While the PQa algorithm focuses mainly on con-

structing the continued fraction expansion and the related convergents, the LMM algorithm

uses these convergents to solve the quadratic Diophantine equation. Specifically, the LMM

algorithm uses the convergents generated by the PQa algorithm to identify the fundamental

solution to generalized Pell’s equation, which can then be used to solve more general cases.

The brute-force algorithm is a simple but potentially computationally expensive approach.

These algorithms will be implemented in a programming language, with the code provided

to compute integer solutions to quadratic Diophantine equations. The implementation will

involve representing square roots as continued fractions and applying specific algorithms,

each with different time complexities.

4 Conclusion

In this study, we investigated the solvability of quadratic Diophantine equations x2−Dy2 =

N , where D is a positive square-free integer, and N is a non-zero integer. We utilized both

elementary and quadratic ring methods, incorporating concepts such as units, fundamental

units, norms, and conjugates to establish a theoretical foundation for finding integer solu-

tions. Efficient algorithms were developed for specific cases where |N | <
√
D and |N | >

√
D

of equation x2 − Dy2 = N . These include the continued fraction algorithm, the periodic

quadratic algorithm, the Lagrange-Matthew-Mollin algorithm, and the brute-force search.

Each algorithm was implemented in programming languages.

The study demonstrated the practical application of these algorithms through numerical

experiments. We analyzed and compared the algorithms regarding their time complexity,

identifying their strengths and limitations for different ranges of D and N . This compre-
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hensive framework offers a robust foundation for further research and application in solving

quadratic Diophantine equations.
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