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Abstract

This research article presents two common fixed theorems in complete Menger space in

two pairs of self-mappings by using altering distance function in the context of com-

patible mappings of type (P) and compatible mappings of type (K). Article discusses

the topological properties of Menger spaces and mappings between these spaces. This

result generalizes the result of Khan et al. [18], and extends the results of [8], and [9]
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1 Introduction

In real life measurement, assigning a fixed number to the distance between two points is

very idealized thinking. In such a situation, we usually refer to the average value of several

measurements to the distance of two points in space. This notion introduces the concept of

statistical metric space, thereafter referred to as probabilistic metric space, to Karl Menger’s

[19] consciousness in 1942.

Menger introduced probabilistic metric space as a generalization of metric space by

replacing metric function d : R × R → R+ with distribution function Fp,q : R → [0, 1],

and then for any number x, the value Fp,q(x) was interpreted as the probability that the

distance between p and q is less than x. For more details, refer to [12, 14, 15, 22, 24, 25],

[28, 29] and [31].
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In 1991, S. N. Mishra [20] generalized the concept of G. Jungck’s [17] compatible

mapping in Menger space. Continuing this, B. Singh and S. Jain [26] gave the notion of

weak compatibility in Menger space, and then various authors worked on this space, for

references: [1, 2, 3], [4, 5, 6], [16], [23], and [30].

In 1984, M. S. Khan et al. [18] introduced the altering distance function, which makes

changes in the distance between two points in space. Some works in this line of research

are noted in [4], [11, 10], [13], and [21].

In this paper, using the concept of altering distance function, we prove common fixed

point results in complete Menger space, which generalizes and extends the results of [18],

[8], and [9].

2 Preliminaries

I start by reviewing a few fundamental definitions in a sequel, which will be required in

Menger space.

Definition 2.1. [4] A mapping F : R → R+ is said to be distribution function if it is a

non-decreasing function, left continuous with inf{F (x) : x ∈ R} = 0 and sup{F (x) : x ∈
R} = 1..

Here, we denote the set of all distribution functions by Ω, while H denotes the specific

distribution function defined by:

H(x) =

0, if x ≤ 0,

1, if x > 0.

Definition 2.2. [4] A probabilistic metric space (pm-space) is an ordered pair (X,F ) where

X is any non-empty abstract set of elements, F : X × X → Ω is distribution function

defined by (p, q) 7→ Fp,q, where Ω = {Fp,q : p, q ∈ X}, Fp,q satisfies the following conditions:

P1: F (p, q, x) = 1 for every x > 0 if and only if p = q.

P2: F (p, q, 0) = 0 for every p, q ∈ X.

P3: F (p, q, x) = F (q, p, x) for every p, q ∈ X.

P4: F (p, q, x+ y) = 1 if and only if F (p, r, x) = 1 and F (r, q, y) = 1 for all x, y > 0.

F (p, q, x) is also denoted by Fp,q(x) to represent the value of Fp,q at x ∈ R.

Definition 2.3. [7] A mapping t : [0, 1]× [0, 1]→ [0, 1] is called a triangular norm (t-norm)

if it satisfies the following conditions:

106



A. K. Chaudhary Theorems on Compatible Mapping Types in Complete Menger Space

T1: t(0, 0) = 0 and t(a, 1) = a for all a ∈ [0, 1];

T2: t(a, b) = t(b, a) for all a, b ∈ [0, 1];

T3: t(a, b) ≤ t(c, d), if a ≤ c and b ≤ d; and

T4: t(t(a, b), c) = t(a, t(b, c)).

Definition 2.4. [4] A Menger space is a triplet (X,F, t), where X is a nonempty set, F is

a function defined on X ×X to the set of distribution functions, and t is a triangular norm

such that followings are satisfied:

P1: F (p, q, x) = 1 for every x > 0 if and only if p = q.

P2: F (p, q, 0) = 0.

P3: F (p, q, x) = F (q, p, x).

P4: F (p, q, x+ y) ≥ t(F (p, r, x), F (r, q, y)), for all x, y ≥ 0 and p, q, r ∈ X.

Definition 2.5. [5] A mapping S : X → X in Menger space (X,F, t) is said to be continuous

at a point p ∈ X if for every ε > 0 and λ > 0, there exists ε1 > 0 and λ1 > 0 such that:

F (p, q, ε1) > 1− λ1 =⇒ F (Sp, Sq, ε) > 1− λ.

Definition 2.6. [5] Let (X,F, t) be a Menger space and t be a continuous t-norm. Then,

(a) A sequence {yn} in X is said to converge to a point y in X if and only if, for every

ε > 0 and λ > 0, there exists an integer N = N(ε, λ) such that Fyn,y(ε) > 1 − λ for

all n ≥ N . In this case, we write:

lim
n→∞

yn = y.

(b) A sequence {yn} in X is said to be a Cauchy sequence if, for every ε > 0 and λ > 0,

there exists an integer N = N(ε, λ) such that Fyn,ym(ε) > 1− λ for all m,n ≥ N .

(c) A Menger space (X,F, t) is said to be complete if every Cauchy sequence in X con-

verges to a point in X.

Definition 2.7. [7] Common fixed point of self-mapping functions S, T : X → X is a point

x ∈ X if:

S(x) = T (x) = x.

Example 2.8. Let S, T : R → R be functions such that S(x) = x2

4 and T (x) = 2x − 4.

Then x = 4 is a common fixed point of S and T .
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Definition 2.9. [20] Two mappings S, T : X → X are said to be compatible mappings in

Menger space (X,F, t) if:

lim
n→∞

F (STxn, TSxn, x) = 1 ∀x > 0,

whenever the sequence {xn} in X satisfies lim
n→∞

Sxn = lim
n→∞

Txn = y for some y ∈ X.

Definition 2.10. [18] A function ψ : R+ → R+ is called an altering distance function if

the following properties are satisfied:

(i) ψ is continuous.

(ii) ψ is non-decreasing.

(iii) ψ(t) = 0 if and only if t = 0.

(iv) ψ(t) ≥Mtµ, for every t > 0, where M > 0 and µ > 0 are constants.

We denote by Ψ the set of all altering distance functions. It is also called a control function.

2.1 Variants of Compatible Mappings in Menger Space

Definition 2.11. [8] Two mappings S, T : X → X are said to be compatible mappings of

type (P) in Menger space (X,F, t) if:

lim
n→∞

F (SSxn, TTxn, x) = 1 ∀x > 0,

whenever {xn} is a sequence in X such that limn→∞ Sxn = limn→∞ Txn = y for some

y ∈ X.

Example 2.12. Let (X, d) be a metric space where X = [0,∞) with the usual metric

d(x, y) = |x− y|, and t(a, b) = ab. Defining the distribution function as:

Fx,y(t) =

 t
t+|x−y| , if t > 0,

0, if t = 0.

Let (X,F, t) be a Menger space. Define mappings S, T : X → X by:

S(x) =

5, for x ∈ [0, 1),

x, for x ∈ [1,∞),
and T (x) =

1, for x ∈ [0, 1),

1
x , for x ∈ [1,∞).

Take the sequence {xn} in X where xn = 1 + 1
n , n ∈ N. Then (S, T ) are compatible

mappings of type (P) in the Menger space, but (S, T ) are not compatible mappings.
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Theorem 2.13. [7] Let (X,F, t) be a Menger space with the continuous t-norm t, and let

S : X → X. Then S is continuous at a point y ∈ X if and only if for every sequence {yn} in

X converging to a point y, the sequence {Syn} converges to the point Sy, i.e., if {yn} → y

then {Syn} → Sy.

Proposition 2.1. [8] In a Menger space (X,F, t), if t(k, k) ≥ k for all k ∈ [0, 1], then

t(a, b) = min{a, b} for all a, b ∈ [0, 1].

Proposition 2.2. [8] Let (X,F, t) be a Menger space such that the t-norm t is continuous

and t(x, x) ≥ x for all x ∈ [0, 1], and let S, T : X → X be mappings. If S and T are

compatible mappings of type (P) and Sk = Tk for some k ∈ X, then

SSk = STk = TSk = TTk.

Proposition 2.3. [8] Let (X,F, t) be a Menger space such that the t-norm t is continuous

and t(x, x) ≥ x for all x ∈ [0, 1], and let S, T : X → X be mappings. Let S and T be

compatible mappings of type (P) and

lim
n→∞

Sxn = lim
n→∞

Txn = y for some y ∈ X.

Then:

(i) limn→∞ TTxn = Sy if S is continuous at y.

(ii) limn→∞ SSxn = Ty if T is continuous at y.

(iii) STy = TSy and Sy = Ty if S and T are continuous at y.

Definition 2.14. [9] Two self-mappings S, T : X → X are said to be compatible mappings

of type (K) in a Menger space (X,F, t) if:

lim
n→∞

F (SSxn, T z, t) = 1 and lim
n→∞

F (TTxn, Sz, t) = 1, ∀t > 0,

whenever {xn} is a sequence in X such that limn→∞ Sxn = limn→∞ Txn = z for some

z ∈ X.

Example 2.15. Let (X, d) be a metric space where X = [0, 2], and (X,F, t) be a Menger

space with:

F (x, y, t) =

 t
t+d(x,y) , for t > 0,

0, for t = 0,

for all x, y ∈ X, and t > 0. Define S and T as:

S(x) =


2, for x ∈ [0, 1] \

{
1
2

}
,

0, for x = 1
2 ,

2−x
2 , for x ∈ (1, 2],
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and:

T (x) =


0, for x ∈ [0, 1] \

{
1
2

}
,

2, for x = 1
2 ,

x
2 , for x ∈ (1, 2].

Take {xn} in X, where xn = 1 + 1
n , n ∈ N. Then S and T are compatible mappings of type

(K) but neither compatible mappings of type (P) nor type (A).

We need the following lemmas for the establishment of main results in the Menger

space.

Lemma 2.16. [26] Let (X,F, t) be a Menger space. If there exists k ∈ (0, 1) such that for

all p, q ∈ X, F (p, q, kx)>F (p, q, t) then p = q.

Lemma 2.17. [27] Let {kn} be a sequence in Menger space (X,F, t), where t is continuous

t−norm and t(x, x)>x for all x ∈ [0, 1]. If there exists a constant k ∈ [0, 1] such that

limn→∞ F (kn, kn+1, kx)>F (kn−1, kn, x), for all x > 0 and n ∈ N , then {kn} is a Cauchy

sequence in X.

3 Main Theorems

Theorem 3.1. Let (X,F, t) be a complete Menger space with t(x, y) = min{x, y} for all

x, y ∈ [0, 1], and let Q,R, S, T : X → X be mappings such that:

(3.1.1) Q(X) ⊂ T (X) and R(X) ⊂ S(X),

(3.1.2) the pairs (Q,S) and (R, T ) are compatible mappings of type (P),

(3.1.3) one of Q,S,R, T is continuous,

(3.1.4) there exists a constant k ∈ (0, 1) such that:

F (Qx,Ry, kz) ≥ ψ{min{F (Sx,Qx, z), F (Ty,Ry, z), F (Ty,Qx, rz), F (Sx,Ry, (2−r)z), F (Sx, Ty, z)}}

for all x, y ∈ X, r ∈ (0, 2), and z > 0, where φ : [0, 1]→ [0, 1] satisfies:

• ψ is continuous and non-decreasing on [0, 1],

• ψ(n) > n for all n ∈ [0, 1].

noting that if ψ ∈ Ψ, class of all mappings ψ : [0, 1]→ [0, 1] then ψ(0) = 0, ψ(1) = 1,

ψ(n) ≥ n, for all n ∈ [0, 1].

Then, Q,R, S, T have a unique common fixed point in X.
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Proof. Consider u0 ∈ X. Since Q(X) ⊂ T (X), so there exists a point u1 ∈ X such that

Qu0 = Tu1 = v0. Again, since R(X) ⊂ S(X), for u1, we may choose u2 ∈ X such that

Ru1 = Su2 = v1. Repeating this process, we inductively construct sequences {un} and {vn}
in X such that:

Qu2n = Tu2n+1 = v2n, Ru2n+1 = Su2n+2 = v2n+1, n = 0, 1, 2, . . .

By substituting x = u2n, y = u2n+1, r = 1− p with p ∈ (0, 1) in (3.1.4), we obtain:

F (Qu2n, Ru2n+1, kz) ≥ ψ{min{F (Su2n, Qu2n, z), F (Tu2n+1, Ru2n+1, z),

F (Tu2n+1, Qu2n, (1− p)z), F (Su2n, Ru2n+1, (1 + p)z), F (Su2n, Tu2n+1, z)}}

F (v2n, v2n+1, kz)≥ ψ{min{F (v2n−1, v2n, z), F (v2n, v2n+1, z), F (v2n, v2n, (1−p)z), F (v2n−1, v2n+1, (1+

p)z), F (v2n−1, v2n, z)}}

≥ ψ{min{F (v2n−1, v2n, z), F (v2n, v2n+1, z), F (v2n−1, v2n+1, (1 + p)z), F (v2n−1, v2n, z)}}

≥ ψ{min{F (v2n−1, v2n, z), F (v2n, v2n+1, z), F (v2n−1, v2n, z), F (v2n, v2n+1, pz), F (v2n−1, v2n, z)}}

≥ ψ{min{F (v2n−1, v2n, z), F (v2n, v2n+1, z), F (v2n, v2n+1, pz)}}

Simplifying further as p→ 1 gives:

F (v2n, v2n+1, kz)≥ ψ{min{F (v2n−1, v2n, z), F (v2n, v2n+1, z), F (v2n, v2n+1, z)}}

≥ ψ{min{F (v2n−1, v2n, z), F (v2n, v2n+1, z)}}

or, F (v2n, v2n+1, kz)≥ ψ{F (v2n−1, v2n, z)} > F (v2n−1, v2n, z), by property of ψ

Thus:

F (v2n, v2n+1, kz) ≥ F (v2n−1, v2n, z).

Similarly, we derive:

F (v2n+1, v2n+2, kz) ≥ F (v2n, v2n+1, z).

Therefore, for every n ∈ N ,

F (vn, vn+1, kz) ≥ F (vn−1, vn, z).

By Lemma 2.20, {vn} is a Cauchy sequence in X. Since (X,F, t) is complete, {vn} converges

to a point q ∈ X. Consequently, the sub-sequences {Qu2n}, {Ru2n+1}, {Su2n}, {Tu2n+1} of

{vn} also converge to q.

Now, suppose that T is continuous. Then, since R and T are compatible mappings of type

(P ), then by proposition 2.16, RRu2n+1 , TRu2n+1 → Tz as n → ∞. Putting x = u2n and

y = Ru2n+1 in relation (3.1.4), we get
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F (Qu2n, RRu2n+1, kz) ≥ ψ


min



F (Su2n, Qu2n, z),

F (TRu2n+1, RRu2n+1, z),

F (TRu2n+1, Qu2n, rz),

F (Su2n, RRu2n+1, (2− r)z),

F (Su2n, TRu2n+1, z)




.

Taking n→∞, we have

F (q, T q, kz) ≥ ψ


min



F (q, q, z),

F (Tq, Tq, z),

F (Tq, q, rz),

F (q, T q, (2− r)z),

F (q, T q, z)




.

Letting r = 1− p with p ∈ (0, 1), then

F (q, T q, kz) ≥ ψ

min


F (Tq, q, (1− p)z),

F (q, T q, (2− (1− p))z),

F (q, T q, z)


 .

Or,

F (q, T q, kz) ≥ ψ

min


F (Tq, q, (1− p)z),

F (q, T q, (1 + p)z),

F (q, T q, z)


 .

≥ ψ

min

F (Tq, q, (1− p+ 1 + p)z),

F (q, T q, z)

 .

≥ ψ {min [F (Tq, q, 2z), F (q, T q, z)]} .

≥ ψmin {F (q, T q, z)}.

Therefore,

F (q, T q, kz) ≥ ψ {F (q, T q, z)} .

Or,

F (q, T q, kz) ≥ F (q, T q, z), by property of ψ.
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which implies q = Tq by Lemma 2.19

Similarly, replacing x by u2n and y by q in relation (3.1.4), we have

F (Qu2n, Rq, kz) ≥ ψ


min



F (Su2n, Qu2n, z),

F (Tq,Rq, z),

F (Tq,Qrz),

F (Su2n, Rq, (2− r)z),

F (Su2n, T q, z)




.

Taking n→∞, we get

F (q,Rq, kz) ≥ ψ


min



F (q, q, z),

F (q,Rq, z),

F (q, q, rz),

F (q,Rq, (2− r)z),

F (q, q, z)




.

≥ ψ
{

min
[
F (q,Rq, z), F (q,Rq, (2− (1− p))z)

]}
.

≥ ψ
{

min
[
F (q,Rq, z), F (q,Rq, (1 + p)z)

]}
.

≥ ψ
{

min
[
F (q,Rq, z), F (q, q, z), F (q,Rq, pz)

]}
.

as p→ 1

≥ ψ
{

min
[
F (q,Rq, z), F (q,Rq, z)

]}
.

so that F (q,Rq, kz) ≥ ψ{F (q,Rq, z)}
Or,

F (q,Rq, kz) ≥ F (q,Rq, z), by property of ψ.

which implies q = Rq by Lemma 2.19.

Since, R(X) ⊂ S(X), so there exist a point w in X such that Rq = Sw = q.

By using relation (3.1.4) with x = w, y = q, we have

F (Qw, q, kz) ≥ ψ


min



F (Sw,Qw, z),

F (Tq,Rq, z),

F (Tq,Qq, rz),

F (Sw,Rq, (2− r)z),

F (Sw, Tq, z)




.
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≥ ψ


min



F (q,Qw, z),

F (Tq, q, z),

F (q,Qw, (1− p)z),

F (Sw, q, (1 + p)z),

F (q, T q, z)




.

≥ ψ


min



F (q,Qw, z),

F (Tq, q, z),

F (Qw, q, (1− p)z),

F (Sw, q, (1 + p)z),

F (q, T q, z)




.

≥ ψ

min


F (q,Qw, z),

F (q, q, z),

F (Qw,Sw, (1− p+ 1 + p)z)


 .

≥ ψ {min [F (q,Qw, z), F (Qw, q, 2z)]} .

Therefore,

F (Qw, q, kz) ≥ ψ {F (q,Qw, z)} .

Or,

F (Qw, q, kz) ≥ F (q,Qw, z), by property of ψ.

which implies Qw = q by Lemma 2.19.

Again, since Q and S are compatible mappings of type (P ) and Qw = Sw = q, by

proposition 2.15, we have for every ε > 0

1 = F (QQw,SSw, ε) ≥ F (Qw,Sw, ε).

Hence Qw = QQw = SSw = Sw.

Finally, by relation (3.1.4) with x = q, y = Rq = q, we have

F (Qq, q, kz) = F (Qq,Rq, kz) ≥ ψ


min



F (Sq,Qq, z),

F (Tq, q, z),

F (Tq,Qq, rz),

F (Sq, q, (2− r)z),

F (Sq, Tq, z)




.
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≥ ψ


min



F (Qq,Qq, z),

F (q, q, z),

F (q,Qq, rz),

F (Qq, q, (2− r)z),

F (Qq, q, z)




.

≥ ψ

min


F (Qq, q, rz),

F (q,Qq, (2− r)z),

F (Qq, q, z)


 .

≥ ψ {min [F (Qq,Qq, rz + (2− r)z), F (Qq, q, z)]} .

≥ ψ {min [F (Qq, q, z)]} .

≥ ψ {F (Qq, q, z)} .

Or,

F (Qq, q, kz) ≥ F (Qq, q, z), by property of ψ.

Thus, Qq = q, by Lemma 2.19.

Hence,

Qq = Rq = Sq = Tq = q.

That is, q is a common fixed point of the given mappings Q,R, S, and T .

Uniqueness: Suppose z1 is another point in X such that

z1 = Qz1 = Rz1 = Sz1 = Tz1.

Then, putting x = q and y = z1, r = 1 in (3.1.4), we get

F (Qq,Rz1, kz) = F (q, z1, kz) ≥ φ


min


F (Sq,Qq, z),

F (Tz1, Rz1, z),

F (Tz1, Qq, z),

F (Sq, Tz1, z)




.

Or,

F (q, z1, kz) ≥ φ {min [F (q, z1, z), F (q, q, z)]} .
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Or,

F (q, z1, kz) ≥ φ {F (q, z1, z)} .

F (q, z1, kz) ≥ F (q, z1, z), by property of φ.

Thus, q = z1, by Lemma 2.19.

Hence,

q = Qq = Rq = Sq = Tq,

and q is the unique common fixed point for Q,R, S, and T in X.

This completes the proof.

Theorem 3.2. Let (X,F, t) be a complete Menger space with continuous t(x, y) = min{x, y}
for all x, y ∈ [0, 1], and let Q,R, S, T : X → X be four self-mappings such that:

(i) Q(X) ⊂ T (X) and R(X) ⊂ S(X),

(ii) the pairs (Q,S) and (R, T ) are compatible mappings of type (K),

(iii) S and T are continuous,

(iv) there exists a constant k ∈ (0, 1) such that for every ε ∈ (0, 1), there exists δ ∈ (0, ε]

such that:

ε− δ < F (x, y, t) < ε =⇒ F (Qx,Ry, kt) ≥ ε and F (Qx,Ry, kt) ≥ F (x, y, t),

where:

F (x, y, t) ≥ ψ{min{F (Sx, Ty, t), F (Qx, Sx, t), F (Ry, Ty, t), F (Qx, Ty, t)}}

for all x, y ∈ X, and t > 0, where ψ : [0, 1]→ [0, 1] satisfies:

• ψ is continuous and non-decreasing on [0, 1],

• ψ(n) > n for all n ∈ [0, 1].

noting that if ψ ∈ Ψ, class of all mappings ψ : [0, 1]→ [0, 1] then ψ(0) = 0, ψ(1) = 1,

ψ(n) ≥ n, for all n ∈ [0, 1].

Then, Q,R, S, T have a unique common fixed point in X.

Proof. Consider x0 ∈ X. From condition (i), we have Q(X) ⊂ T (X) and R(X) ⊂ S(X).

Thus, there exists a point x1 ∈ X such that Qx0 = Tx1. Similarly, for x1 ∈ X, there exists
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x2 ∈ X such that Rx1 = Sx2 and so on. Inductively, we construct a sequence {yn} in X

such that:

y2n−1 = Qx2n−2 = Tx2n−1, y2n = Rx2n−1 = Sx2n, for all n = 1, 2, 3, . . .

Substituting x = x2n and y = x2n+1 in condition (iv), we get:

F (y2n+1, y2n+2, kt) = F (Qx2n, Rx2n+1, kt)

≥ ψ{min{F (Sx2n, Tx2n+1, t), F (Qx2n, Sx2n, t), F (Rx2n+1, Tx2n+1, t), F (Qx2n, Tx2n+1, t)}}

≥ ψ{min{F (y2n, y2n+1, t), F (y2n+1, y2n, t), F (y2n+2, y2n+1, t), F (y2n+1, y2n+1, t)}}

≥ ψ{min{F (y2n, y2n+1, t), F (y2n+1, y2n+2, t)}}

or, F (y2n+1, y2n+2, kt)≥ ψ{F (y2n, y2n+1, t)} > F (y2n, y2n+1, t), by property of ψ

Thus for every n ∈ N ,

F (yn, yn+1, kt) ≥ F (yn−1, yn, t).

By Lemma 2.20, {yn} is a Cauchy sequence in X. Since (X,F, t) is complete, {yn} converges

to a point z ∈ X. Consequently, the subsequences {Qx2n−2}, {Rx2n−1}, {Sx2n}, {Tx2n−1}
also converge to z.

Since S and T are continuous, and (Q,S) and (R, T ) are compatible mappings of type

(K), we deduce:

QQx2n−2 → Sz and SSx2n → Qz, RRx2n−1 → Tz and TTx2n−1 → Rz. ...(1)

And from condition (iv), we get

F (QQx2n−2, RRx2n−1, kt) ≥
ψ{min{F (SQx2n−2, TRx2n−1, t), F (QQx2n−2, SQx2n−2, t), F (RRx2n−1, TRx2n−1, t),

F (QQx2n−2, TRx2n−1, t)}}

As n→∞, and by using (1), we have

F (Sz, Tz, kt) ≥ ψ{min{F (Sz, Tz, t), F (Sz, Sz, t), F (Tz, Tz, t), F (Sz, Tz, t)}}

or, F (Sz, Tz, kt) ≥ ψ(F (Sz, Tz, t)) ≥ F (Sz, Tz, t), by the properties of ψ

From lemma 2.19, we get Sz = Tz ...(2)

Again, from condition (iv), we have

F (Qz,RRx2n−1, kt) ≥
ψ{min{F (Sz, TRx2n−1, t), F (Qz, Sz, t), F (Rz, TRx2n−1, t), F (Qz, TRx2n−1, t)}}

Again taking n→∞, and using (1) and (2), we get

F (Qz, Tz, kt) ≥ ψ{min{F (Sz, Sz, t), F (Qz, Tz, t), F (Tz, Tz, t), F (Qz, Tz, t)}}
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or, F (Qz, Tz, kt) ≥ ψ(F (Qz, Tz, t)) ≥ F (Qz, Tz, t), by the properties of ψ

From lemma 2.19, we get Qz = Tz ...(3)

From (2) and (3), we get

F (Qz,Rz, kt) ≥ ψ{min{F (Sz, Tz, t), F (Qz, Sz, t), F (Rz, Tz, t), F (Qz, Tz, t)}}

or,

F (Qz,Rz, kt) ≥ ψ{min{F (Qz,Qz, t), F (Qz,Qz, t), F (Rz,Qz, t), F (Qz,Qz, t)}}

or, F (Qz,Rz, kt) ≥ ψ(F (Qz,Rz, t)) ≥ F (Qz,Rz, t), by the properties of ψ

From lemma 2.19, we get Qz = Rz ...(4)

From (2), (3), and (4) we get

Sz = Qz = Tz = Rz ...(5)

Now, we have to show that Qz = z

From condition (iv), we have

F (Qz,Rx2n−1, kt) ≥
ψ{min{F (Sz, Tx2n−1, t), F (Qz, Sz, t), F (Rx2n−1, Tx2n−1, t), F (Qz, Tx2n−1, t)}}

taking n→∞, and using (2) and (3), we get

F (Qz, z, kt) ≥ ψ{min{F (Sz, z, t), F (Qz, Sz, t), F (z, z, t), F (Qz, z, t)}}

or,

F (Qz, z, kt) ≥ ψ{min{F (Qz, z, t), F (Qz,Qz, t), F (z, z, t), F (Qz, z, t)}}

or, F (Qz, z, kt) ≥ ψ(F (Qz, z, t)) ≥ F (Qz, z, t), by the properties of ψ

From lemma 2.19, we get Qz = z.

Hence, from (5), we get

z = Qz = Rz = Tz = Sz, and z is a common fixed point of Q, R, S, T .

Uniqueness: Suppose w 6= z is another common fixed point of Q, R, S, T . Then, Qw =

Rw = Sw = Tw = w.

Therefore, from condition (iv)

F (z, w, kt) =

F (Qz,Rw, kt) ≥ ψ{min{F (Sz, Tw, t), F (Qz, Sz, t), F (Rw, Tw, t), F (Qz, Tw, t)}}

or,

F (z, w, kt) ≥ ψ{min{F (z, w, t), F (z, z, t), F (w,w, t), F (z, w, t)}}

or, F (z, w, kt) ≥ ψ(F (z, w, t)) ≥ F (z, w, t), by the properties of ψ

From lemma 2.19, we get z = w.

Hence, z = Qz = Rz = Tz = Sz, and z is unique in X. This completes the proof.
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4 Conclusion

In this paper, we have explored the concept of Menger spaces and their applications in

proving fixed point theorems. We generalized and extended the results of several previous

studies, including those by Khan et al. [?] and others [?], [?]. Specifically, we introduced

and applied the notion of compatible mappings of types (P) and (K) to derive new fixed

point theorems in complete Menger spaces.

These results contribute to the understanding of the topological properties of Menger

spaces and provide a framework for future research in metric fixed point theory and its

applications in probabilistic spaces.
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