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Abstract

Convexity in connection with integral inequalities is an interesting research domain in

recent years. The convexity theory plays a fundamental role in the development of

various branches of applied sciences since it includes the theory of convex functions

that possesses the two important attributes viz. a boundary point is where the max-

imum value is reached and any local minimum value is a global one. Convexities and

inequalities are connected which has a basic character in many branches of pure and

applied disciplines. The most important inequality related to convex function is the

Hermite-Hadamard integral inequality. The extensions, enhancements and generaliza-

tions of this inequality has motivated the researchers in recent years. This paper is an

extension of some inequalities connected with difference of the left-hand part as well as

the right-hand part from the integral mean in Hermite- Hadamard’s inequality for the

case of m- convex functions.

Keywords: Convexity, m-convexity, integral inequality.

AMS(MOS) Subject Classification: 26A51, 26D15.

1 Introduction

A convex set is the set where the line segments joining any two points lie entirely on it. A

convex function is one whose epigraph is a convex set. The theory of convex functions falls

under the umbrella of convexity. It is incorporated in almost all branches of Mathematics.

The study of classical inequalities is one of the greatest applications of the theory of convex
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functions since it offers a simple, beautiful, and unified solution to some of the most well-

known mathematical inequalities. The topic of convexity is fairly broad and encompasses

the convex function theory. It is seen as a characteristic inherent in function. Furthermore,

it is distinctive, new, and advantageous due to its minimizing property. It holds a prominent

position in the fields of probability theory, calculus of variations, and optimization theory.

Convex function has a lengthy history. At the end of the eighteenth century is when it all

started. Its first influences can be traced to the basic contributions made by Ch. Hermite

(1881), O. Holder (1889), J. Hadamard (1893), and O. Stolz (1898). The first mathematician

to recognize the significance of convex functions and begin a systematic study of them was J.

L. W. V. Jensen (1905), and subsequent research on it has given rise to the theory of convex

function as an independent field of mathematical analysis. For details see [1, 2, 4, 6, 8, 9].

The Hermite-Hadamard (H-H) inequality substantially impacted in the study of convex

functions. In the mathematical literature, the following inequality, see[3]

Φ

(
α+ β

2

)
≤ 1

(β − α)

∫ β

α
Φ(x) dx ≤

(
Φ(α) + Φ(β)

2

)
(1.1)

is usually connected to Hadamard’s name who proved it in 1893. In 1974, D.S. Mitrinivic

found a modest note which was published in the journal Mathesis in 1883. It was an extract

from a letter by Ch. Hermite in 1881 announcing the inequality 1.1 . Therefore, it seems

that it was Ch. Hermite who obtained it for the first time. However, it is interesting that

Hermite’s note remained unknown for a so long time for experts in the history and theory

of convex function. So, the aforementioned inequality is nowadays known as Hermite-

Hadamard’s integral inequality which is formally defined as follows: Let Φ : I ⊂ R→ R be

a convex function and α, β ∈ I with α < β. Then, the following double inequality

Φ

(
α+ β

2

)
≤ 1

β − α

∫ β

α
Φ(x) dx ≤ Φ(α) + Φ(β)

2
(1.2)

is known as Hermite-Hadamard’s type inequality. For a function to be convex, this is both

the necessary and sufficient condition. For a particular choice of the function Φ in above

inequality yields some classical inequalities of means. If the function Φ is concave, then

both inequalities hold in the opposite direction. The definition of classical convex function

in literature is given as follows:

Definition 1.1. A function Φ : I ⊂ R → R is said to be a convex function on I or

arithmetically-arithmetic convex function or simply the convex function if the following

inequality

Φ(να+ (1− ν)β) ≤ νΦ(α) + (1− ν)Φ(β)

holds for every α, β ∈ Iwith α < β and 0 ≤ ν ≤ 1. The concavity of the function Φ holds

if the inequality is reversed.
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Definition 1.2. [5] A function Φ : [0, β]→ R is said to be an m-convex function on [0, β],

if

Φ(να+m(1− ν)β) ≤ νΦ(α) +m(1− ν)Φ(β)

holds good for every α, β ∈ I, β > 0 with α < β and m ∈ [0, 1].

Remark 1.3. The m-convex function reduces to the classical convex function if m = 1.

In this paper, the first section includes a brief history of Hermite-Hadamard type

integral inequality together with the concept of convex functions. The second section incor-

porates some preliminary results on integral mean function related to left-hand part as well

as the right-hand part of Hermite-Hadamard type integral inequality. The third section, the

main results, incorporates the extended results on inequalities connected with the left-hand

part as well as right-hand part of inequality 1.2 for the case of m-convex functions with the

help of the results given in preliminary section.

2 PRELIMINARY RESULTS

In this section, the definition of well established line segment and some previous results are

stated which will be further extended to m-convex functions. The results connected with

the left hand part of inequality 1.2 are given by U.S. Kirmaci [10] in the following lemma

and theorems.

Definition 2.1. The line segment joining any two points α, β ∈ Rn is denoted by L[α, β]

is defined as

L[α, β] = {να+ (1− ν)β : ν ∈ [0, 1]}

Lemma 2.2. Let Φ : I0 ⊂ R → R be a differentiable mapping on I0. And, α, β ∈ I(I0 is the

interior of I) with α < β. If Φ′ ∈ L[α, β], then we have

1

β − α

∫ β

α

Φ(x) dx− Φ

(
α+ β

2

)
= (β − α)

[∫ 1
2

0

νΦ′(να+ (1− ν)β) dt+

∫ 1

1
2

(ν − 1)Φ′(να+ (1− ν)β) dν

]
.

U.S. Kirmaci[10] also obtained the following inequalities using Lemma 2.2 .

Theorem 2.3. Let Φ : I0 ⊂ R→ R be a differentiable mapping on I0. Let α, β ∈ I with α < β. If

|Φ′| is convex on L[α, β], then we have∣∣∣∣∣ 1

β − α

∫ β

α

Φ(x) dx− Φ

(
α+ β

2

)∣∣∣∣∣ ≤ β − α
8

(|Φ′(α)|+ |Φ′(β)|).
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Theorem 2.4. [10] Let Φ : I0 ⊂ R → R be a differentiable mapping on I0. And, α, β ∈ I with

α < β, and let p > 1. If the mapping |Φ′|
p

p−1 is convex on [α, β], then we have∣∣∣∣∣ 1

β − α

∫ β

α

f(x) dx− Φ

(
α+ β

2

)∣∣∣∣∣ ≤ β − α
16

(
4

p+ 1

) 1
p

((
|Φ′(α)|

p
p−1 + 3|Φ′(β)|

p
p−1

) p−1
p

+
(

3|Φ′(α)|
p

p−1 + |Φ′(β)|
p

p−1

) p−1
p

)
.

Theorem 2.5. [10] Let Φ : I0 ⊂ R → R be a differentiable mapping on I0. And, α, β ∈ I α < β,

and let p > 1. If the mapping |Φ′|
p

p−1 is convex on [α, β], then the following inequality holds:∣∣∣∣∣ 1

β − α

∫ β

α

Φ(x) dx− Φ

(
α+ β

2

)∣∣∣∣∣ ≤ β − α
4

(
4

p+ 1

) 1
p

(|Φ′(α)|+ |Φ′(β)|.

Some results connected with the right hand part of inequality 1.1 are also established by

Dragomir and Agrawal [7] in the following lemma and theorems.

Lemma 2.6. Let Φ : I0 ⊂ R → R be a differentiable mapping on I0, α, β ∈ I0 with α < β. If

Φ′ ∈ L[α, β], then the following equality holds:

Φ(α) + Φ(β)

2
− 1

β − α

∫ β

α

Φ(x) dx =
β − α

2

∫ 1

0

(1− 2ν)Φ′(να+ (1− ν)β) dν.

Theorem 2.7. [7] Let Φ : I0 ⊂ R→ R be a differentiable mapping on I0, α, β ∈ I0 with α < β. If

|Φ′| is convex on [α, β], then the following inequality holds:∣∣∣∣∣Φ(α) + Φ(β)

2
− 1

β − α

∫ β

α

Φ(x) dx

∣∣∣∣∣ =
(β − α)(|Φ′(α)|+ |Φ′(β)|

8
.

Theorem 2.8. [7] Let Φ : I0 ⊂ R→ R be a differentiable mapping on I0, α, β ∈ I0 with α < β and

let p > 1. If the new mapping |Φ′|
p

p−1 | is convex on [α, β], then the following inequality holds:

∣∣∣∣∣Φ(α) + Φ(β)

2
− 1

β − α

∫ β

α

Φ(x) dx

∣∣∣∣∣ ≤ β − α
2(p+ 1)

1
p

[
|Φ′(α)|

p
p−1 + |Φ′(β)|

p
p−1

2

] p−1
p

.

3 MAIN RESULTS

In this section, we obtain two lemmas of equality and then some inequalities connected with the left

hand part as well as the right hand part of inequality 1.2 for the case of m-convex functions.

Lemma 3.1. Let Φ : I0 ⊂ R→ R be a differentiable mapping on I0. And, α, β ∈ I with α < β. If

Φ′ ∈ L[α, β], and m-convex function, then we have

1

mβ − α

∫ mβ

α

Φ(x) dx− Φ

(
α+mβ

2

)
= (mβ − α)[

∫ 1
2

0

νΦ′(να+m(1− ν)β) dν

+

∫ 1

1
2

(ν − 1)Φ′(να+m(1− ν)β) dν].

71



The Nepali Math. Sc. Report Year: 2024, Volume: 41, No: 1

Proof. By using integration by parts, we deduce∫ 1
2

0

νΦ′(να+m(1− ν)β) dν +

∫ 1

1
2

(ν − 1)Φ′(να+m(1− ν)β) dν =
Φ(να+m(1− ν)β)

α−mβ
ν|

1
2
0−∫ 1

2

0

Φ(να+m(1− ν)β)

α−mβ
dν+

Φ(να+m(1− ν)β)

α−mβ
(ν − 1)|

1
2
0 −

∫ 1

1
2

Φ(να+m(1− ν)β)

α−mβ
dν

=
1

2(α−mβ)
Φ

(
α+mβ

2

)
− 1

α−mβ

∫ 1

0

Φ(να+m(1− ν)β) dν +
1

2(α−mβ)
Φ

(
α+mβ

2

)
=

1

(α−mβ)
Φ

(
α+mβ

2

)
− 1

α−mβ

∫ 1

0

Φ(να+m(1− ν)β) dν

Put x = να + m(1 − ν)β. So, dx = (α −mβ) dν when ν = 0, then x = mβ, and when ν = 1, then

x = α. On substituting these values, we have

=
1

α−mβ
Φ

(
α+mβ

2

)
− 1

α−mβ

∫ α

mβ

Φ(x) dx

α−mbβ

=− 1

mβ − α
Φ

(
α+mβ

2

)
+

1

(α−mβ)2

∫ α

mβ

Φ(x)dx

=
1

mβ − α

[
1

mβ − α

∫ mβ

α

Φ(x) dx− Φ

(
α+mβ

2

)]

On simplifying, we obtain

1

mβ − α

∫ mβ

α

Φ(x) dx− Φ

(
aα+mβ

2

)
= (mβ − α)[

∫ 1
2

0

νΦ′(να+m(1− ν)β) dν

+

∫ 1

1
2

(ν − 1)Φ′(να+m(1− ν)β) dν].

This completes the proof.

Theorem 3.2. Let Φ : I0 ⊂ R→ R be a differentiable function on I0 with α < β. If |Φ′| ∈ L[α, β]

is an m-convex function on [α, β], then we have∣∣∣∣∣ 1

mβ − α

∫ mβ

α

Φ(x) dx− Φ

(
α+mβ

2

)∣∣∣∣∣ ≤ mβ − α
8

(|Φ′(α)|+m|Φ′(β)|).

Proof. Using Lemma 2.6 and m-convexity of |Φ′|, we have∣∣∣∣ 1

mβ − α
Φ(x) dx− Φ

(
α+mβ

2

)∣∣∣∣ = |(mβ − α)[

∫ 1
2

0

νΦ′(να+m(1− ν)β) dν

+

∫ 1

1
2

(ν − 1)Φ′(να+m(1− ν)β) dν]|

≤ (mβ − α)[

∫ 1
2

0

(ν2|Φ′(α)|+mν(1− ν)|Φ′(β)|) dν

+

∫ 1

1
2

ν(ν − 1)(|Φ′(α)|+m(1− ν)2|Φ′(β)|) dν]
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Here, we have ∫ 1
2

0

ν2dν =

∫ 1

1
2

(1− ν)2 dν =
1

24

And, ∫ 1
2

0

ν(1− ν) dν =

∫ 1

1
2

ν(1− ν) dν =
1

12

On substituting these values, we have∣∣∣∣∣ 1

mβ − α

∫ mβ

α

Φ(x) dx− Φ

(
α+mβ

2

)∣∣∣∣∣ ≤ (mβ − α)

(
1

24
|Φ′(α)|+m

1

12
|Φ′(β)|+ 1

12
|Φ′(α)|+m

1

24
|Φ′(β)|

)
= (mβ − α)

(
1

8
|Φ′(α)|+m

1

8
|Φ′(β)|

)
=
mβ − α

8
(|Φ′(α)|+m|Φ′(β)|) .

This completes the proof.

Remark 3.3. If m = 1, then it reduces to the Theorem 2.5.

Theorem 3.4. Let Φ : I0 ⊂ R → R be a differentiable mapping on I0, α, β ∈ I with α < β and,

p > 1. If the mapping |Φ′|
p

p−1 is an m- convex function on [α, β], then we have∣∣∣∣∣ 1

mβ − α

∫ mβ

α

Φ(x) dx− Φ

(
α+mβ

2

)∣∣∣∣∣ ≤ mβ − α
16

(
4

p+ 1

) 1
p

(
(|Φ′(α)|

p
p−1 + 3m|Φ′(β)|

p
p−1 )

p−1
p + (3|Φ′(α)|

p
p−1 +m|Φ′(β)|

p
p−1 )

p−1
p

)
.

Proof. Using Lemma 2.6 and Holder’s integral inequality, we deduce∣∣∣∣∣ 1

mβ − α

∫ mβ

α

Φ(x) dx− Φ

(
α+mβ

2

)∣∣∣∣∣ ≤ (mβ − α)[

∫ 1
2

0

|ν||Φ′(να+m(1− ν)β)| dν

+

∫ 1

1
2

|ν − 1||Φ′(να+m(1− ν)β)| dν]

≤ (mβ − α)[(

∫ 1
2

0

νpdν)
1
p (

∫ 1
2

0

|Φ′(να+m(1− ν)β)qdν)
1
q

+(

∫ 1

1
2

(ν − 1)pdν)
1
p

∫ 1

1
2

(|Φ′(να+m(1− ν)β)|qdν)
1
q ]

where, 1
p + 1

q = 1 Using the property of m-convexity of |Φ′|q, we obtain

∫ 1
2

0

|Φ′(να+m(1− ν)β|qdν ≤
∫ 1

2

0

[ν|Φ′(α)|q +m(1− ν)|Φ′(β)|q] dν

Here, ∫ 1
2

0

ν dν =
1

8
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And, ∫ 1
2

0

(1− ν) dν =
3

8

≤ |Φ
′(α)|q

8
+

3m

8
|Φ′(β)|q

=
|Φ′(α)|q + 3m|Φ′(β)|q

8

And, ∫ 1

1
2

|Φ′(να+m(1− ν)β)|q dν ≤
∫ 1

1
2

[ν|Φ′(α)|q +m(1− ν)|Φ′(β)|q] dν

=
3

8
|Φ′(α)|q +m

1

8
|Φ′(β)|q

=
3|Φ′(α)|q +m|Φ′(β)|q

8
.

Furthermore, we have ∫ 1
2

0

νp dν =
1

(p+ 1)2p+1

And, ∫ 1

1
2

(ν − 1)p dν =
1

(p+ 1)2p+1

Thus, on combining the above results, we have∣∣∣∣∣ 1

mβ − α

∫ mβ

α

Φ(x) dx− Φ

(
α+mβ

2

)∣∣∣∣∣ ≤ mβ − α
16

(
4

p+ 1

) 1
p

(
(|Φ′(α)|

p
p−1 + 3m|Φ′(β)|

p
p−1 )

p−1
p + (3|Φ′(α)|

p
p−1 +m|Φ′(β)|

p
p−1 )

p−1
p

)
.

This completes the proof.

Remark 3.5. If m = 1, then it reduces to the Theorem 2.7.

Theorem 3.6. Let Φ : I0 ⊂ R → R be a differentiable mapping on I0, α, β ∈ I with α < β and,

p > 1. If the mapping |f ′|
p

p−1 is an m- convex function on [α, β], then we have∣∣∣∣∣ 1

mβ − α

∫ mβ

α

Φ(x) dx− Φ

(
α+mβ

2

)∣∣∣∣∣ ≤ mβ − α
4

(
4

p+ 1

) 1
p

(|Φ′(α)|+m|Φ′(β)|)

Proof. We consider the inequality of Theorem 3.4∣∣∣∣∣ 1

mβ − α

∫ mβ

α

Φ(x) dx− Φ

(
α+mβ

2

)∣∣∣∣∣ ≤ mβ − α
16

(
4

p+ 1

) 1
p

(
(|Φ′(α)|

p
p−1 + 3m|Φ′(β)|

p
p−1 )

p−1
p + (3|Φ′(α)|

p
p−1 +m|Φ′(β)|

p
p−1 )

p−1
p

)
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Let,α1 = |Φ′(α)|q; β1 = 3|Φ′(β)|q; α2 = 3|Φ′(α)|q; β2 = |Φ′(β)|q

Here, 0 ≤ p−1
p < 1 for p > 1 Using the fact that,

Σnk=1(αk + βk)s ≤ Σnk=1α
s
k + Σnk=1β

s
k”

for 0 ≤ s ≤ 1, α1, α2, ..., αn ≥ 0, β1, β2, ...βn ≥ 0, we obtain∣∣∣∣∣ 1

mβ − α

∫ mβ

α

Φ(x) dx− Φ

(
α+mβ

2

)∣∣∣∣∣ ≤ mβ − α
16

(
4

p+ 1

) 1
p

4(|Φ′(α)|+m|Φ′(β)|)

=
mβ − α

4

(
4

p+ 1

) 1
p

(|Φ′(α)|+m|Φ′(β)|).

This completes the proof.

Now, we obtain some results connected with the right-hand part of inequality 1.2 in case of m-

convex function.

Lemma 3.7. Let Φ : I0 ⊂ R → R be a differentiable mapping on I0, α, β ∈ I0 with α < β. If

Φ′ ∈ L[α, β], then the following equality holds:

Φ(α) + Φ(mβ)

2
− 1

mβ − α

∫ mβ

α

Φ(x) dx =
mβ − α

2

∫ 1

0

(1− 2ν)Φ′(να+m(1− ν)β) dν.

Proof. Let,

I =

∫ 1

0

(1− 2ν)Φ′(να+m(1− ν)β) dν

Integrating by parts,

=
Φ(να+m(1− ν)β

(α−mβ)
(1− 2ν)|10 −

∫ 1

0

(−2)
Φ(να+m(1− ν)β)

(α−mβ)
dν

=
Φ(να+m(1− ν)β)

α−mβ
(−1)− Φ(mβ)

α−mβ
− 2

α−mβ

∫ 1

0

Φ(να+m(1− ν)β) dν

= −Φ(α) + Φ(mβ)

α−mβ
− 2

α−mβ

∫ 1

0

Φ(να+m(1− ν)β) dν

Put

x = να+m(1− ν)β

when ν = 0, then x = mβ, and, ν = 1, then x = α

dν =
dx

α−mβ
On substituting these values, we obtain

= −Φ(α) + Φ(mβ)

α−mβ
− 2

α−mβ

∫ α

mβ

Φ(x)
dx

α−mβ

= −Φ(α) + Φ(mβ)

α−mβ
− 2

(α−mβ)2

∫ α

mβ

Φ(x) dx

=
2

mβ − α

[
Φ(α) + Φ(mβ)

2
− 1

mβ − α

∫ mβ

α

Φ(x) dx

]
.
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And, thus, we have

Φ(α) + Φ(mβ)

2
− 1

mβ − α

∫ mβ

α

Φ(x) dx =
mβ − α

2

∫ 1

0

(1− 2ν)Φ′(να+m(1− ν)β) dν.

This completes the proof.

Remark 3.8. If m = 1, then it reduces to the equality as given by 2.6.

Theorem 3.9. Let Φ : I0 ⊂ R→ R be a differentiable mapping on I0, α, β ∈ I0 with α < β. If |Φ′|
is an m-convex function on [α, β], then the following inequality holds:∣∣∣∣∣Φ(α) + Φ(mβ)

2
− 1

mβ − α

∫ β

α

Φ(x) dx

∣∣∣∣∣ ≤ (mβ − α)
|Φ′(α) +m|Φ′(β)

8
.

Proof. Using Lemma 3.7, it follows that∣∣∣∣∣Φ(α) + Φ(mβ)

2
− 1

mβ − α

∫ mβ

α

Φ(x) dx

∣∣∣∣∣ =

∣∣∣∣mβ − α2

∫ 1

0

(1− 2ν)Φ′(να+m(1− ν)β) dν

∣∣∣∣
≤ mβ − α

2

∫ 1

0

|1− 2ν||Φ′(να+m(1− ν)β)|dν

≤ mβ − α
2

[
|Φ′(α)|

∫ 1

0

ν|1− 2ν|dν +m|Φ′(β)|
∫ 1

0

(1− ν)|1− 2ν|dν
]

Here, ∫ 1

0

ν|1− 2ν| dν =

∫ 1
2

0

ν(1− 2ν) dν +

∫ 1

1
2

ν(2ν − 1) dν =
1

4

And, ∫ 1

0

(1− ν)|1− 2ν| dν =
1

4

On substituting these values, we obtain

=
mβ − α

2

[
|Φ′(α)|1

4
+m|Φ′(β)|1

4

]
=
mβ − α

8
[|Φ′(α)|+m|Φ′(β)|] .

This concludes the proof.

Remark 3.10. If m = 1, then it reduces to Theorem 2.7 .

Another result is embodied in the following theorem.

Theorem 3.11. Let, Φ : I0 ⊂ R → R be a differentiable mapping on I0, α, β ∈ I0 with a < b,

and let p > 1. If the new mapping |Φ′|
p

p−1 | is an m-convex on [α,mβ], then the following inequality

holds: ∣∣∣∣∣Φ(α) + Φ(mβ)

2
− 1

mβ − α

∫ β

α

Φ(x) dx

∣∣∣∣∣ ≤ mβ − α
2(p+ 1)

1
p

[
|Φ′(α)|

p
p−1 +m|Φ′β|

p
p−1

2

] p−1
p

.
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Proof. Using Lemma 3.7 and Holder’s inequality, we obtain∣∣∣∣∣Φ(α) + Φ(mβ)

2
− 1

mβ − α

∫ mβ

α

Φ(x) dx

∣∣∣∣∣ =

∣∣∣∣mβ − α2

∫ 1

0

(1− 2ν)Φ′(να+m(1− ν)β) dν

∣∣∣∣
≤ mβ − α

2

∫ 1

0

|1− 2ν||Φ′(να+m(1− ν)β)| dν

≤ mβ − α
2

(∫ 1

0

|1− 2ν|pdt
) 1

p
(∫ 1

0

|f ′(ta+m(1− t)β|qdt
) 1

q

,

where

1

p
+

1

q
= 1.

Using m-convexity of |Φ′|q, we have∫ 1

0

|Φ′(να+m(1− ν)β)|q dν ≤
∫ 1

0

[ν|Φ′(α)|q +m(1− ν)|Φ′(β)|q] dν

≤ |Φ′(α)|q
∫ 1

0

νdν +m|Φ′(β)|q
∫ 1

0

(1− ν) dν

=
|Φ′(α)|q +m|Φ′(β)|q

2

Also, ∫ 1

0

|1− 2ν|p dν =
1

p

On substituting these values, we obtain∣∣∣∣∣Φ(α) + Φ(mβ)

2
− 1

mβ − α

∫ β

α

Φ(x) dx

∣∣∣∣∣ ≤ mβ − α
2(p+ 1)

1
p

[
|Φ′(α)|

p
p−1 +m|Φ′(β)|

p
p−1

2

] p−1
p

.

Now the proof is complete.

Remark 3.12. If m = 1, then it reduces to the Theorem 2.8 .

4 CONCLUSION

An estimate of a continuous convex function’s integral mean value is provided by the Hermite-

Hadamard integral inequality. In this study, we have expanded several results on H-H type integral

inequalities for differentiable convex functions into differentiable m-convex functions, particularly on

the results on the left hand portion and right hand portion of Hermite-Hadamard integral inequality.

The interested readers can carry out this technique to enhance some more new results on H-H type

inequalities for other kinds of convex functions.

References

[1] A. W. Robert and D. E. Varberg, Convex Functions, Academic Press, New York, (1973).

77



The Nepali Math. Sc. Report Year: 2024, Volume: 41, No: 1

[2] C. P. Niculescu and L. E. Perrson, Convex Functions and Their Applications: A Contemporary

Approach, 2nd edition, CMS Books in Mathematics, Springer: New York, 23, (2018).

[3] D.S. Mitrinivic, and I. B. Lackovic, Hermite and Convexity, Aequationes mathematicae, 28,

pp 229-232, (1985).

[4] G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, 2nd edition, Cambridge Mathematical

Library: Cambridge, UK, (1952).

[5] G. Toader, Some generalizations of the convexity, Proceedings of the Colloquium on Approxi-

mation and Optimization, Univ. Cluj-Napoca, Cluj, pp 329-338, (1985).

[6] J. E. Pecaric, D. S. Mitronovic and A. M. Fink, Classical and New Inequalities in Analysis,

Springer: Cham, Switzerland, pp 1-2, (1993).

[7] S. S. Dragomir and R. P. Agrawal, Two inequalities for differentiable mappings and applications

to special means of real numbers and to trapezoidal formula, Appl. Math. Lett, 11, 5, pp 91-95,

(1998).

[8] S. S. Dragomir and G. Toader, Some inequalities for m-convex functions, Studia University

Babes Bolyai, Mathematica, 38, pp 21-28, (1993).

[9] U. S. Kirmaci and M. E. Ozdemir, On some inequalities for differentiable mappings and appli-

cations to special means of real numbers and to midpoint formula, Appl. Math. Comput., 153,

pp 361-368, (2004).

[10] U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real

numbers and to mid point formula, Applied Mathematics and Computation, 147, 1, pp 137-146,

(2004).

78


	Introduction
	PRELIMINARY RESULTS
	MAIN RESULTS
	CONCLUSION

