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Abstract

In this work, we compare finite difference schemes to finite volume scheme for axially

symmetric 2D heat equation with Dirichlet and Neumann boundary conditions. Using

cylindrical coordinate geometry, we describe a mathematical model of axially symmetric

heat conduction for a stationary, homogeneous isotrophic solid with uniform thermal

conductivity in a hollow cylinder with an exact solution in a particular case. We ob-

tain the numerical solution of the PDE adapting finite difference and finite volume

discretization techniques. Compared to the exact solution, we explore that the numer-

ical schemes are the sufficient tools for the solution of linear or nonlinear PDE with

prescribed boundary conditions. Furthermore, the numerical solution discrepancies in

the results obtained from Explicit, Implicit and Crank-Nicolson schemes in Finite Dif-

ference Method (FDM) are extremely close to the exact solution in the case of Dirichlet

boundary condition. The solution from Explicit scheme is slightly far from the exact

solution and the solutions from Implicit and Crank-Nicolson schemes are extremely

close to the exact solution in the case of Neumann boundary condition. Likewise, the

numerical solutions obtained in Finite volume method (FVM) are extremely close to

the exact solution in the case of Dirichlet boundary condition and slightly away from

exact solution in the case of Neumann boundary condition.
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1 Introduction

Partial differential equations are the most applied model to describe the physical phenomena

in real-world problems. Many physical, chemical, biological, and environmental phenom-

ena of the real world can govern a mathematical problem or a mathematical model [1].

Researchers are trying to describe these phenomena by imposing various factors to govern

the situations in the form of Partial Differential Equation (PDE) [2]. They also seek the

components involved in the areas of applications, mathematical description, formulation,

and computing approaches. Numerous models can be developed by capturing the scenario

of the real phases; however, applied aspects of the model are only possible with its mathe-

matical and computing aspects. Only mathematical aspects of the numerical PDE can be

developed, but it can only give results with applications and computing.

Numerical methods based on computing are the major tool for solving large scale linear

and nonlinear problems. Advancing in computer technology, parallel computing, numeri-

cal discretization etc. are the potential growing factors in the computational regime. In

recent years much effort has been devoted to develop computational schemes for numerical

approaches to solve physical problems govern by PDE. In computational world, finite dif-

ference, finite element, finite volume, spectral methods, collocation methods are the most

effective and widely used numerical techniques [2][3][4].

The calculus of finite differences is the primary features of finite difference schemes. In

which the derivatives terms of the PDEs are expressed in the form of difference equations. By

this mean, the continuous problem is changed into a discrete problem with a finite number

of equations. Those equations give the relationships between the dependent variables to the

prescribed interconnected points with boundaries in the space in which the position vector

can interpolate with given located time. Furthermore, each derivative term of the PDE is

approximate with Taylor’s series expansion and then the set of finite difference equation

are solved numerically by computer and depict the value of dependent variables on the

corresponding grid points. On the other side in the finite volume method, the governing

PDE is satisfied over finite-sized control volume. It is based on integral formulation of the

problem in terms of conservation laws. In finite volume method, a local balance equation

is written on each discretized finite-sized control volume and an integral formulation of the

fluxes over the boundary(faces) is then obtained using the divergence theorem. Then the

fluxes are discretized in terms of the discrete unknowns. In both schemes, the boundary

grid points of the computational domain can be prescribed as direct value of the dependent

variables called Dirichlet boundary condition or by the value of gradient of the dependent

variable normal to the boundary called as Neumann boundary condition. Here, in our

work, we have applied different finite difference schemes and finite volume scheme for axially

symmetrical 2D heat equation and compared their performance taking into account with
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its exact solution for the prescribed conditions [5][6].

The main aim of this work is to present a reliable and accurate numerical approxi-

mation for the computation of axially symmetric 2D heat equation based on its particular

exact solution. It also presents the potentiality of the computational approximation on the

prescribed boundaries with their computational cost.

The work is organized as follows: In section 2, we present the model equation. The

finite difference and finite volume discretization techniques are presented in section 3. We

present the result and discussion in section 4 and in section 5 we concluded our result.

2 Mathematical Model

Using cylindrical coordinates, the axially symmetric heat conduction for a stationary, ho-

mogeneous, isotrophic solid with uniform thermal conductivity in a hollow cylinder can be

described by the following initial boundary value problem of partial differential equation as

[7][8]:

∂u

∂t
= D

(
1

r

∂

∂r
(r
∂u

∂r
) +

∂2u

∂z2

)
+

1

ρc
s(t), Rin ≤ r ≤ Rout, 0 ≤ z ≤ Ztop, t > 0 (2.1)

where, D = k
ρc and s(t) = 1

1+t , ρ = 1, k = 1, c = 1

If we set diffusivity D = 1, Rin = 1, Rout = 2, Ztop = π, initial condition u(r, z, 0) =

ln(r) sin(z) and boundary conditions u(Rin, z, t) = 0, u(Rout, z, t) = ln2e−t sin z, u(r, 0, t) =

0, u(r, π, t) = 0, we can get the exact solution as :

u(r, z, t) = ln(r)e−t sin(z)

.

Now the prescribed initial and boundary conditions are:

Initial condition

u(r, z, 0) = log(r) sin(z)

corresponding Dirichlet boundary conditions

u(Rin, z, t) = e−t log(Rin) sin(z) + s(r, z, t)

u(Rout, z, t) = e−t log(Rout) sin(z) + s(r, z, t)

u(r, Zbot, t) = e−t log(r) sin(z) + s(r, z, t)
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u(r, Ztop, z, t) = e−t log(r) sin(z) + s(r, z, t)

and Neumann boundary conditions

∂

∂r
(u(Rin, z, t)) =

1

Rin
e−t sin(z)

∂

∂r
(u(Rout, z, t)) =

1

Rout
e−t sin(z)

u(r, Zbot, t) = e−t log(r) sin(z) + s(r, z, t)

∂

∂z
(u(r, Ztop, t)) = e−t log(r) cos(z)

3 Numerical Method

To solve equation 2.1 numerically, we use finite difference schemes and finite volume scheme

and compare the result with the prescribed initial and boundary conditions. Since we

set particular conditions for the exact solution, we compare the results obtain the above

numerical results to the exact solution. For the numerical procedure, firstly we construct

the geometry of axially symmetrical model and make a nodal arrangement in a definite

domain [5][3] .

Figure 1: Cylindrical Body(right), Domain with boundary(left)

3.1 Finite Difference Discretization

We set up a two dimensional (r, z) uniform grid for an axi-symmetric problem in the cylinder

geometry by subdividing the radial length [Rn, Rout] into Mr subintervals of width ∆r =
Rout−Rin

Mr
and the height [0, Ztop] into Mz subintervals of width ∆z =

Ztop

Mz
. We construct a
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Figure 2: Mesh in FDM and FVM

grid (ri, zj , tn) with ri = i∆r, i = 0, 1, 2, ...,Mr, zj = j∆z,j = 0, 1, 2, ...,Mz, and tn = n∆t,

n = 1, 2, ...., N . Let uni,j denote u(ri, zj .tn). The partial differential equation (2.1) can be

approximated using forward difference in time and central difference in space on radial and

axial direction as[9]

∂u

∂t

∣∣∣∣
(rl,zj ,tn)

≈
un+1
i,j − uni,j

∆t
,

∂u

∂r

∣∣∣∣
(rl,zj ,tn)

≈
uni+1,j − uni−1,j

∆r

∂2u

∂r2

∣∣∣∣
(rl,zj ,tn)

≈
uni−1,j − 2uni,j + uni+1,j

∆r2

∂2u

∂z2

∣∣∣∣
(rl,zj ,tn)

≈
uni,j−1 − 2uni,j + un,j+1

∆z2
.

(3.1)

Again approximating equation (2.1) using backward difference in time and central difference

in space on radial and axial direction as

∂u

∂t

∣∣∣∣
(rl,zj ,tn+1)

≈
un+1
i,j − uni,j

∆t
,

∂u

∂r

∣∣∣∣
(rl,zj ,tn+1)

≈
un+1
i+1,j − u

n+1
i−1,j

∆r

∂2u

∂r2

∣∣∣∣
(rl,zj ,tn+1)

≈
un+1
i−1,j − 2un+1

i,j + un+1
i+1,j

∆r2

∂2u

∂z2

∣∣∣∣
(rl,zj ,tn+1)

≈
un+1
i,j−1 − 2un+1

i,j + un+1
,j+1

∆z2
.

(3.2)
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Similarly approximating equation(2.1) using Crank-Nicolson scheme on radial and axial

direction as

1

∆t

[
un+1
i,j − u

n
i,j

]
=

θ

[
D

{
un+1
i−1,j − 2un+1

i,j + un+1
i+1,j

(∆r)2
+

1

ri

un+1
i+1,j − u

n+1
i−1,j

(2∆r)
+
un+1
i,j−1 − 2un+1

i,j + un+1
i,j+1

(∆z)2

}
+ s(ri, zj , t

n)

]

+(1− θ)
[
D

{
uni−1,j − 2uni,j + uni+1,j

(∆r)2
+

1

ri

uni+1,j − uni−1,j

(2∆r)
+
uni,j−1 − 2uni,j + uni,j+1

(∆z)2

}
+ s(ri, zj , t

n+1)

]
i = 1, 2 · · · ,Mr − 1, j = 1, 2 · · · ,Mz − 1.(3.3)

where, 0 ≤ θ ≤ 1 be a weighted average of the derivative ∂2u
∂r2

, ∂2u
∂z2

, and ∂u
∂r at two time

label tn and tn+1.

We collect the unknowns on the left hand side, then equation (3.3) becomes

ui,j
n+1 − θ

[
Fr

(
un+1
i−1,j − 2un+1

i,j + un+1
i+1,j

)
+
Fr1
ri

(
un+1
i+1,j − u

n+1
i−1,j

)
+ Fz

(
un+1
i,j−1 − 2un+1

i,j + un+1
i,j+1

)]
= (1− θ)

[
Fr
(
uni−1,j − 2uni,j + uni+1,j

)
+
Fr1
ri

(
uni+1,j − uni−1,j

)
+ Fz

(
uni,j−1 − 2uni,j + uni,j+1

)
+ ∆t s(ri, zj , t

n)

]
+∆t θ s(ri, zj , t

n+1) + uni,j i = 1, 2 · · · ,Mr − 1, j = 1, 2 · · · ,Mz − 1.(3.4)

Where, Fr =
D∆t

(∆r)2
, Fr1 =

D∆t

(∆r)
and Fz =

D∆t

(∆z)2

In numerical solution of equation (3.4), it is coupled at the new time label n+ 1. That

is, we must solve a system of (linear) algebraic equations, which we will write as CX = D,

where C is the coefficient matrix, X is the vector of unknowns, D is the right hand-side

[10][11].

To solve the above system of linear equations, we have a matrix system CX = D, where

the solution vector X must have one index. For this, we need a numbering of the unknowns

with one index, not two as used in the mesh. We introduce a mapping position(i, j) = u(i, j)

from a mesh point with indices (i, j) to the corresponding unknown q in the equation system.

q = u(i, j) = j(Mr + 1) + i, for i = 0, 1, 2, · · · ,Mr, j = 0, 1, 2, ...,Mz,

With this mapping, we number the points along the radial direction starting with z = 0

and then filled one mesh line at a time. In another way

q = m(i, j) = i(Mz + 1) + j, for i = 0, 1, 2, · · · ,Mr, j = 0, 1, 2, · · · ,Mz.
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with r = 0 and then filled one mesh line at a time. From this we can get the general feature

of the coefficient matrix obtained from the discretized equation (3.4).

Now Cq,p be the value of element (q, p) in the coefficient matrix C, where q and p

are the numbering of the unknowns in the equation system. The then Cq,q = 1 for q =

p corresponding to the all known boundary values. q be m(i, j), i.e., the single index

corresponding to the mesh point (i, j). Then, for interior mesh along with boundary, we

have

Cpos(i,j),pos(i,j) = Cq,q = 1 + θ(2Fr + 2Fz).

Cq,pos(i−1,j) = Aq,q−1 = θ(−Fr +
Fr1
ri

).

Cq,pos(i+1,j) = Cq,q+1 = θ(−Fr −
Fr1
ri

).

Cq,pos(i,j−1) = Cq,q−(Mz+1) = −θFz.
Cq,pos(i,j+1) = Cq,q+(Mz+1) = −θFz.

Right hand side of in vector with dq in equations (3.4)

j = 0, for i = 0, ...,mr dq = exact(ri, zbot(= 0), t) = 0.

j = Mz, for i = 0, ...,mr dq = exact(ri, ztop(= π), t) = 0.

i = 0, for j = 0, ...,mz dq = exact(rin(= 1), zj , t) = 0.

i = 0, for j = 0, ...,mz dq = exact(rout(= 2), zj , t) = e−tln(2)sin(zj).

Figure 3: Discretization of 2D mesh

3.2 Finite Volume Discretization

Axi-Symmetric 2D mesh in (r, z) coordinates: We set up a two dimensional (r, z) uniform

mesh with

∆r =
Rout −Rin

Mr
, ∆z =

Ztop − Zbottom
Mz

.
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and assign one node(ri, zj) to each control volume Vi,j . For nodes ri and zj

r0 = Rin, ri = r0 + (i− 1

2
)∆r, i = 1, ...,Mr, rMr+1 = Rout

z0 = 0, zj = (j − 1

2
)∆z, j = 1, ...,Mz, zMz+1 = Ztop.

For faces ri− 1
2
, zj− 1

2

ri− 1
2

=
1

2
(ri−1 + ri), i = 2, 3, ...,Mr+1, zj− 1

2
=

1

2
(zj−1 + zj), j = 2, 3, ...,Mz+1.

The volume Vi.j is given by

Vi,j = 2π

∫ r
i+1

2

r
i− 1

2

∫ z
j+1

2

z
j− 1

2

dz r dr = π(r2
i+ 1

2

− r2
i− 1

2

)∆zj .

Area of radial (Ai− 1
2
,j) and axial(Ai,j− 1

2
) faces are:

Ai− 1
2
,j = 2π

∫ z
j+1

2

z
j− 1

2

ri− 1
2
dz = 2πri− 1

2
∆zj

Ai,j− 1
2

= 2π

∫ r
i+1

2

r
i− 1

2

r dr = π(r2
i+ 1

2

− r2
i− 1

2

). (3.5)

3.3 Finite Volume Algorithm(explicit in time)

:

First, we write the PDE i.e. equation (2.1) in divergence form :

∂u

∂t
= ∇.F + S(t). (3.6)

where the heat flux F is given by

F = (K
∂u

∂r
,K

∂u

∂t
). (3.7)

Let T > 0 be the maximum time of interest, {t0, · · · , tNmax} be a partition of [0, T ],

and ∆tn = tn+1 − tn the time step size.

Integrating equation (3.6) over the control volume Vi,j and time interval [tn, tn + ∆tn],

we obtain∫ tn+∆tn

tn

∂

∂t

∫
Vi,j

u dV dt =

∫ tn+∆tn

tn

∂

∂t

∫
∂Vi,j

F.n dAdt+

∫ tn+∆tn

tn

∫
∂Vi,j

S dv dt. (3.8)

Define Ui,j ≈ u(ri, zj , tn)

as the mean value over the control volume Vi,j

Uni,j =
1

Vi,j

∫
Vi,j

u(r, z, tn)dV. (3.9)
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Also introduce the numerical flux as mean value over area and time of Fu(r, z, t). Then

the flux integrals in equation (3.8) can be computed by
∑

faces(Area × Flux), the sum of

the flow rates across all the faces of the control volume Vi,j , where the flow rates across the

faces are expressed as

(AF )i− 1
2
,j =

1

∆tn

∫ tn+∆tn

tn

∫
A

i− 1
2 ,j

F (r, z, t)ndAdt (Radial). (3.10)

(AF )i,j− 1
2

=
1

∆tn

∫ tn+∆tn

tn

∫
A

i,j− 1
2

F (r, z, t)ndAdt (Axial). (3.11)

Let tn+θ := tn + θ∆tn = (1 − θ)tn + θtn+1 with 0 ≤ θ ≤ 1 be some intermediate time

such that Un+θ
i,j ≈ u(ri, zj , tn=θ) etc. Then the discretization of (3.6) describes as

Un+1
i,j − U

n
i,j = (3.12)

∆tn
Vi,j

(
(AF )n

i− 1
2
,j

+ (AF )n
i+ 1

2
,j

+ (AF )n
i,j− 1

2

+ (AF )n
i,j− 1

2

)
+ dt S(ri, zj , t).

Now the flow rates at the faces are given by:

(AF )n
i− 1

2
,j

= −Ai− 1
2
,jD

(
Ui,j − Ui−1,j

ri − ri−1

)
. (3.13)

(AF )n
i+ 1

2
,j

= Ai+ 1
2
,jD

(
Ui+1,j − Ui,j
ri+1 − ri

)
. (3.14)

(AF )n
i,j− 1

2

= −Ai,j− 1
2
D

(
Ui,j − Ui,j−1

zj − zj−1

)
. (3.15)

(AF )n
i,j+ 1

2

= Ai,j+ 1
2
D

(
Ui,j+1 − Ui,j
zj+1 − zj

)
. (3.16)

The flow rates at the faces and the corresponding boundaries are:

for i = 2, ...,Mr+1

for j = 1, ...,Mz+1

Fr =
Ui−1,j − Ui,j

Rr
. (3.17)

for i = 1, ...,Mr+1

for j = 2, ...,Mz+1

Fz =
Ui,j−1 − Ui,j

Rz
. (3.18)

Imposing the temperature in all faces(Boundary condition)

for j = 1, ...,Mz+1

(Fr)1,j =
−2(U1,j − u(Rin, z, t))

Rr
. (3.19)

(Fr)Mr+1,j =
2(UMr,j − u(Rout, z, t))

Rr
. (3.20)
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for i = 1, ...,Mr+1

(Fz)i,1 =
−2(Ui,1 − u(r, zbot, t))

Rz
. (3.21)

(Fz)i,Mz+1 =
2(Ui,Mz − u(r, ztop, t))

Rz
. (3.22)

And the corresponding PDE with boundary condition is :

Ui,j = cf ((Fr)i,j(Ar)i,j − (Fr)i+1,j(Ar)i+1,j + (Fz)i,j(Az)i,j − (F )i,j+1(Az)i,j+1) +

dt S(ri, zj , t). (3.23)

For j = 1, ...,Mz+2

U0,j = exact(Rin, zj , t). (3.24)

UMr+1,j = exact(Rout, zj , t). (3.25)

For i=1,...,Mr+1

Ui,0 = exact(ri, zbot, t). (3.26)

Ui,Mz+1 = exact(ri, ztop, t). (3.27)

3.4 Courant - Friedrichs - Lewy(CFL) condition

Explicit schemes are very simple and convenient from the implementation point of view.

However, a computational cost is to be paid by the restriction in time size to ensure the

numerical stability of the scheme [12]. There are various ways to analyze the stability of

numerical methods: von Neumann analysis, M matrix method, Positive coefficient rule. We

apply the later, which ensures the positivity of the scheme. We rewrite the equation (3.12)

in the form

Un+1
i,j = αi,jU

n
i−1,j + αi+1,jU

n
i+1,j + (1− γi,j)Uni,j + βi,jU

n
i,j−1 + βi,j+1U

n
i,j+1 (3.28)

for n = 1, 2, · · · , Nmax, i = 1, 2, · · · ,Mr j = 1, 2, · · · ,Mz, where

αi,j =
∆tn
Vi,j

Ai− 1
2
,j

(ri − ri−1)
D, for i = 1, 2, · · · ,Mr + 1, j = 1, 2, · · · ,Mz. (3.29)

βi,j =
∆tn
Vi,j

Ai,j− 1
2

(zj − zj−1)
D, for i = 1, 2, · · · ,Mr, j = 1, 2, · · · ,Mz + 1. (3.30)

γi,j = αi,j + αi+1,j + βi,j + βi,j+1for i = 1, 2, · · · ,Mr, j = 1, 2, · · · ,Mz. (3.31)
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to ensure positive coefficient in equation (3.28), we need γi,j < 1, which requires

∆t <
0.5

D
(∆r)2

+ D
(∆z)2

≤ min{(∆r)2, (∆z)2}
4D

. (3.32)

And stability analysis of the equation (3.4) is analyzed at [13].

4 Results and Discussion

The numerical algorithm developed in section 3.1 and 3.2 are written in python and ran

on a laptop with 2.8 GHz Quad-Core Intel Core i7 processor[14]. The numerical solution

of the equation (2.1) is carried out using forward difference (Explicit), backward difference

(Implicit), Crank-Nicolson and finite volume (Explicit in time) methods with imposing

Dirichlet and Neumann Boundary conditions. Since the exact solution for the particular case

is calculated and we compare the numerical solutions. Figure 4 (left) depicts the longitudinal

temperature profile with dirichlet boundary condition for the three finite difference schemes.

From figure 4 (left) we can state directly that there is no significant difference between the

schemes. Figure 4 (right) illustrate the numerical results of longitudinal temperature profile

with imposing the Neumann boundary condition. It shows that the explicit scheme has little

contrast in exact solution. Also figure 5 left and (right) depict the radial temperature profile

with both boundary condition which explore the same result as figure 4 and figure 6 and

7 describe that the numerical solution obtained from finite volume method are close to

the exact solution in imposing Dirichlet boundary condition and slightly away from exact

solution in Neumann boundary condition. Table 1 explore the CPU time(s) execute time

and the corresponding error of the eight different schemes in the case of axially symmetric

heat conduction equation.

Table 1: Comparison with CPU time and Error

Schemes Boundary condition CPU time(s) Error

Explicit Dirichlet 29.4286830 .00035762189

Implicit Dirichlet 29.4286830 .0003280250

CN Dirichlet 29.4286830 .00066223219

Implicit Neumann 29.484686374 .0047332550

Implicit Neumann 29.484686374 .00467332250

CN Neumann 29.484686374 .004955038

Finite Volume Neumann 16.18792581 .0246761

Finite Volume Dirichlet 16.3679363 .0001212
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Figure 4: Longituational temperature profile with dirichlet boundary (left) and Neumann

boundary condition in (right)

Figure 5: Radial temperature profile with dirichlet boundary (left) and Neumann boundary

condition in (right)

5 Conclusion

In this work, we explored the finite difference schemes and finite volume scheme to find the

numerical solution of heat conduction equation (a PDE) in axially symmetric cylindrical

coordinate system. Two boundary conditions Dirichlet and Neumann were imposed in the

PDE correspondingly. The PDE has also an exact solution for a certain condition. With

based on the exact solution the different numerical schemes are compared and their perfor-

mance are explored. From the result obtained above we can conclude that the numerical

schemes are the sufficient tools for obtaining the solution of linear and non linear PDE

having exact solution or not. We also observed that the consistency, uniqueness and the

stability of the numerical techniques also depends on the imposing boundary condition and

the physical condition for the problem. It is shown that the reliability and the accuracy of

the schemes depends on the prescribed boundary conditions of the problems. From table 1

depicted above, we can observed that Finite volume method is more appropriate to get the

numerical solution for the type of parabolic equation we have taken.
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Figure 6: Longitudinal temperature profile with dirichlet boundary (left) and Neumann

boundary condition in (right)

Figure 7: Radial temperature profile with dirichlet boundary (left) and Neumann boundary

condition in (right)
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