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Abstract

Five theorems on the identification of a convex sequence of signals via the absolute sum

of elements of trigonometric series are established in this study. Several well-known

results are specific cases of these theorems. When the function has bounded variation,

it also addresses several special circumstances of fuzzy numbers.
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1 Introduction

Let ξ(z) be a function that is Lebesgue integrable over (−π, π), and has a period of 2π,

then

ξ(z) =
α0

2
+
∞∑
g=1

(αgcosgz + βgsingz)

=

∞∑
g=0

Vg(z) (1.1)
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Defination:

We consider an infinite series
∞∑
g=0

αgu
g which is convergent in (0 ≤ u < 1) , where

l(u) =

∞∑
g=0

αgu
g (1.2)

If the Abel limit limx→1−0 l(u) exists finitely, then the infinite series
∞∑
g=0

αg is known as

summable by Abel method.

Example 1.1. The divergent series

∞∑
g=1

(−1)g−1g has the Abel sum 1
4 .

Proof. Since

ξ(z) =

∞∑
g=1

(−1)g−1.gzg

= z

∞∑
g=1

(−1)g.g.zg−1

=
d

dz

(
z

1 + z

)
=

z2

(1 + z)2

put z = 1 then we obtain the sum equals 1
4 .

Example 1.2. The Abel’s sum

∞∑
g=0

(−1)g = 1− 1 + 1− 1 + ..... = 1
2 .

Proof.

∞∑
g=1

(−1)g−1

g
= 1− 1

2
+

1

3
− 1

4
+ .....

Since it is alternating series. So it is convergent.

We can apply Abel’s theorem to the function

ξ(z) =

∞∑
g=1

(−1)g−1.zg

g

=⇒ ξ′(z) =

∞∑
g=0

(−1)g.zg

=⇒ ξ′(z) =
1

z + 1

∴ ξ(z) = log(1 + z)

Put z = 0, then ξ(0) = log(1 + 0) = 0 and ξ(1) = log2
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Defination: If equation (1.2) is of bounded variation in (0, 1) then the Abel limit will

necessarily exists then the infinite series
∞∑
g=0

αg is known as absolutely summable (A) and is

denoted by | A | .

Known Results:

Numerous studies have been written about the absolute summability factors of infinite series

and Fourier series (refer to [1]–[5], [8–10], [12–14], [16–21]).

We consider a function χ(z) which is defined as following way.

χ(z) =
ξ(v + z)ξ(v − z)− 1− ξ(v)

2
(1.3)

Among them authors [6], [15], [11] and [7] respectively proved the following theorems.

Theorem 1.3. If ∫ z

0
| χ(β) | dβ = o(z) (1.4)

as z → 0 then the infinite series
∞∑
g=1

U(v)
logg is convergent.

Theorem 1.4. If ∫ z

0
| χ(β) | dβ = o(z) (1.5)

as z → 0 holds betterly, then
∫ π
z
χ(β)|
β dβ = o(log 1

z ), as z → 0.

Theorem 1.5. If
∫ π
z
|χ(β)|
β dβ = o(log 1

z ) holds betterly, then∫ z

0
| χ(β) | dβ = o(zlog

1

z
) = o(−zlogz) (1.6)

as z → 0.

Theorems 1.4 and 1.5 are proved by author [15].

Theorem 1.6. If If
∫ π
z
|χ(β)|
β dβ = o(−logz) as z → 0, holds, then the infinite series

∞∑
g=1

Ug(v)
logz

is convergent.

Theorem 1.7. If If γg is one of the following sequences

1

(logg)1+m
,

1

(logg)(log2g)1+m
,

1

(logg)(log2g)(log3g)1+m
, · · · , (m > 0) (1.7)

and if
∫ z
0 | χ(β)β = o(z) as z → 0, then the infinite series

∑
γgU(v) is summable | A |

In this research note, we generalize the results of [6], [15], [11] and [7] by using (or

proving) the following theorem.
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2 Main Results

Theorem 2.1. If If γg is one of the following sequences

1

(logg)1+m
,

1

(logg)(log2g)1+m
,

1

(logg)(log2g)(log3g)1+m
, · · · , (m > 0)

where m is a positive number and if∫ π

z

| χ(β) |
β

dβ = o(−logz) (2.1)

as z → 0,then the series
∑
γgU(v) is absolutely summable.

Our theorem requires several lemmas for proof.

Lemma 2.2. If ε ∈ (0, 1) and x = sin−1
[

1−ε
2(1+ε2)

]
and N(u) = 1−u2

1+u2−2u(cos2z) , then

∫ ε

0
| N ′(u) | du = f(x) =


o(x−1), z ∈ [0, x]

o(12), z ∈ [x, π4 ]

o(1), z ∈ [π4 , π]

Lemma 2.3. If L(U) = α0
2 +

∞∑
g=1

Ug(v)ug and
∫ π
z
|χ(β)|
β dβ = o(−logz) as z → 0, satisties

then ∫ ε

0
| L′(u) | du = O

(
log

1

1− ε

)
(2.2)

where ε ∈ (0, 1).

Proof. By hypothesis∫ ε

0
| L′(u) | du ≤ 2

π

∫ π

0
| χ(z) |

∫ ε

0
| N ′(u) | dudz

≤ 2

π

∫ x

0
| χ(z) |

∫ ε

0
| N ′(u) | dudz +

∫ π
4

x
| χ(z) |

∫ ε

0
| N ′(u) | dudz

+

∫ π

π
4

| χ(z) |
∫ ε

0
| N ′(u) | dudz

= O

(
1

x

)∫ x

0
| χ(z) | dz +O(1)

∫ π
4

x

| χ(z) |
z

dz +O(1)

∫ π

π
4

| χ(z) | dz

= O

(
1

x

)[
z.log

1

z

]x
0

+O

(
1

x

)[
log

1

z

]π
4

x

+O(1)

[
log

1

z

]π
π
4

= O(log
1

1− ε
)
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Confirmation of the theorem: Let γg = 1
(logg)1+m

, m is a positive number.

Let

R(u) =

∞∑
g=2

Ug(v)ug (2.3)

By using lemma 2.2, ∫ ε

0
| R′(u) | du = O

(
log

1

1− ε

)
(2.4)

where ε ∈ (0, 1). Then as u→ 0 , we have∫ ε

0
| R′(u) | du = O(ε3) (2.5)

and subsequently, we obtain∫ ε

0
| R′(u) | du = O(1)

(
log

1

1− ε
− ε− ε2

)
(2.6)

For taking m > 0 , then

Rδ(u) =
∞∑
g=2

1

(logg)m+1
Ug(v)ug

=
1

Γ(1 +m)

∫ ∞
0

ym

Γ(y)

∫ 1

0
R(uβ)(log

1

β
)y−1

1

β
dβdy

Then the total variation of Rm(u) in (0,1) is∫ ε

0
| R′δ(u) | du =

∫ ε

0
| 1

Γ(1 +m)

∫ ∞
0

ym

Γ(y)

∫ 1

0
R′(uβ)(logβ)y−1dβ | du

=
1

Γ(1 +m)

∫ ∞
0

ym

Γ(y)
dy

∫ 1

0
(−logβ)y−1

dβ

β

(∫ ε

0
β | R′(uβ) | du

)
(2.7)

Using (2.6), then we have∫ 1

0
(−logβ)y−1

dβ

β

∫ ε

0
| R′(uβ) | .βdu =

∫ 1

0
(−logβ)y−1

dβ

β

∫ εβ

0
| R′(uβ) | .βdu

= O(1)

∫ 1

0
(−logβ)y−1

1

β

(
log

1

1− ε
− εβ − ε2β2

2

)
dβ

= O(1)

∫ 1

0

∞∑
g=2

1

g
εgβg−1(−logβ)y−1dβ

= O(1)

∞∑
g=2

1

g
εgΓ(y)g−y
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again using (2.7), we may obtain∫ ε

0
| R′m(U) | du = O(1)

1

Γ(1 +m)

∫ ∞
0

ym

Γ(y)

∞∑
g=2

1

g1+y
εgΓ(y)dy

= O(1)
1

Γ(1 +m)

∞∑
g=2

1

g
εg
∫ ∞
0

ymu−yloggdy

= O(1)
1

Γ(1 +m)

∞∑
g=2

1

g
εg

Γ(1 +m)

(logg)1+m

= O(1)

∞∑
g=2

1

g(logg)1+m

= O(1) (2.8)

where m is a positive number. Hence
∞∑
g=2

Ug(v) 1
(logg)m+1 is absolutely summable. The proof

runs parallel if we consider any value. The sequences γg given in known theorem (1.7), with

the same line of derivation. Then for m > 0,

∞∑
g=2

Ug(v)ug
1

(logg)(logg)(log2g)(log2g)(logvg)m+1

=
1

Γ(1 +m)

∫ ∞
0

duv
Uv

m

Γ(uv + 1
)

∫ ∞
0

duv−1
(Uv−1)

uv

Γ(uv−1 + 1)

∫ ∞
0

...

∫ ∞
0

du1
U1

u2

Γ(y)

∫ ∞
0

Rq(uβ)(−logβ)y−1
1

β
dβ

This concludes the demonstration of the validity of the theorem.

An applications:

The coefficients of the Fourier transform are defined as follows:

α0 =
1

π

∫ π

−π
ξ(z)dz,

αg =
1

π

∫ π

−π
ξ(z)cosgzdz

and

βg =
1

π

∫ π

−π
ξ(z)sinαzdz

Let ag denotes the gth partial sum of infinite series
∑

ag, Ag
P and bg

P denote the gP Cesàro

mean of order q where q is non-negative number of the sequences < a >g and < ga >g

respectively. The series
∑

ag is absolute Cesàro summable if

∞∑
g=2

| Agq −Ag−1q |<∞ (2.9)
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Put

bg
q =

1

Ug
q

q∑
c=0

Ug−(c+1)
q−1(c+ 1)α1+c (2.10)

bg
q = g(Ag

q −Ag−1q) (2.11)

where

Ug
q =

Γ(g + q + 1)

Γ(g + 1)Γ(q + 1)
∼ gq

Γ(q + 1)
= O(gq) (2.12)

∆0Cn = Cn,∆Cn = ∆′Cn = Cn − Cn+1,

∆rCn =
∞∑
d=0

Ud
−r−1Cd+g

provided this series is convergent.

Theorem 2.4. If If ξ(β) ∈ BV (0, π) , and using the equations (1.3), (1.4), (2.9), (2.10),

(2.11) and (2.12) then the infinite series

∞∑
g=0

Ug+2(z)

[log(2 + g)]1+δ
, (δ > 0) (2.13)

is summable | C, q |, (q > 1). (see [1.7]).

Theorem 2.5. If If ξ(β) ∈ BV (0, π) and using the equations (1.3), (1.4), (2.9), (2.10),

(2.11) and (2.12) we get an equation (1.5).

Theorem 2.6. If If ξ(β) ∈ BV (0, π) and using the equations (1.3), (1.4), (2.9), (2.10),

(2.11), (2.12) and
∫ π
z
|ξ(β)|
β dβ = o(−logz) we get an equation (1.6).

Theorem 2.7. If If ξ(β) ∈ BV (0, π) , and using the equations (1.3), (1.4), (2.9), (2.10),

(2.11) and (2.12) then the infinite series

∞∑
g=0

Ug+2(z)

[log(2 + g)]1+δ
, (2.14)

is summable | C1, q |, (q > 1). (see [2.13]).

3 Conclusion

Summability theory, which began in 19th century is a part of analysts[the branch of math-

ematics dealing with limits and related theories]. It generalises the concept of convergence

ones. It attempts to create an algorithm that analyses a limit to non convergent sequences,

the theory makes a non convergent series, in a general sense. whereas a sequence of positive

linear operators does not ordinary convergent(see [32-43]).
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[20] H. S. Özarslan A. Karakas, ; On Generalized Absolute Matrix Summability of Infinite

Series, Communications in Mathematics and Applications; 10, No. 3, 2019, 439-446.

[21] S, . Yildiz; A new extension on absolute matrix summability factors of infinite series,

AIP conference Proceedings 2183, 050016, 2019.

[22] P. I. Sharma S. C. Kori; Absolute summability factors of Fourier series, Proc. Camb.

Phil. Soc., 68 (8), 1970, 61-65.

[23] S, . Yildiz; On application of matrix summability to Fourier series, Math. Methods Appl.

Sci., 41, no. 2, 2018, 664-670.

[24] S, . Yildiz; On the absolute matrix summability factors of Fourier series, Math. Notes

103, no. 2, 2018, 297-303.

[25] S, . Yildiz; On the generalization of some factors theorem for infinite series and Fourier

series, Filomat, 33, no. 14, 2019, 4343-4351.

51



The Nepali Math. Sc. Report Year: 2024, Volume: 41, No: 1

[26] S, . Yildiz; Matrix application of power increasing sequence to infinite series and Fourier

series, Ukr, Math. J. 72, no. 5, 2020, 730-740.

[27] S, . Yildiz; A variation on absolute weighted mean summability factors of Fourier series

and its conjugate series, Bol. Soc. Parana. Mat. 38, no. 5, 2020, 105-113.

[28] H. Bor, D. Yu., P. Zhou; On local property of absolute summability of factored Fourier

series, Filomat, 28, no. 8, 2014, 1675-1686.

[29] T. M. Flett; On an extension of absolute summability some theorem of Littlewood and

Paley, Proc. London Math. Soc., 7, 1957, 113-141.

[30] Y. Okuyama; On the absolute Nörlund summability factors of Fourier series; Bull.

Austral. Math. Soc., Vol. 12 (1975), 9-21.

[31] O. P. Varshney; On the absolute harmonic summability of a series related to a Fourier

series, Proc. Amer. Math. Soc., 10, 1959, 784-789.

[32] S.K Sahani,et al. Some Problems on Approximations of Functions (signals) in Matrix

Summability of Legendre series, Nepal Journal of Mathematical Sciences, Vol. 2(1),

2021, 43-50.

[33] S.K. Sahani, et al. On the Degree of Approximations of a Function by Norund Means

of its Fourier Laguerre Series, Nepal Journal of Mathematical Sciences, Vol. 1, 2020,

65-70.

[34] S.K. Sahani L.N. Mishra, Degree of Approximation of Signals by Norlund Summability

of Derived Fourier Series, The Nepali Math. Sc. Report, Vol. 38., No. 2, 2021, 13-19.

[35] S.K. Sahani, et al. On a New Application of Positive and Decreasing Sequences to

Double Fourier Series Associated with (N, p1m, p
2
n), Journal of Nepal Mathematical

Society, Vol.5(2), 2022, 58-64.

[36] S.K. Sahani, et al. On Certain Series to Series Transformation and Analytic Contin-

uation by Matrix Method, Nepal Journal of Mathematical Sciences, Vol. 3, 1, 2022,

75-80.

[37] S.K Sahani V.N. Mishra, Degree of Approximation of Function by Norlund Summabil-

ity of Double Fourier Series, Mathematical Sciences and Applications E-Notes,Vol.11,

2, 2023,80-88.

[38] S.K. Sahani, D. Jha. A Certain Studies on Degree of Approximation of functions by

Matrix Transformation, The Mathematics Education, Vol. LV,2, 2021, 21-33.

52



S. K. Sahani, S.K.Tiwari, B. Sonat, M. P. Poudel On The Determination ..

[39] S.K. Sahani, K.S. Prasad, On a New Application of Almost Non-increasing Sequence

to Ultra-spherical Series Associated with (N, p, qk) Means, Applied Science Periodical

Vol.XXIV, 1, 2022, 1-11.

[40] S.K. Sahani, et al. On Norlund Summability of Double Fourier Series, Open Journal

of Mathematical Sciences, Vol.6, 1, 2022, 99-107.

[41] J.K. Pokharel, N.P. Pahari, S.K. Sahani, Critical Analyzing on Some Application of

Almost Decreasing Sequence to Legendre Series Associated with [B] Sum, Advances in

Nonlinear Variational Inequalities, Vol.26, No. 2, 2023, 36-40.

[42] S.K. Sahani, et al. On a New Application of Almost Increasing Sequence to Laguerre

Series Associated with Strong Summability of Ultra-spherical Series, Nepal Journal of

Mathematical Sciences, Vol. 4, No. 2, 2023, 77-82.

[43] S.K. Sahani, et al. An estimate of Rate of Convergence for the Absolute summability

of factors of Infinite series, Power System Technology, Vol. 47, No. 4, December, 2023,

359-370.

53


	Introduction
	Main Results
	 Conclusion

