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Abstract

This work aims to investigate fractional differential equations using the Magnus Gösta

Mittag-Leffler (GML) function and compare the finding with convention calculus ap-

proaches. It examines the solutions with one, two, and three parameters using the

GML function for different values of α, β, and γ. We also test the convergence of the

GML function of two parameters and check the validity and the computational time

complexity. Moreover, we extend the GML function into three dimensions within the

domain of complex variables utilizing numerical computing software. Graphs of the

single-parameter GML Eα(x), illustrates diverse disintegration rates across various α

values, emphasizing dominant asymptotic trends over time periods.

Keywords: Convention Calculus, Fractional Calculus, Gösta Mittag-Leffler Function,

Numerical Solution.
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1 Introduction

A fractional differential equation is an equation with fractional derivatives, while a frac-

tional integral equation is an equation with fractional integrals. A system with different

orders can be described by a set of these equations or by combining them [1, 2, 3]. Due to its

applicability in a growing number of scientific and technical fields, where scientists have uti-

lized it to model a range of physical, biological, and chemical processes, fractional calculus

(FC) has gained significant research interest in recent times [7, 9, 10, 21]. FC is frequently
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utilized in physical systems, which include wave equations, harmonic oscillators, frictional

forces, viscoelastic materials, chaotic systems, polymer material science, random walks, and

anomalous diffusion processes [12]. In engineering, FC is essential for interpreting signals

and images as well as for creating and assessing control systems [13]. In economics, FC

mimics risk management techniques and stock price fluctuations. n biology, it simulates

complex dynamics like population expansion and disease transmission [10, 14, 15, 21]. One

of the most widely utilized of these concepts is the Riemann-Liouville (RL) fractional cal-

culus [1, 5, 10]. However, the RL approaches imply that the derivatives of a constant term

are not zero. This poses challenges when applying classical calculus to analyze fractional

calculus. This poses challenges when applying classical calculus to analyze FC. Jumarie

[1] replaced the prior RL-type fractional calculus approach to address this issue. Caputo

and Grunwald-Letnikov (GL) formulations effectively handle non-zero derivatives of con-

stant functions [8, 9]. Jumarie refined the Riemann-Liouville (RL) fractional derivatives to

address similar issues. Although the Caputo and RL definitions are commonly used in ana-

lytical contexts, the Grünwald-Letnikov (GL) definition is particularly useful for numerical

applications [3].

Modern research has placed significant emphasis on the GML function, well known for its

transcendental properties and crucial role in solving fractional-order differential and inte-

gral equations[17, 18]. A solution to the problem of summing divergent series was created

in the early 1900s by the Swedish mathematician GML. Since then, because of its crucial

significance in solving fractional-order integrals and derivatives, researchers from a wide

range of scientific and technical sectors have been enthralled by this singular transcendental

function, also referred to as the GML function [4, 19]. In exploring the fractional exten-

sion of superdiffusive transport, random walks, kinetic equations, and complex systems,

the GML function effectively addresses fractional-order derivatives and integrals [5, 20].

The exponential function ez is important in an integer-order differential equation, and it

was first introduced by the GML function and is now represented by Eα(z), which is its

one-parameter generalization [2, 4, 19]. A second complex parameter was added to this

formulation immediately after it was first introduced, Goreflo et al [7] and Agarwal [8] es-

tablished the two-parameter GML function β, R(β) > 0, the function Eα,β(z) is known as

Wiman function and it is crucial to FC. Using the Laplace transform (LT) for this function,

Humbert and Agrawal [1, 8] were able to establish several connections. Perhaps the Agarwal

function would have been a more appropriate name for this function. Humbert and Agarwal

prudently left the one-parameter GML function, that is why the two-parameter function

is currently referred to as the GML. In 1971, Prabhakar [3] introduced the GML function,

which includes three parameters α, β and γ in the form of Eγα,β(z) which is a generalization

of the Wiman function. The work demonstrates how FC expands the practical applications

of classical calculus, explaining previously unknown phenomena. Additionally, it examines
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issues of fractional differentiation using the GML function, comparing them with conven-

tional calculus techniques. This comparison helps clarify the unique advantages of FC in

solving real-world problems [1, 11].

The paper is structured as follows: Section 2 introduces preliminary concepts. Section 3 ex-

plores the application of fractional derivatives using the generalized GML function. Section

4 focuses on the numerical solution of the GML function in fractional relaxation. Finally,

Section 5 concluding remarks.

2 Principles and Notations of Fractional Calculus

2.1 Cauchy’s formula for integrating n-times [7]

For n ∈ N, a, t ∈ R, t > a, Cauchy formula for n-fold integration is given by

Inf(t) =
∫ t
a

∫ τ
a · · ·

∫ τ(n−1)

a f(τn)dτ · · · dτ2dτ1 = 1
(n−1)!

∫ t
a f(τ)(t− τ)(n−1)dτ .

2.2 Riemann-Liouville (RL) Fractional Integral[1]

The RL integral formula of order α is the extension of Cauchy’s formula, where the integer

value ′n′ is replaced by a positive real number represented by the symbol α,

Iαg(m) =
1

Γ(α)

∫ m

a
g(τ)(m− τ)(α−1)dτ.

Properties of RL Fractional Integral

• I0g(t) = g(t).

• If g(t) is continuous for t ≥ 0, then Iα(Iβg(t)) = Iβ(Iαg(t)), α, β ∈ R+.

• Iαa (t− a)ν = Γ(ν+1)
Γ(α+ν+1)(t− a)α+ν , ν > −1, α ∈ R+.

2.3 Riemann-Liouville Fractional Derivative [7]

Consider α > 0, t > a, where α, a, and t are real numbers. The Riemann-Liouville fractional

derivative, also known as the Riemann-Liouville fractional differential operator of order α,

is defined as follows:

Dα
a (f(t)) :=


1

Γ(n− α)

dn

dtn
∫ t
a

f(τ)

(t− τ)α−n+1
dτ, if α ∈ R+, n− 1 < α < n,

dn

dtn
f(t), if α = n ∈ N.
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2.4 Caputo Fractional Derivative [7]

The Caputo differential operator is considered an alternative to the RL operator. Let

f ∈ Cn[a, b], α > 0, t > a;α, a, t ∈ R. Then the Caputo fractional derivative or Caputo

fractional differential operator of order α is defined as

cDα
a (fn(t)) :=


1

Γ(n− α)

∫ t
a

fn(τ)

(t− τ)α−n+1
dτ, if α ∈ R+, n− 1 < α < n,

dn

dtn
f(t), if α = n ∈ N.

Note: cDα
a (fn(t)) = 0, where C is a constant.

2.5 Mittag-Leffler function with single parameter [3]

In 1903, the Swedish mathematician Magnus Gösta Mittag-Leffler introduced a unique spe-

cial function with the following form:

Eα(z) =

∞∑
k=0

zk

Γ(kα+ 1)
α ∈ C,Re(α) > 0.

where z is a complex variable and Γ(.) is a gamma function.

2.6 Mittag-Leffler function with two parameters

In a subsequent development, Wiman [4] introduced the two-parameter Mittag-Leffler func-

tion as Eα,β(z) in the following form:

Eα,β(z) =
∞∑
k=0

zk

Γ(kα+ β)
(α ∈ C,Re(α) > 0).

The Wiman function, a generalization of GML, marked a significant advancement. Early

research focused on the theoretical aspects of GMLs as entire functions. However, practical

applications for GMLs emerged nearly thirty years later.

2.7 Mittag-Leffler function with three parameters

A three-parameter multi-parameter GML function Eγα,β(z) was first suggested by Prabhakar

[19] in 1971 as a further generalization of the GML function. Its definition is as follows:

Eγα,β(z) =

∞∑
k=0

(γ)kzk

Γ(kα+ β)k!
(α, β, γ ∈ C,Re(α) > 0). (2.1)
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2.8 Error Function [6]

The complementary error function (erfc) is a special function in mathematics often denoted

by erfc, expressed as erfc z =
2√
π

∫ z

0
e−t

2
dt.

3 Applications of FC using the Generalized GML Function

A logical expansion of the definition of one parameter, two parameters, and three parameters

of the GML includes one of the three fundamental definitions of fractional derivatives,

accompanied by mathematical expressions. The formula for the GML function of a single

parameter

E0,1(x) =
1

1− x
,

E1,1(x) =
∞∑
k=0

xk

k!
= ex,

E1,2(x) =
1

x

∞∑
k=0

xk+1

(k + 1)!
=
ex − 1

x
,

E1,3(x) =
(−1− x+ ex)

x2
,

...
...

...,

...
...

....

In general, E1,m(x) =
1

xm−1

(
ex −

m−2∑
k=0

xk

k!

)
.

The particular cases of the MLF are hyperbolic sine and hyperbolic cosine functions.

E2,1(x2) =

∞∑
k=0

x2k

Γ(2k + 1)
=

∞∑
k=0

x2k

(2k)!
= cosh(x),

E2,2(x2) =
∞∑
k=0

x2k

Γ(2k + 2)
=

1

x

∞∑
k=0

x2k+1

(2k + 1)!
=

sinh(x)

x
.

As an extension of the hyperbolic sine and cosine, the GML function can also be used to

define the hyperbolic function of order n.

hi(x, p) =
∞∑
k=0

xpk+i−1

(pk + i− 1)!
= xi−1Ep,i(x

p),
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as well as the n-order trigonometric function that yields the sine and cosine functions.

kr(x, n) =

∞∑
j=0

(−1)jxnj+r−1

(nj + r − 1)!
= xr−1En,r(−xn),

E 1
2
,1(x) =

∞∑
k=0

xk

Γ(k2 + 1)
,

= ex
2
erfc(−x),

(3.1)

where erfc is complementary to the error function erf. Modeling fractional order viscoelastic

materials involves utilizing the GML function. Experimental examination of these materials

reveals an initial rapid decrease in stress, succeeded by a gradual decline over extended peri-

ods. This complex behavior necessitates the inclusion of numerous Maxwell components for

accurate description, posing challenges in optimizing the identification of multiple material

parameters.

3.1 Recurrence Relation

We compute the recurrence relation algebraically on the GML function using its series. A

technique to create a sequence or function repeatedly in terms of its past values is to use a

recurrence relation. The GML function, denoted by the symbol Eα,β(z) is a unique function

used in the study of FC. A particular recurrence relation is satisfied by the GML. According

to the GML, the recurrence relation can be deduced as,

Eα,β(x) = xEα,α+β(x) +
1

Γ(β)
,

=
∞∑
ν=0

xν

Γ(αν + β)
,

=
∞∑

k=−1

xk+1

Γ(α(k + 1) + β)
,

=
1

Γ(β)
+

∞∑
k=0

xk+1

Γ(αk + α+ β)
,

=
1

Γ(β)
+ x · Eα,α+β(x),

= x · Eα,α+β(x) +
1

Γ(β)
.

It is a recurrence connection because it is expressed in the specified form.

3.2 Derivatives of Mittag-Leffler function

The derivatives of the GML function can be formed using multiple definitions of the frac-

tional derivatives (FD) operator and have some distinctive and fascinating properties, such
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as non-locality and memory effects.

d

dz
Eα,β(z) =

d

dz

∞∑
ν=0

zν

Γ(αν + β)
,

=

∞∑
ν=0

νzν−1

Γ(αν + β − 1 + 1)
,

=
1

α

∞∑
ν=0

[(αν + β − 1− (β − 1)]zν−1

(αν + β − 1)Γ(αν + β − 1)
,

=
1

α · z

∞∑
ν=0

zν

Γ(αν + β − 1)
− (β − 1)

α · z

∞∑
ν=0

zν

Γ(αν + β − 1 + 1)
,

=
1

α · z
Eα,β−1(z)− (β − 1)

α · z
Eα,β(z).

The GML derivatives enable the extension of differentiation to FC, which is crucial for

modeling the nonlinear evolution of mean squared displacement in anomalous diffusion

analysis. Within this context, particle behavior is described using the GML function and

its derivatives.

3.3 Fractional Differential Equation Using GML Function

Consider the single parameter GML function, y = Eα(axα) =
∑∞

n=0
anx2n

Γ(αn+1) . The fractional

differential equation mentioned below can be solved using Caputo fractional derivatives,

6× d3αy

dx3α
+ 5× d2αy

dx2α
+
dαy

dxα
= 0.

6×C0D3α
x

[ ∞∑
n=0

anxnα

Γ(αn+ 1)

]
+ 5×C0D2α

x

[ ∞∑
n=0

anxnα

Γ(αn+ 1)

]
+C

0D
α
x

[ ∞∑
n=0

anxnα

Γ(αn+ 1)

]
= 0.

6×
∞∑

k=−3

ak+3

Γ(αk + 1)
xkα + 5×

∞∑
k=−2

ak+2

Γ(αk + 1)
xkα +

∞∑
k=−1

ak+1

Γ(αk + 1)
xkα = 0.

∞∑
k=0

[
6× a(k+3) + 5× a(k+2) + a(k+1)

] xαk

Γ(αk + 1)
= 0.

∵ ak 6= 0 =⇒ 6a3 + 5a2 + a = 0 =⇒ a = 0,−1

2
,−1

3
.

y = Eα(axα): y1 = Eα(0.xα), y2 = Eα(−1
2x

α), y3 = Eα(−1
3x

α).

The general solution is y = k1 + k2 Eα(−1
2x

α) + k3 Eα(−1
3x

α).

Compared to the result of conventional calculus,

6× d3αy
dx3α

+ 5× d2αy
dx2α

+ dαy
dxα = 0.

At α = 1, 6D3 + 5D2 +D = 0. Its A.E. is m = 0,−1
2 ,−

1
3 .

The general solution is y = k1 + k2e
− 1

2
.x + k3e

− 1
3
.x. y = k1 + k2 E1(−1

2x) + k3 E1(−1
3x).

At α = 1, y = k1 + k2e
− 1

2
.x + k3e

− 1
3
.x.

As a result, the fractional-order differential equation’s solution matched with the classical

differential equation, ensuring accurate results.
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4 Numerical solution of GML function in fractional relax-

ation

This expansion illustrates how the gamma function, with variable parameters Eα, is involved

in several terms that make up the GML, as seen in Equation 2.5. It is important to notice

because it signifies the potential for infinite growth or divergence.

Eα(x) = 1 +
x

Γ(α+ 1)
+

x2

Γ(2α+ 1)
+

x3

Γ(3α+ 1)
+ . . .+

xn

Γ(nα+ 1)
+ . . . (4.1)

Specifically, we are curious about the function Eα(t) for t > 0, 0 < α ≤ 1

eα(t) := Eα(−tα) = 1− t−α

Γ(1− α)
+

t2α

Γ(1 + 2α)
− t−3α

Γ(1− 3α)
+ . . . (4.2)

We display graphs of Eα(x) for various α values in Fig. 1, illustrating different rates of decay

Figure 1: Eα(x) in (4.1) for α =

0.25, 0.50, 0.75, 1

.

Figure 2: Eα(t) in (4.2) for α =

0.25, 0.50, 0.75, 0.90, 1

.

over short and long durations. The graph significantly slows as x tends to +∞ and speeds

up as x tends to 0+. Plots of Eα(x) shows that fractional relaxation has different features

from the exponential function for a = 1 (Fig. 1). We highlight dominant asymptotic trends

on both small and large time periods. Moreover, when α = 1, it simplifies to an exponential

function, potentially involving a complex parameter α, provided that Re(α) > 0. In fig., 2,

we show multiple graphs for different values of the parameter eα(t) for various value of α.

Differentiate the decay rates of eα(t) across time scales. Decay decreases greatly as time

near positive infinity and increases significantly as time approaches zero from the right. The

exponential extended is used instead of the fast decreasing expression (1−tα)
Γ(1+α) from (4.2).
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4.1 Generalised GML Function of complex variable in three Dimension

Figure 3: The GML function in 3 dimention A: at α = 0 : 0.03 : 1 and B: α = 0 : 0.01 : 1

(A) (B)

(C)

When X is the real component, Y is the imaginary part, and Z is a complex variable in

figures 3 A and 3 B at α = 0 : 0.03 : 1 and α = 0 : 0.01 : 1 respectively. The complex

variable z = x+ iy will then pass through the GML function, the initial parameters a = 1

and b = 0.3 generates a grid of complex numbers (x,y) in the range [0,1] and evaluates

the GML function for each point in the grid. There are various collections of points in

the complex plane. The real component in figure 3 C is represented by X, imaginary

component by Y , complex variable by Z, whereas in the base of the surface figure, the 3

dimension contour is clearly visible in the complex plane and the surface is generated in the

polar coordinate at an angle and radius vector in 0 : 05 : 2π.

4.2 Generalised the GML Function of three Independent Parameters

The GML function is determined using the most precise and efficient method, which is

based on numerically inverting the Laplace Transform (LT). In 1971, Prabhakar introduced

the function involving three parameters α, β, γ in the form of

Eγα,β(z) =
∑∞

n=0
(γ)n

n!Γ(αn+β) · z
n, R(α) > 0, R(β) > 0 and R(γ) > 0 (4.3)

9
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where,(γ)n = γ(γ + 1)(γ + 2) · · · (γ + n− 1) =
Γ(γ + n)

Γ(γ)
,

γ indicates the Pochhammer symbol. When γ = 1, then it reduces to two-parameter Mittage leffler function.

E1
α,β(z) =

∞∑
n=0

zn

Γ(αn+ β)
, (4.4)

Like wise, when β =1,then the function reduces to one parameter Mittag Liffler function.

E1
α,1(z) =

∞∑
n=0

zn

Γ(αn+ 1)
, (4.5)

when γ = 1, β = 1 and α = 1,

E1
1,1(z) =

∞∑
n=0

zn

n!
= ez. (4.6)

While exponential functions are often used in classical calculus and GML function is fre-

quently used in fractional calculus, the former is the generalization of the latter.

Figure 4: The GML function Eγα,β (z)= (α = 1.5, β= 2.5, γ =1.75) E1
α,β (z)=

(α = 2.5, β= 1.75, γ =1), E1
α,1 (z)= (α = 1.5, β= 1, γ =1), and E1

1,1 (z)= (α = 1, β= 1,

γ =1)

The equation (4.4) shows that when γ is replaced with one, the three-parameter GML, also

known as the Prabhakar function, reduces to a two-parameter the GML. Likewise, when β

is replaced with one then equation (4.5), reduces to one parameter. The equation (2.7) is

the definition of the three-parameter GML. The exponential function is a classical function

in calculus that is referred to as the GML if alpha is also equal to 1. The GML is a flexible

and convertible extension of the popular exponential function 4.6. The GML is an impor-

tant part of FC, just as the exponential function is in classical calculus.

10
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The solutions are shown in Table 1 for the various values of three independent parameters

α, β and γ in the time interval 0 ≤ z ≤ 1. The adjacent table shows that the approximate

values closely match the exponential function ez when the values of α, β, and γ are equal to

1. For different values of α, the single-parameter the GML function acts as a generalization

of the exponential function. On the other hand, the GML function with a second parameter

is derived and defined in reference (4.5), while the GML function with three parameters is

generated by the function specified in reference (4.4). Utilizing the GML technique provides

a dependable and efficient solution for fractional order differential equations. As α, β, and

γ approach 1, the error diminishes, often resulting in the analytical solution being a suitable

approximation for nearby values of these parameters.

Table 1: GML function of three independent parameters α, β and γ.

Steps sizes E1.75
(1.5,2.5)(z) E1

(2.5,1.75) (z) E1
1.5,1 (z) E1

1,1 (z)

0 1.0000 1.0000 1.0000 1.0000

0.1000 1.1357 1.0302 1.0769 1.1052

0.2000 1.2798 1.0605 1.1573 1.2214

0.3000 1.4326 1.0910 1.2412 1.3499

0.4000 1.5946 1.1217 1.3288 1.4918

0.5000 1.7660 1.1525 1.4203 1.6487

0.6000 1.9473 1.1836 1.5157 1.8221

0.7000 2.1390 1.2147 1.6151 2.0138

0.8000 2.3414 1.2461 1.7188 2.2255

0.9000 2.5550 1.2776 1.8269 2.4596

1.0000 2.7802 1.3093 1.9395 2.7183

4.3 Test of Convergence of the GML function for two Parameters.

Table 2 shows that if we increase n to 1 : 3, the sum of the four terms of the GML is equal

to 1.1070 while the value has been rising. If we choose n = 1 : 1, it returns the sum of the

two terms is equal to 1.1000 in the numerical value corresponding to the parameters a = 1,

b = 2, and z = 0.2. Now, if we increase n by a factor of 1 : 5, n = 1 : 100, or n = 200, the

value is equal to 1.1070. Similarly, if we add the series of 201 terms together, then it is also

equal to 1.1070. Since we examined several the GML values, just five terms are required

for convergence. It is concluded that convergence requires no more than five values. The

time complexity for this function is more. For the convergence of a series, the first hundred

terms are sufficient.
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Table 2: Numerical values of GML for two parameters

Steps Sizes Numerical Value

n = 1 : 1 1.1000

n = 1 : 3 1.1070

n = 1 : 5 1.1070

n = 1 : 100 1.1070

n = 1 : 500 1.1070

5 Conclusion:

In this article, we explored the convergence of the GML function with two parameters. Our

findings showed that it typically converges within the first five terms, but achieving this

convergence comes with higher time complexity. Because of its flexibility, the GML function

simulated well-known functions like the exponential and Prabhakar functions, particularly

as parameters approach 1, thereby facilitating accurate solutions in fractional-order differen-

tial equations. The single-parameter GML function exhibits different rates of disintegration

of Eα(x) over time within a range of 0 < α ≤ 1, particularly when α is equal to 1. Variable

decay rates over time are displayed in eα(t) graphs for various α values; the rates are slower

toward infinity and quicker near zero. We found that the GML method offers a stable and

effective solution. As the values of α, β, and γ approach 1, the error in the solution di-

minishes, often resulting in the approximate solution matching the analytical solution. The

applicability of the GML function in many cases involving fractional calculus is demon-

strated in this paper. Additionally, our study demonstrated that the GML function is quite

similar to classical differential equations, ensuring accurate findings. The significance of

representing the nonlinear growth of mean squared displacement in anomalous diffusion

analysis is highlighted by this result.
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Birkhäuser, Singapore, Vol.12, pp. 295-310, 1903. https://doi.org/10.1007/

978-981-13-3013-1_15

[9] H. T. Davis, The Theory of Linear Operator, Myers Press, Bloomington, USA, 2008.

[10] S.Das, Functional fractional calculus, Springer Science & Business Media, Second Edi-

tion, 2011.

[11] S. Rogosin M.Dubatovskaya, Fractional calculus in Russia at the end of XIX Century,

Mathematics, 9(15),1736, 2021. https://doi.org/10.3390/math9151736

[12] V. Gejji, Fractional Calculus and Fractional Differential Equations, Springer Nature,

pp. 1-16, 2019. https://doi.org/10.1007/978-981-13-9227-6.

[13] A.Kochubei Y.Luchko, Handbook of Fractional Calculus with Applications in Physics,

1, 1-304, Walter de Gruyter Gmbh, 2019.

[14] H. R. Pandey, G. R. Phaijoo, and D. B. Gurung, “A Comprehensive Study of

Fractional-Order Derivative and Their Interplay with Basic Functions”, J. Nep. Math.

Soc., Vol. 6(2), pp. 38–52, 2024.

[15] K. Parmikanti, E. Rusyaman, Grundwald-Letnikov operator and its role in solving frac

tional differential equations, EKSAKTA: Berkala Ilmiah Bidang MIPA, Vol. 23(03),

pp. 223-230, 2022.

13

https://doi.org/10.1007/978-3-7091-2664-6_6
https://doi.org/10.1007/978-3-7091-2664-6_6
https://doi.org/10.1007/978-981-13-3013-1_15
https://doi.org/10.1007/978-981-13-3013-1_15
https://doi.org/10.3390/math9151736
https: //doi.org/10.1007/978-981-13-9227-6


The Nepali Math. Sc. Report Year: 2024, Volume: 41, No: 1

[16] Pariyar, S. (2023). Numerical Analysis for Fractional Calculus. M.Phil. thesis, Central

Department of Mathematics, Tribhuvan University, Nepal.

[17] W. K. Zahra S. M. Elkholy, The Use of Cubic Splines in the Numerical Solution of Frac-

tional Differential Equations, International Journal of Mathematics and Mathematical

Sciences, Vol. 2012, 16 pages, 2012. https://doi.org/10.1155/2012/638026

[18] B.Ya.Levin, Distribution of Zeros of Entire Functions, American Mathematical Society,

Vol. 5, 1980.

[19] M.G. Mittag-Leffler, Sopra la funzione Eαx/. Rend. R. Acc. Lincei, (Ser. 5) 13, 3-5,

1904.

[20] R. N. Pillai, On Mittag-Leffler functions and related distributions, Ann. Inst. Stat.

Math., 42(1), 157-161, 1990.

[21] Pariyar, S. & Kafle, J. Approximation solutions for solving some special functions of

fractional calculus via caputo-fabrizio sense. Nepal Journal of Mathematical Sciences,

Vol.3( 2): 71-80, 2022. DOI:10.3126/njmathsci.v3i2.4920.

[22] Pariyar, S., & Kafle, J. Caputo-Fabrizio approach to numerical fractional derivatives.

BIBECHANA, 20(2), xx-xx. ISSN 2091-0762 (Print), 2382-5340 (Online), (2023). Re-

trieved from http://nepjol.info/index.php/BIBECHANA

14

https://doi.org/10.1155/2012/638026
DOI: 10.3126/njmathsci.v3i2.4920
http://nepjol.info/index.php/BIBECHANA

	Introduction
	Principles and Notations of Fractional Calculus
	Cauchy's formula for integrating n-times gorenflo1997fractional
	Riemann-Liouville (RL) Fractional Integralpodlubny1999introduction
	Riemann-Liouville Fractional Derivative gorenflo1997fractional
	Caputo Fractional Derivative gorenflo1997fractional
	Mittag-Leffler function with single parameter Aleroev2019Ero
	Mittag-Leffler function with two parameters
	Mittag-Leffler function with three parameters
	Error Function Andres1998s

	Applications of FC using the Generalized GML Function
	Recurrence Relation
	Derivatives of Mittag-Leffler function
	Fractional Differential Equation Using GML Function

	Numerical solution of GML function in fractional relaxation
	Generalised GML Function of complex variable in three Dimension
	Generalised the GML Function of three Independent Parameters
	 Test of Convergence of the GML function for two Parameters.

	Conclusion:

