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Abstract: Water movement in unsaturated porous medium (soil) can be expressed by

Richards equation with the mass conservation law and Darcy–Buckingham’s law. This

equation can be expressed in three different forms as pressure head based, moisture con-

tent based and mixed from. In this study, we solve one dimensional Richards Equation in

mixed form numerically using finite difference method with various time–stepping schemes:

Forward Euler, Backward Euler, Crank–Nicolson and a Stabilized Runge–Kutta–Legendre

Super Time-Stepping and we compare their performances using Dirichlet boundary condi-

tion on an isotropic homogeneous vertical soil column.
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1. Introduction

Water flow in unsaturated porous media (soil) is an important phenomena in ground-

water hydrology. Water movement phenomena in unsaturated zone creates an emerging

and realistic problems like contaminant transport, water–added transport of solutes and

predicting water percolation in groundwater hydrology. In unsaturated zone the flow of

water ascribable to capillary action and gravitational potential and is assumed to obey the

classical Richards Equation [1]. Richards Equation is the combine from of mass conserva-

tion law and Darcy–Buckingham’s law [2]. Consequently, this equation has three different

forms as pressure head, moisture content and mixed from depending on either moisture

content θ and pressure head ψ as the dependent variable. The constitutive (experimental)

relationship between θ = θ(z, t) and ψ = ψ(z, t) allows the conversion from one another.

As shown in [1] the couple or mixed form of Richards Equation takes the following form.

∂θ

∂t
−∇.K(ψ)∇ψ − ∂K

∂z
= S(z, t),(1.1)

where, θ is the volumetric moisture content, ψ is the pressure head K(ψ) is the unsaturated

hydraulic conductivity, describes the behavior of water flow that can move through pore
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space, and depends on the permeability of the material used along with the properties of

fluid [2]. S(z, t) is the absorption or evapotranspiration rate for the root zone.

Constitutive relations between θ = θ(z, t) and ψ = ψ(z, t) and between K and ψ are

developed appropriately, which consequently give nonlinear behavior to equation (1.1). To

develop the accurate and reliable approximation of these relations are in general difficult

and also a challenging task. Mostly, the choice of appropriate parameters are either from

field measurements or laboratory experiments. But to gather these parameters, certainly it

is an expensive task and the poorer condition is that these are limited to particular cases

only. Moreover, the most widely used experimental constitutive relations for the moisture

content and hydraulic conductivity are due to the work of Gardner, Brooks and Corry, van

Genuchten and Haverkamp et al. [3]. Among these we use the following popular model

from ground water hydrology due to Haverkamp et al. [4]

(1.2) θ(ψ) = θr +
α(θs − θr)
α+ |ψ|β

,K(ψ) =
KsA

A+ |ψ|γ
,

where θs and θr represent the saturated and residual moisture content respectively, Ks

corresponds to the saturated hydraulic conductivity, and A, α, β, γ are dimensionless soil

parameters.

The consecutive relations K(ψ) and θ(ψ) in equation (1.2) have a property to change

dramatically over a small range of ψ. Moreover, adopting these relations in Richards Equa-

tion (1.1), it becomes a highly nonlinear PDE in which analytical solution is rare and limited

for particular case only. In groundwater regime, the movement of water in unsaturated soil

is really a complicated process. Because of its complex nature, lack of absolute and re-

liable analytical solution to predict the flow movement via Richards Equation, numerous

numerical methods have been developed. In recent years considerable amount of highly

performable numerical methods are used to obtain the robust and reliable solution of the

problems related to unsaturated flow. But there is a discrepancy of accuracy between the

methods. Furthermore, they have assured a high computational cost and are inefficient for

many realistic cases. Indeed, the expressions of equation (1.2) make the Richards Equa-

tion (1.1) highly nonlinear, it is customarily important to develop an efficient and accurate

numerical approximation schemes for reliable solution. For this reason numerical approxi-

mation in infiltration problems are still considered to be one of the most important topics

in groundwater hydrology.

Number of procedures developed as [5], [6], [7], [4], [8], [9] based on finite difference,

finite element, finite volume, and Adaptive time–stepping strategies [10] for spatial dis-

cretization techniques to the partial differential equations have been used to approximate

the numerical solution of Richards Equation (1.1).

Forward Euler scheme which is used to obtain the solution of Richards Equation (a

parabolic PDE) has a strong restrictive stability criteria. With this reason researchers have

not paid an effective cost to develop Forward Euler scheme for the Richards Equation.

Most of the research work are devoted in developing Backward Euler scheme. Although

Backward Euler schemes are unconditionally stable but with the iterative process in which

the inverse matrix involved, they all turn out to be computationally high cost and in certain
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circumstances unrealistic. Because of the presence of nonlinear behavior in the problem,

to implement Forward Euler schemes, no mater which numerical approaches we use, the

problem has to be linearized somehow at some stage. Indeed, some iterative approaches

need to be applied to tackle this highly nonlinear problem to obtain the desired solution

[3, 11].

Current trends in computational regime is to develop efficient parallelizable algorithm

for High-performing Computers. To make the numerical procedures parallelizable, it is

considered that the algorithm should be iteration free. For this, appropriate use of Forward

Euler scheme is the best option. In [12], numerical solution of a linearized Richards equation

is explained. In [8, 13], stability analysis of an Forward Euler scheme for the Richards

Equation is derived.

In this work, to reduce the highly nonlinear Richards Equation to a functional non linear

parabolic form, Kirchhoff integral transformation technique is used. The transformed equa-

tion is then solved numerically using Forward Euler, Backward Euler, Crank–Nicolson and

a Stabilized Runge–Kutta–Legendre Super Time–Stepping scheme with Dirichlet boundary

conditions respectively. Then their performances are compared accordingly.

The aim of this research work is to implement Super Time–Stepping strategies to

stabilize an Forward Euler scheme [14] to the Kirchhoff transformed Richards Equation

with dirichlet boundary condition which is relatively a new numerical approach. The work

presented here, describes and verifies the implementation procedures and accuracy of a

stabilized Runge–Kutta–Legendre Super Time–Stepping strategy (RKL) at Forward Euler

finite difference scheme with Dirichlet boundary condition to simulate flow in unsaturated

porous media (soil) in a vertical homogeneous soil column. The effectualness of using

our scheme is that it is easy to implement, can be easily extended to problems in higher

dimensions, and the most important property that it is unconditionally stable.

The paper is arranged in the following. Section 2 briefly describes the Kirchhoff trans-

formation to linearize the Richard Equation. In section 3, numerical methods based on

finite difference schemes are presented. In section 4, different test cases are solved and the

results and conclusions are in section 5.

2. Simplified One–Dimensional Richards Equation

Considering the one space dimension, the Richards Equation (1.1) without sink and

source term becomes

(2.1)
∂θ

∂t
=

∂

∂z

(
K(ψ)

∂ψ

∂z

)
− ∂K

∂z
.

Then the equation(2.1) is generally used to simulate infiltration experiments. These

experiments begin with wetting soil on top of the ground surface, showing a clear connection

with the Darcy–Buckingham’s law. If the soil is dry, it should be powered water on the top

of ground surface. We make the assumption that the infiltration begins with known water
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pressure head at the top and bottom of the soil column. For this we use the following initial

and boundary conditions.

(2.2)


ψ(z, 0) = ψ0(z), 0 < z < L,

ψ(0, t) = β1(t), t > 0,

ψ(L, t) = β2(t), t > 0.

2.1. Kirchhoff Integral Transform. Kirchhoff integral transformation transformed equa-

tion (2.1), with h = ψ − z by defining

(2.3) φ(h) =

∫ h

0
K̄(λ)dλ.

Since K(h) > 0 from (1.2), the function φ(h) is strictly increasing with K̄(h) = K(ψ).

Differentiating both sides to equation (2.3), we obtain :

(2.4)
∂φ

∂z
=
∂φ

∂h

∂h

∂z
= K̄(h)

∂(ψ − z)
∂z

= K(ψ)(
∂ψ

∂z
− 1) = K(ψ)

∂ψ

∂z
−K(ψ).

Again differentiating of equation (2.4),

(2.5)
∂2φ

∂z2
=
∂(K(ψ)∂ψ∂z )

∂z
− ∂

∂z
(K(ψ)).

Using the equation (2.5), the Richards Equation (2.1) takes the form

(2.6)
∂θ̄

∂t
=
∂2φ

∂z2
.

with θ̄(φ) = θ(h). The corresponding initial and boundary conditions to the transformed

equation (2.6) takes the following form

(2.7)


φ(z, 0) = φ0(z), 0 < z < L,

φ(0, t) = β̄1(t), t > 0,

φ(L, t) = β̄2(t), t > 0.

The Kirchhoff transformation transformed the nonlinear equation (2.1) to a linear par-

abolic problem (2.6). Also we note that it preserves the uniqueness result for the resulting

problem [13].

3. Numerical Method

To solve equation (2.6) numerically with the prescribed initial and boundary conditions

(2.7), a single state variable is more applicable. For this, we assume θ and φ are single valued

continuous functions of one another and rearrange the relation

(3.1)
∂θ

∂t
=
∂θ

∂φ

∂φ

∂t
= (

1
∂φ
∂θ

)
∂φ

∂t
,

∂φ

∂θ
=
∂φ

∂h

∂h

∂θ
.

After differentiating (1.2) and (2.7) with respect to h, we have the following expressions

(3.2)
∂θ

∂h
= α(θs − θr)(α+ |h|β)−2.β|h|β−1, ∂φ

∂h
= K̄(h) = K(ψ).
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The transformed Richards Equation (2.6) with the help of (3.1) and (3.2) takes the

following form

(3.3) c(φ)
∂φ

∂t
=
∂2φ

∂z2
,

where the functional coefficient c depends on φ through h is described as

(3.4) c(φ(h)) =
αβ(θs − θr)|h|β−1

K̄(h)(α+ |h|β)2
.

3.1. Finite Difference Approximation. The standard finite difference approximation

for the equation 3.3 starts with the supposition of ∆z = L/M and ∆t = T/N . To

apply this, firstly we construct a grid (zj , tn), with zj = j∆z, j = 0, 1, 2, · · · ,M and

tn = n∆t, n = 0, 1, 2, · · ·N . Let φnj denote φ(zj , tn). Now (3.3) can be approximated

using forward difference in time and central difference in space as

(3.5)
∂φ

∂t

∣∣∣∣
(zj ,tn)

≈
φn+1
j − φnj

∆t
,

∂2φ

∂z2

∣∣∣∣
(zj ,tn)

≈
φnj−1 − 2φnj + φnj+1

∆z2
.

Let 0 ≤ δ ≤ 1. Using a weighted average of the derivative ∂2φ
∂z2

at two time levels, tn

and tn+1, the equation (3.3) can be discretized as:

(3.6) φn+1
j = φnj + λnj

[
δ(φn+1

j−1 − 2φn+1
j + φn+1

j+1 ) + (1− δ)(φnj−1 − 2φnj + φnj+1)
]
,

where λnj = ∆t/(cnj ∆z2).

Equation (3.6) is used to update the values of φn+1
j for the internal nodes. Using the

constant pressure head (Dirichlet boundary) at the upper and lower boundaries, we get

(3.7)

{
φn+1
0 = β̄1(tn+1),

φn+1
M = β̄2(tn+1).

The numerical scheme (3.6)-(3.7) represents a forward in time central in space (Forward

Euler), backward in time central in space (Backward Euler) and Crank-Nicolson (CN)

schemes for δ = 0, δ = 1 and δ = 1
2 respectively [15]. The error associated with this

approximation is O(∆z2 + ∆t) for all δ 6= 1
2 . In the case of Crank-Nicolson, it is O(∆z2 +

∆t2), second order accurate in both space and time.

The corresponding tridiagonal matrix system of the above numerical procedure is
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1 0 0 ... 0 0 0

−δλn1 1 + 2δλn1 −δλn1 ... 0 0 0

... ... ... ... .... .... ....

... ... ... ... .... .... ....

0 0 0 ... −δλnM−1 1 + 2δλnM−1 −δλnM−1
0 0 0 ... 0 0 1





φn+1
0

φn+1
1

...

...

φn+1
M−1
φn+1
M


(3.8)

=



β̄1(tn+1)

(1− δ)λn1φn0 + (1− 2(1− δ)λn1 )φn1 + (1− σ)δn1φ
n
2

...

...

...

(1− δ)λnM−1φnM−2 + (1− 2(1− δ)λnM−1)φnM−1 + (1− δ)λnM−1φnM
β̄2(tn+1)


.

The numerical scheme (3.8) can be used to update the transformed variable φnj to its

value in the next time level φn+1
j . But we cannot advance the algorithm to the next time level

φn+2
j without evaluating the function c(φn+1

j ) which requires computing the intermediate

variable hn+1
j . For this, we imply the equation (3.2) which can be approximated as

(3.9) hn+1
j = hnj +

φn+1
j − φnj
K̄(hnj )

.

3.2. Stability Analysis. We use Von Neumann stability analysis for equation (3.6). We

assume a Fourier component as φnj = φ̄neij2πhζ . Now the scheme (3.6) becomes

(3.10) − δλnj (e−2iπhξ − 2 + e2iπhξ) ¯φn+1 + ¯φn+1 = (1− δ)λnj (e−2iπhξ − 2 + e2iπhξ)φ̄n + φ̄n.

Using the relation

(3.11) 2hπξ = u, cosu =
eiu + e−iu

2
,

equation (3.10) becomes

(3.12) φ̄n+1(1− δλnj (e−2iπhξ − 2 + e2iπhξ)) = φ̄n(1 + (1− δ)λnj (e−2iπhξ − 2 + e2iπhξ)).

Introducing an amplification factor such that φ̄j
n+1

= Gφ̄nj , then

(3.13) φ̄n+1(1 + 2δλnj (1− cosu)) = φ̄n(1− 2(1− δ)λnj (1− cosu)),

gives

(3.14) G =
(1− 2(1− δ)λnj (1− cosu))

(1 + 2δλnj (1− cosu))
.
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For a stable solution the absolute value of G must be bounded for all values of u.

Mathematically, it is expressed as

|G| ≤ 1,

|
(1− 2(1− δ)λnj (1− cosu))

(1 + 2δλnj (1− cosu))
| ≤ 1,

so that

(3.15) − 1 ≤
(1− 2(1− δ)λnj (1− cosu))

(1 + 2δλnj (1− cosu))
.

Inequality (3.15) is satisfied for all values of u. With the maximum value of (1− cosu) = 2

equation (3.15) takes the form

(1− 4(1− δ)λnj
1 + 4δλnj

≥ −1,

which is same as

(3.16) 4λnj (1− 2δ) ≤ 2,

it is easy to see that if δ ≥ 1
2 , inequality (3.16) is always satisfied and if δ < 1

2 , inequality

(3.16) is satisfied only if

(3.17) λnj ≤
1

(1− 2δ)

It can be shown that the numerical scheme (3.6) is unconditionally stable for δ ≥ 1
2 , and

for δ < 1
2 the scheme is stable only if maxλnj ≤ 1

2 which puts a severe restriction on the

time step-size known as Courant–Friedrichs–Lewy (CFL) condition as

(3.18) ∆t ≤ 1
2

[
min c(φnj )∆z2

]
.

3.3. Super Time-Stepping Scheme. When δ = 0, the equation (3.8) takes the form

φn+1
0

φn+1
1

...

...

φn+1
M−1
φn+1
M


=



0 0 0 ... 0 0 0

λn1 1− 2λn1 λn1 ... 0 0 0

... ... ... ... .... .... ....

... ... ... ... .... .... ....

0 0 0 ... λnM−1 1− 2λnM−1 λnM−1
0 0 0 ... 0 0 0





φn0
φn1
...

...

φnM−1
φnM


+



β̄1(tn+1)

0

...

...

0

β̄2(tn+1)


,

and it gives the following expression

(3.19) Φn+1 = R(∆tA)Φn + ∆tEn,

where the amplification factor R = I − ∆tA with the tridiagonal matrix A appropriately

defined from the above linear system.

It is clear that the right hand side of this equation (3.19) is explicitly known at the

time level tn and there is no need to matrix inversion or not to apply any iterative approach

to solve it. But, there is a major drawback of this scheme. A stumbling block is appear by

the stability criterion, also known as CFL–condition (3.9).
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As is shown the above algorithm (3.18) is subjected to the restrictive stability condition

which is equivalent to the fact that the spectral radius of matrix R ≤ 1.

Super Time–Stepping scheme alleviates the restriction of the CFL condition by requir-

ing stability at the end of one Super Time-Step ∆τ consisting of a cycle of s sub–steps,

rather than at the end of each time step ∆t, thus leading to a Runge–Kutta like method with

s stages. The interior values have, in general, no approximation properties and it should be

considered as intermediate calculations. The Runge–Kutta–Legendre(RKL) methods are

focused on using shifted Legendre polynomials as the stability polynomial of the scheme.

Like wise Chebyshev polynomials, Legendre polynomials are bounded in unity and they are

useful to develop a stable scheme. Here we use a stabilized Runge–Kutta–Legendre Super

Time-Stepping scheme where the amplification factor Rs(∆τA) is defined in terms of the

Legendre polynomials [14]

(3.20) Rs(z) = as + bsPs(wo + w1z).

The parameters as = 0, bs = 1, w0 = 1 and w1 = 2
s2+s

are chosen to satisfy the consistency

conditions at first order Rs(0) = 1 and R
′
s(0) = 1. Thus the s-stage RKL scheme takes the

form

(3.21) Φn+1 = Ps(I − w1∆τA)Φn + ∆τEn,

from the three point recursion property of the Legendre polynomials

(3.22) (k)Pk(x) = (2k − 1)xPk−1(x)− (k − 1)Pk−2(x).

The RKL scheme (3.20) can be written as

(3.23)


U0 = Φn

U1 = U0 − µ̄1∆τAU0 + ∆τEn

Uk = µkUk−1 + νkUk−2 − µ̄k∆τAUk−1, 2 ≤ k ≤ s
Φn+1 = Us

,

where

µk =
2k − 1

k
, µ̄k =

2k − 1

k
w1, νk =

1− k
k

.

We have that the RKL scheme has a maximum super-step of

∆τmax =
∆t

w1
= ∆t

(
s2 + s

2

)
.

The Runge–Kutta–Legendre method described from above recursive relation is consistent

and stable at each of the intermediate stages which is more applicable for output.

4. Simulation Results

4.1. Numerical Setup. The numerical manual developed in the previous section is written

in Python, and ran on a pc with 2.50 GHz Quad–Core Intel Core i5 processor. We analyzed

the behavior of the four numerical schemes presented in the previous section in a specific

infiltration experiment. In this simulation we considered a vertical soil column of depth

L = 70 cm in a time period of tmax = 1 hr.
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Following Haverkamp et al. [4], we used the soil parameters and the characteristics

relationship between the soil moisture content θ(ψ) and the hydraulic conductivity K(ψ)

as follows

θ(ψ) = θr +
α(θs − θr)
α+ |ψ|β

,

K(ψ) = Ks
A

A+ |ψ|γ
.

The simulation starts with a uniform saturation and a constant water head ψ = −61.5

cm is maintained at the bottom and top boundary z = 0, z = L.

To compute the approximate solution using the explicit scheme i.e. Forward Euler,

we have used a uniform spatial step–size ∆z = 1 cm and the time step–size ∆t = 0.005

sec which guarantees the CFL condition (3.18). This being a highly resolved in temporal

direction, we use it as the representative solution to compare with all other methods. The

implicit schemes i.e. Backward Euler and Crank–Nicolson (CN), being unconditionally

stable, have no restriction on the time step–size. The step–size is estimated only by the

accuracy of approximation. We developed the stabilized Runge–Kutta–Legendre Super

Time–Stepping (RKL) scheme which is also unconditionally stable. The step–size in RKL

is defined by the appropriateness of number of sub–steps in one Super Time–Stepping cycle

and, of course, this can be chosen by compromising the accuracy of approximation. As such,

to analyze the performance of RKL compared to the implicit schemes Backward Euler and

Crank–Nicolson, we run Backward Euler and Crank–Nicholson with ∆t =
∑s

k=1 ∆τ for

different values of s. To deal with the nonlinear dependence of the functional coefficient

c(φ) in the implicit schemes, we use fix point iteration with maximum allowable iteration

MAXIT = 10 and relative error tolerance TOL = 10−6.

4.2. Results and Discussion. In general, Richards Equation is a highly nonlinear de-

generate PDE. The nonlinear behavior appears from the use of constitutive relationship

between θ and ψ and K and ψ. The numerical solutions of the Richards Equation is com-

puted using four different schemes namely Forward Euler, Backward Euler, Crank–Nicolson

and RKL. First, we observed that Forward Euler scheme is conditionally stable where as

Backward Euler, Crank–Nicolson and RKL schemes are unconditionally stable. Thus, to

create a long simulation with the explicit scheme, it is necessary to fix the CFL–satisfying

time step–size. Since we do not have accurate solution to estimate the errors, we use the nu-

merical solution obtained from the fully explicit numerical scheme with a fine mesh (∆z = 1

cm, and ∆t = 0.002 sec) as the reference solution.

For the comparison of the methods regarding to their performance, we make simulations

with a fairly fine mesh of ∆z = 2 cm, and find ∆texpl using CFL criteria and define

∆τ = ∆texpl

(
s2+s
2

)
as the time step size of a sub step in a super time step. Keeping

in mind that, comparison of explicit and implicit scheme is not reliable and authentic.

Explicit scheme require too many time-steps and implicit scheme requires a large number

of iterations. As we are using linear system solver in the implicit schemes, it is impossible

to compare the efficiency using the same time-step size. To make the comparison more

reliable, we have used the time step–size for implicit schemes equal the duration of one
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a(s=20) b(s=25)

c(s=35) d(s=60)

Figure 1. Convergence of methods [Forward Euler, RKL, Backward Euler,

Crank-Nicolson] s = 20 in (a), s = 25 in (b), s = 35 in (c) and s = 60 in (d)

.

a b

c

Figure 2. Test comparison of the four methods error in infinity norm(a),

in 2 norm (b) and speedup with RKL(c)

.

super–step in RKL, ∆t = s∆τ , the time period of one super time step size. The simulation

results (speedup and the accuracy) are mention in the Tables 1–3 and Figures 1–3. The

corresponding CPU time (in sec) of all the numerical schemes implemented in this work is

shown in the Table 1. The total CPU time of the RKL scheme for different values of s shows

the acceleration in the speed of the explicit scheme Forward Euler (s = 1). Figure 1, shows

the comparison of the CPU timings of the RKL for various values of s with the implicit

schemes Backward Euler and Crank-Nicolson. The errors comparison in the final values

of water moisture content θ at t=1 hr obtained from RKL and the other three schemes in
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Figure 3. Variational trend of moisture content in depth (left) and pressure

head (right)

.

Table 1. Timing of four Methods

s RKL Time Impl Time CN Time

1 635.336 2496.323 2477.082

2 287.616 867.910 864.529

3 188.661 441.445 440.695

4 142.378 268.695 269.015

5 113.126 180.680 184.741

10 56.743 50.773 51.763

20 28.572 13.651 13.561

25 23.451 8.991 8.941

30 19.991 6.450 6.310

35 17.261 5.270 6.480

40 14.901 3.790 4.660

45 13.041 2.970 4.330

50 12.891 2.200 3.570

55 11.021 2.100 1.800

60 10.351 1.810 2.990

65 9.891 1.600 2.400

70 8.740 1.440 2.090

75 9.281 1.460 2.010

80 9.821 1.590 1.720

85 8.510 1.270 1.680

90 6.920 1.080 1.440

95 7.220 0.940 1.420

100 8.000 1.030 1.460

150 7.360 0.740 1.050
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Table 2. Test of RKL scheme with Forward Euler, Backward Euler and

Crank–Nicolson in L∞

s ||RKL− EE||∞ ||RKL− IE||∞ ||RKL− CN ||∞
1 7.91883E-07 7.92191E-07 7.92037E-07

2 4.16374E-04 4.15648E-04 4.15646E-04

3 3.44738E-04 3.42923E-04 3.42917E-04

4 2.94148E-04 2.90884E-04 2.90868E-04

5 2.56587E-04 2.51515E-04 2.51480E-04

10 1.57518E-04 1.38127E-04 1.37661E-04

20 9.15400E-05 2.00068E-05 1.82310E-05

25 7.70383E-05 3.25982E-05 4.89687E-05

30 6.73398E-05 8.49890E-05 1.18264E-04

35 6.05417E-05 1.38871E-04 1.98461E-04

40 5.55521E-05 1.94192E-04 2.95403E-04

45 5.18694E-05 2.50644E-04 6.76712E-04

50 4.86540E-05 4.91707E-04 7.59637E-04

55 4.59088E-05 5.78174E-04 7.63081E-04

60 4.41741E-05 4.98196E-04 7.64781E-04

65 4.35869E-05 7.65184E-04 7.17074E-04

70 3.88258E-05 7.70164E-04 7.70164E-04

75 3.91283E-05 6.00136E-04 7.69862E-04

80 4.21220E-05 7.64327E-04 7.66867E-04

85 4.45288E-05 7.64461E-04 7.61731E-04

90 2.77711E-05 7.81219E-04 7.54348E-04

95 5.20295E-05 7.56960E-04 7.56504E-04

100 1.86392E-05 7.90351E-04 7.90351E-04

150 1.93465E-04 1.00245E-03 9.86502E-04

L∞-norm and L2-norm are in Tables 2 and 3. Also table 2 shows the stability of the explicit

scheme RKL as the overall error in L∞-norm with respect to the reference solution is not

increasing much with the increase in the values of s. From Table 3, similar behavior are

observed with the errors measured in L2-norm.

Comparison of the solution θRKLs (z, t) at t = 0.7hr with different values of s to fully ex-

plicit θForwardEuler(z, .7), implicit θBackwardEuler(z, .7) and Crank-Nicolson θCN (z, .7) meth-

ods are shown in Figure 3. These values of s are selected randomly to show that as s becomes

large, there will be less accurate approximation and as s→ 1 the method becomes the most

accurate. From the Figure 3, we can see that s = 25 gives the best performance. It should

be pointed out that RKL can be run with higher s having low accuracy. Finally, we present

some numerical simulation results in a very fine spatial mesh ∆z = 0.5 cm obtained from

the RKL method (s = 60) and CN (∆t = s∆τ) . In Figures 3 and 4, we describe the profile
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Table 3. Test of RKL scheme with Forward Euler, Backward Euler and

Crank–Nicolson in L2

s ||RKL− EE||2 ||RKL− IE||2 ||RKL− CN ||2
1 8.98269E-07 8.98580E-07 8.98425E-07

2 4.77095E-04 4.76305E-04 4.76304E-04

3 3.98887E-04 3.96918E-04 3.96912E-04

4 3.42530E-04 3.38994E-04 3.38978E-04

5 3.00130E-04 2.94642E-04 2.94607E-04

10 1.86165E-04 1.65270E-04 1.64810E-04

20 1.08531E-04 3.29225E-05 2.78803E-05

25 9.12225E-05 3.32430E-05 4.96658E-05

30 7.95618E-05 8.89504E-05 1.23535E-04

35 7.13300E-05 1.48150E-04 2.10045E-04

40 6.52825E-05 2.09086E-04 3.14908E-04

45 6.07926E-05 2.71179E-04 7.23534E-04

50 5.68181E-05 5.29720E-04 8.08834E-04

55 5.38729E-05 6.19700E-04 8.12438E-04

60 5.14025E-05 5.43346E-04 8.14686E-04

65 5.01292E-05 8.02862E-04 7.69098E-04

70 4.51372E-05 8.03892E-04 8.20662E-04

75 4.37948E-05 6.65214E-04 8.19488E-04

80 4.94853E-05 8.12688E-04 8.16599E-04

85 4.94136E-05 8.01545E-04 8.13324E-04

90 3.14526E-05 8.34195E-04 8.09112E-04

95 5.60425E-05 8.09116E-04 8.08688E-04

100 2.01036E-05 8.44869E-04 8.44699E-04

150 2.51358E-04 1.10339E-03 1.08891E-03

of moisture content θ(z, t) and pressure head ψ(z, t) along the soil depth at various times

t = 0.1, 0.2, · · · , 1 hr.

5. Conclusion

In this paper, we considered a highly nonlinear degenerate parabolic partial differ-

ential equation (Richards Equation in 1D) and solved it numerically. We apply different

finite difference schemes like Forward Explicit, Backward Implicit, Crank–Nicolson, and a

Stabilized Runge–Kutta–Legendre Super Time–Stepping scheme RKL. The numerical sim-

ulations show that the RKL scheme boasts large efficiency gains compared to the standard

Forward Explicit scheme and is comparable to Crank–Nicolson. Forward schemes are simple

in nature and give accurate implementation and are parallelizable but suffer severely from

stability restriction on the time step–size. In another side, Implicit schemes involve iterative
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approach to solve the nonlinear systems, hence are moderately efficient, but computation-

ally very costly for highly nonlinear problems and comparatively difficult to implement.

From computational point of view, Super Time–Stepping is more efficient than the stan-

dard Forward implicit schemes, in that it runs at least as fast with better accuracy and it

is much easier to program also it can be easily extended to problems in higher dimensions.
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