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Abstract: In a capacitated network, an optimum solution of the maximum flow problem is to send as much

flow as possible from the source node to the sink node as efficiently as possible by satisfying the capacity and

conservation constraints. But, because of the limited capacity on the arcs, total amount of flow outgoing

from the source may not reach to the sink. If the excess amount of flow can be stored at the intermediate

nodes, total amount of flow outgoing from the source can be increased significantly. Similarly, different

destinations have their own importance with respect to some circumstances. Motivated with these scenar-

ios, we introduce the lexicographic maximum flow problems with intermediate storage in static and dynamic

networks by assigning the priority order to the nodes. We extend this notion to arc reversals approach, a flow

maximization technique, which is widely accepted in evacuation planning as it increases the outbound arc

capacities by using the arc capacities on the opposite direction as well. Travel times along the anti-parallel

arcs is considered to be unequal and we take into account the travel time of the reversed arcs to be equal

to the travel time of the non-reversed arc towards which the arc is reversed. We present polynomial time

algorithms for the solution of these problems.

Keywords: Flows in network, prioritization of nodes, lexicographic maximum flow, intermediate storage,

asymmetric travel time.
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1. Introduction

Motivation. Network flow theory is applicable for the solution of multiple real life problems. Among the

different applications of network flow theory, evacuation planning is one. For the proper management of

chaotic movement of people in the unsafe location, an efficient evacuation planning is required. For this

purpose, the evacuation scenario is modeled mathematically as a dynamic transportation network, where

unsafe location is a source and the safe locations are sinks. The different intermediate locations are the

intermediate nodes and the links connecting to two distinct locations are arcs. The group of evacuees is

considered as flow, that requires a certain cost (time) to travel along the arcs. Due to network topology, all

evacuees can not be taken to the sinks. It is wise to place them at the intermediate locations, where basic

requirements are available. The survey article of Dhamala et al. [4] and the citations therein provide an

overview of different approaches for the solution of evacuation planning problem. For the applications of

network flow theory, we refer the readers to Ahuja et al. [2].

Received: April 20, 2022 Accepted: June 20, 2022 Published Online: June 30, 2022

Corresponding author: Urmila Pyakurel .



2

s p

8
,1

1
2
,2

d

t

25,2

. Let us consider an example with initial location s, intermediate location

p and final locations d and t as in figure alongside. The numbers along

the arcs represent capacity and travel time (we can send 25 units flow

along the arc (s, p) in 2 units time. Suppose that we are given total time

period 5 units. Along the path s− p− t we can send 12 units flow twice,

along the path s− p− d we can send 8 units flow thrice. Hence, we can

send 48 units flow to the sinks. However, if we are allowed to store flow

at the intermediate location p, we can store 5 units twice, 17 units once

and 25 units once from s to p. Here, we can extract 100 units flow from

s among which 48 units reaches to the sinks and 52 units is stored at the

intermediate node p.

Literature Review. Ford and Fulkerson [7, 8] developed mathematical model and algorithm for the solu-

tion of maximum network flow problem. The algorithm determines the s-d paths and augments flow along

such path by satisfying the feasibility and conservation constraints. According to the model, total flow

extracted from the source reaches into the sink and this value is equal to the minimum cut capacity. When

there are multiple sinks in a network, flow can be sent with respect to some order. Maximization of flow

by specifying the order of sinks, is lexicographic maximum flow. With the given priority ordering to the

sources and sinks, Minieka [16] introduced the concept of lexicographic maximum flow. Later on, Hoppe and

Tardos [11, 12] extended the notion of lexicographic flows in a netwrok with temporal dimension. Similarly,

Pyakurel and Dhamala [22] introduced lexicographic maximum static and dynamic flow problems with arc

reversals technique. They have presented polynomial time algorithms for the solution of these problems.

The lexicographic maximum flow problem at every point of time is studied in [13]. However, these flow

models do not take into account the storage capacity of the intermediate nodes.

When incoming flow into the intermediate node exceeds the outgoing flow, the difference is excess flow.

The excess amount of flow can be stored at the intermediate nodes. Pyakurel and Dempe [20] introduced

mathematical models and algorithms for the solution of the maximum static and dynamic flow problems with

intermediate storage in two terminal general network. Their models assume that intermediate nodes have

storage capacity. Furthermore, they have investigated the earliest arrival flow problem with intermediate

storage, as an application to evacuation planning [21]. For the solution of these problems, they have pre-

sented the polynomial time algorithms. A major contribution of their work is the utilization of the outgoing

full arcs capacity from the source. As an incremental approach to the maximum flow problems, intermediate

storage is studied in [1]. Khanal et al. [14] introduced multicommodity flow problems with intermediate

storage in static and dynamic networks. For the solution of these problems they have contributed polynomial

and pseudo-polynomial algorithms, respectively.

Arc reversals introduced by Kim and Shekhar [15], is a flow maximization technique, widely accepted in

evacuation planning. According to the different evacuation models[3, 22, 23, 24], movement towards the

danger zone is not allowed. As a result, road (arcs) towards the source remain unused. The empty arc

capacities are used to increase the flow value. The solution for the evacuation planning problem with arc

reversals in continuous time settings is the research contribution of Pyakurel et al. [23]. All these models for

evacuation planning have considered the symmetric travel time along the arcs in opposite direction. But,

the travel times may not be symmetric always. Recently, Nath et al. [17] introduced arc reversal approach

with asymmetric travel time along the anti-parallel arcs and considered the time along the direction of the

arc towards which it is reversed. With this consideration they have introduced the maximum dynamic and

quickest flow problems and presented polynomial time algorithms for the solution. Similarly, dynamic mul-

ticommodity contraflow problem with asymmetric travel times on the arcs is studied in Gupta et al. [10].

Their major contribution is development of an algorithm that is based on time expanded network.



3

Research Gap. During the transshipment of flow, different locations have their own relative importance

with respect to some circumstances. In a capacitated network, the solution of the lexicographic maximum

flow problem is to push as much flow as possible from source to the sinks in priority order with respect to

some circumstance and maximum flow value is determined by max-flow min-cut theorem [8]. But, when

sum of the arcs capacity outgoing from the source is greater than the minimum cut capacity, existing flow

models do not use the full arcs capacity. In this case, using full arcs capacity outgoing from the source

results in storage of flow at the intermediate nodes provided they have storage capacity. There exists

a number of models and algorithms for the solution of the maximum static and dynamic flow problems

without intermediate storage. Solution of the lexicographic maximum flow problems allowing storage of flow

at the intermediate nodes with respect to their relative importance is one of the major issue. Similarly,

in the solution procedure of lexicographic maximum flow problem with arc reversals technique, existing

flow models and algorithms are based on the assumption that the travel time along the anti-parallel arcs is

symmetric. As this assumption may not remain always true, appropriate solution procedure to address the

asymmetric travel time is required.

Our Contribution. This paper considers a single-source multiple-sink network in which sum of the arcs

capacity outgoing from the source exceeds the minimum cut capacity. Furthermore, it is assumed that

intermediate nodes have capacity similar to the arcs. During the transshipment of flow from one location

to another, multiple locations have their own importance. Based on their relative importance, for the

extraction of the maximum amount of flow from the source, we introduce the lexicographic maximum static

flow (LMSF) and lexicographic maximum dynamic flow (LMDF) problems allowing storage of flow at the

intermediate nodes. Initial introduction of the LMSF and LMDF is presented in [19]. The discrete time

LMDF solution is extended to the continuous time settings. We extend the notion of LMDF problem with

intermediate storage in arc reversals approach. Arc reversals is a flow maximization technique widely used

in evacuation. Here, the unused arc capacities are used to increase the outbound arc capacities by reversing

the direction of arcs towards sinks. We assume that the travel time along the anti parallel arcs is asymmetric

and take into account the travel time of reversed arc to be equal to the travel time along the arc towards

which it is reversed (orientation dependent travel time). For the solution of these problems we present

polynomial time algorithms.

Structure of Paper. Rest of the paper is organized as follows. In Section 2, we develop some mathematical

notations and flow models with intermediate storage. The LMSF and LMDF problems with intermediate

storage and their solution procedure are presented in Section 3 and Section 4, respectively. Similarly,

orientation dependent LMDF problem with intermediate storage allowing arc reversals and its solution

procedure are presented in Section 5. The paper concludes in Section 6.

2. Preliminaries

Let A ⊆ V × V be the set of m arcs, where V is the set of n nodes, s be the source, D be the set

of multiple sinks and I = V \ {s,D} be the set of intermediate nodes. The functions u : A → [0,∞) and

c : A→ [0,∞) determine the maximum amount flow that can be send from node i to j along the arc e = (i, j)

and associated cost, respectively. For an arc e = (i, j) ∈ A, its reverse arc is (j, i) ∈ A. We assume that

s and D have infinite capacity and node i ∈ I has finite capacity bounded by the function v : I → [0,∞).

With these parameters we have a single-source multiple-sinks static network N = (V,A, s, I,D, u, v, c). If

we have to send total flow within a given time horizon T , then the network is dynamic with parameters

N = (V,A, s, I,D, u, v, τ, T ) where τe : A → [0,∞) is the travel time required along the arc. Here, the

travel time means if a unit flow is sent from node i at time θ, then it reaches to the node j at time θ + τe

where θ ∈ T = {0, 1, 2, . . . , T} is the discrete time settings for the total time horizon T . In continuous time

settings, T = [0, T ]. The set of arcs incoming to and outgoing from the node i ∈ V are denoted by Ain
i and

Aout
i , respectively. In general, no arcs enter to the source node and exit from the sinks. Hence, we consider

Ain
i = Aout

i = ∅. However, Ain
i 6= ∅ and Aout

i 6= ∅ in arc reversals approach.
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2.1. Maximum Static Flow Model. On the given single-source multiple-sinks static network N =

(V,A, s, I,D, u, v, c), the function f : A → [0,∞) is a static flow function such that it satisfies the fea-

sibility condition on arcs f(e) ∈ [0, u(e)] and the conservation constraints at nodes

(2.1)
∑
e∈Ain

i

f(e) ≥
∑

e∈Aout
i

f(e), ∀i ∈ I

for all e ∈ A. The value of maximum static flow is the total amount of flow out of the source given by

(2.2) V (f) =
∑

e∈Aout
s

f(e) =
∑
e∈Ain

D

f(e) +
∑

i∈I, v(i)>0

f(i), ∀i ∈ I

where f(i) : I → [0,∞), f(i) ∈ [0, v(i)] is the amount of flow stored at the intermediate nodes i ∈ I,

within node capacity. The feasibility condition on the arcs shows that flow does not exceed the arc capacity.

Similarly, according to the conservation constraints, inflow into an intermediate node may exceed its outflow.

2.2. Residual network. The residual network of the given network N , with respect to the static flow f is

a network Nf that shares the same vertices. The set of arc Af contains the forward arcs (i, j) ∈ A and the

backward arcs (j, i) ∈ A, for all i, j ∈ V . The unused arc capacity is the residual capacity which is defined as

uf (i, j) = u(i, j)−f(i, j) for forward arcs and uf (j, i) = f(i, j) for backward arcs. Similarly, cf (i, j) = c(i, j)

and cf (j, i) = −c(i, j).

2.3. Path, cycle and flow decomposition. A path P in a network is a sequence of arcs e1, e2, . . . , ek ∈ E
for k ∈ N with e1 = (i1, i2), e2 = (i2, i3), . . . , ek = (ik, ik+1) where ek ∈ E and i1, i2, . . . , ik+1 ∈ V and

ix 6= iy unless x = y. Similarly, the sequence is called a cycle C if ek = (ik, i1) for i1, i2, . . . ik and ix 6= iy

unless x = y. Travel time along the path and cycle is defined as τP =
∑
e∈P τe and τC =

∑
e∈C τe. Let P

and C be the set of simple paths and cycles and P ∈ P ∪ C. A static flow f along the arc e ∈ E can be

decomposed into a paths and cycles fp ≥ 0 such that fe =
∑

p∈P∪C:e∈P

fp for each e ∈ E.

2.4. Maximum Dynamic Flow Model. On the given single-source multiple-sink dynamic network N =

(V,A, s, I,D, u, v, τ, T ), the function g : A×T→ [0,∞) is a dynamic flow function, such that it satisfies the

feasibility condition g(e, θ) ∈ [0, u(e, θ)], ∀θ ∈ T and the conservation constraints

(2.3)
θ∑

σ=τe

∑
e∈Ain

i

g(e, σ − τe) ≥
θ∑

σ=0

∑
e∈Aout

i

g(e, σ), ∀i ∈ I, θ ∈ T

for all e ∈ A. The value of maximum dynamic flow is the total amount of flow out of the source given by

(2.4) V (g) =

T∑
σ=0

∑
e∈Aout

s

g(e, σ) =

T∑
σ=τe

∑
e∈Ain

D

g(e, σ − τe) +

T∑
σ=0

∑
i∈I,v(i)>0

g(i, σ)

where g(i) : I ×T→ [0,∞) is the amount of flow stored at the intermediate nodes i ∈ I at each time θ ∈ T

and g(i, θ) ∈ [0, vi(θ)].

2.5. Temporally repeated flow. For a given time period T , a static flow f can be decomposed along a

set of paths P such that flow along the path P is fP . Flow is sent along the path P at a constant rate fP

for T + 1 − τP times from time 0 to max {T − τP , 0} such that for each e ∈ A and θ ∈ T, dynamic flow g

defined by ge(θ) =
∑

p∈Pe(θ)

fp
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3. Lexicographic Maximum Static Flow

Priority is an act of providing the relative importance with respect to some circumstances. There

are different approaches for setting the priority order of the nodes: reliability, storage capacity, distance.

Authors in [9] used hesitant fuzzy hybrid average aggregation operator to set the priority order of nodes.

In this work, our aim is to maximize the flow out of the source by pushing away towards the sinks in the

specific order as far as practicable. Hence, we fix the priority ordering for all i ∈ V \{s} in given network

N = (V,A, u, v, c, s, I,D) as in [20] on the basis of distance from the source. At first, we set the priority

order for the sinks and then for the intermediate nodes. For this task, we determine the minimum distance

d(s, i), i ∈ D for each sink from the source by considering cost as distance and assign first priority to the

sink which is farthest. Similarly, second priority is assigned to the sink which is in the second farthest

distance and so on. After all the sinks are prioritized, we assign priority order to the intermediate nodes

i ∈ I, v(i) > 0 similar to the sinks.

Algorithm 1: Three Steps Priority Ordering [19]

Input : Network N = (V,A, u, v, c, s, I,D)

Output: Nodes priority oreder

(1) Order for sinks

• For each sink d ∈ D, determine the minimum distance d(s, d).

• If d(s, d1) < d(s, d2) < · · · < d(s, dr), set priority ordering as (dr, dr−1, . . . , d2, d1), r ∈ Z+.

• If d(s, ip) = d(s, iq) for some p 6= q,, p, q ∈ Z+ set priority order arbitrarily.

(2) Order for intermediate nodes

• For each intermediate node i ∈ I with v(i) > 0, determine the minimum distance d(s, i).

• If d(s, i1) < d(s, i2) < · · · < d(s, il), set priority ordering as (il, il−1, . . . , i2, i1), l ∈ Z+.

• If d(s, ip) = d(s, iq) for some p 6= q, set priority order arbitrarily.

(3) Final order

• First, follow the order of Step (1) and then Step (2).

Lemma 3.1. Algorithm 1 computes priority ordering for the nodes in polynomial time complexity.

Proof. Finding the minimum distance for each node is feasible since the cost associated along the arcs

c(i, j) ≥ 0 and can be obtained in O(n2) time Using Dijkstra algorithm [5]. There are n nodes for priority

ordering which requires linear time. Thus, time complexity required for the priority ordering of the nodes is

polynomial. �

Definition 3.2. If we have D1 ⊆ D2 ⊆ D3 ⊆ · · · ⊆ Dr ⊆ D, then the lexicographic maximum flow on

the sinks with intermediate storage is the maximal flow that delivers V (Dx) units into each of the subsets

Dx, for x = 1, 2, . . . , r and V (Iy) units flow that does not reach to the sinks will be stored in the intermediate

nodes Iy for y = 1, 2, 3, . . . , l where r + l < n.

Problem 3.3. Let N = (V,A, u, v, s, c, I,D) be a static network. The solution of LMSF problem with

intermediate storage on N is to find the maximum amount of feasible flow, with fixed priority ordering to

the sinks and the excess amount of flow that does not reach to the sinks is to push as far as possible from

the source and store at the intermediate nodes in priority order, within their capacities.

This problem is solved in two steps. In the first step, flow is maximized at each sink lexicographi-

cally and in the second step, the excess amount of flow that does not reach to the sinks is stored at the

intermediate nodes within their capacity. The flow maximization procedure is as follows: First, we assign

the priority order of sinks and then intermediate nodes using Algorithm 1. Second, for each i ∈ I, with

v(i) > 0, we create dummy node i′ ∈ I ′ with same priority order and capacity. The node capacity is defined

as v(i′) = v(i) ≥
∑
e∈Ain

i

ue > 0. The dummy nodes are not the sinks but they are considered as sinks.
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With this consideration, conservation constraints at the intermediate nodes are satisfied. The cost and

capacity along the dummy arcs are c(i, i′) = 0 and u(i, i′) = v(i) = v(i′). With the new parameters, the

network is transformed as N ′ = (V ′, A′, u′, v′, c′, s, I,D′) where V ′ = V ∪ I ′, A′ = A ∪ {(i, i′)}, v′(i) = v(i),

u′(i, j) = u(i, j) ∪ {u(i, i′)} and D′ = D ∪ I ′. On the transformed network N ′, the lexicographic order for

the sinks is {d1} ⊂ {d1, d2, } ⊂ · · · ⊂ D ⊂ D ∪ {i′1} ⊂ D ∪ {i′1, i′2} ⊂ · · · ⊂ D ∪ I ′ = D′.

On N ′, we determine the LMSF solution with the algorithm in [16]. Let Vmax(D′) be the total amount

of flow into the sinks in D′. Now, Vmax(D′) is equal to the sum of Vmax(D) and Vmax(I ′), and it is the

LMSF solution without intermediate sttorage on the transformed network N ′. For the LMSF solution with

intermediate storage on the given network N , the dummy nodes i′ ∈ I ′ and arcs (i, i′) ∈ A′ are removed

from N ′ and Vmax(I ′) is returned back to respective intermediate nodes i ∈ I, that gives Vmax(I) which is

the flow value at the intermediate nodes. Now, we present an algorithm for the solution of Problem 3.3.

Algorithm 2: LMSF with intermediate storage [19]

Input : Network N = (V,A, u, v, c, s, I,D)

Output: LMSF with intermediate storage on N .

(1) Assign priority orderings to the nodes using Algorithm 1.

(2) Transform the network N = (V,A, u, v, c, s, I,D) into N ′ = (V ′, A′, u′, v′, s, I,D′).

(3) Determine the LMSF at each sink of D′ with priority ordering of Step (1).

(4) Transform the flow from N ′ to N by deleting dummy arcs and nodes.

Theorem 3.4. An optimum solution to the lexicographic maximum static flow problem with intermediate

storage is obtained in polynomial time.

Proof. Feasibility of priority ordering follows from Algorithm 1. Storage capacity and priority orderings for

the dummy sinks is similar to the intermediate nodes and capacities along dummy arcs are bounded by node

capacities. Hence, transformation of network is feasible in Step (2). According to [16], Step (3) gives feasible

maximum flow at each sink in D′. Finally, transformation of the LMSF solution from the transformed net-

work N ′ = (V ′, A′, u′, v′, c, s, I ′, D′) to the original network N = (V,A, u, v, c, s, I,D) does not violate the

feasibility constraints. Thus, Algorithm 2 is feasible. Now, we observe the optimality. Step (1) fixes the pri-

ority orderings of sinks as well as intermediate nodes in polynomial time complexity on the basis of minimum

cost (distance). The transformed network in Step (2) is obtained in linear time and it is unique, since dummy

nodes follow the existing priority order with same capacity. On the transformed network N ′, determine the

LMSF at each sink in D′. At first, begin with the sink in the first priority and send as much flow as possible

by satisfying flow conservation constraints. Now, consider this flow value as an initial flow, and obtain the

corresponding residual network Nf . Augment flow along the s −D′ paths in Nf and gradually increase in

each iteration. If there exist no flow augmenting paths for the current sink, the obtained flow is maximum

[8]. Continue this procedure for each sink. Thus, we solve the maximum flow problem lexicographically

and obtain LMSF on N ′ without intermediate storage. Finally, flow accumulated in the dummy sinks is

returned back to the respective intermediate nodes as in [20] that gives the LMSF with intermediate storage.

The complexity of the algorithm is determined by Step (3) as Steps (1), (2) and (4) are obtained in polyno-

mial time. Step (3) determines the time complexity of algorithm and with the solution procedure of [16] it

is obtained in polynomial time. Thus, the time complexity of Algorithm 2 is polynomial. �

Example 3.5. We consider a s-D network in Figure 1 (a) where s is source, D = {t, d, z} and I = {p, q, r}
are the set sinks and intermediate nodes. The set of arcs is A = {(s, p), (s, r), (p, q), (r, q), (p, t), (q, d), (r, z)}.
We assume that s and D have sufficient capacities and nodes p, q and r have finite capacities 25 units, 22

units and 20 units, respectively. The numbers along the arcs denote capacity and cost (9 units flow can

be sent along the arc (s, p) at one unit cost). Similarly, the number along the nodes denote their holding



7

capacity (node p can hold at most 25 units flow). Capacity of the minimum cut is 11 and sum of the arcs

capacity outgoing from the source is 15. Hence, there exists lexicographic solution with intermediate storage.

The minimum distance (cost) for the sinks {t, d, z} from the source {s} are 3, 5 and 4 units, respectively.

Since d(s, d) > d(s, z) > d(s, t), their priority order is assigned as (d, z, t). Similarly, intermediate nodes

have priority order (q, r, p) or (q, p, r). Corresponding dummy sinks and arcs are shown in Figure 1 (b). The

transformed network has the set of nodes V ′ = V ∪ I ′ where I ′ = {p′, q′, r′}, A′ = A∪ {(p′p′), (q, q′), (r, r′)}
and D′ = D ∪ I ′ and s is the source. Dummy arcs have capacities as u(p, p′) = 25, u(q, q′) = 22 and

u(r, r′) = 20. The sinks in Figure 1 (b) are prioritized as (d, z, t, q′, p′, r′). We consider a super sink ∗ and

connect it to each sink by an arc with infinite capacity and zero cost (time) as shown in Figure 1 (c) where

PMSF is calculated with the solution procedure of [16].

The sinks d, z and t receive 5 units, 2 units and 4 units flow. Similarly, the dummy sinks r′, p′ and q′

receive 2 units, 1 unit and 1 unit flow, respectively which is returned back to the intermediate nodes r, p

and q for the LMSF solution with intermediate storage . Hence, maximum flow out of the source is 15 units

out of which 11 units reaches to the sinks and 4 units is stored at intermediate nodes.
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q22
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t
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z

9, 1
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4, 2
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(a) Given network
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(b) Transformed network
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25, 0
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(c) Extended network

*

∞, 0

Figure 1. Lexicographic maximum static flow (Arc: capacity, cost; Node: capacity)
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4. Lexicographic Maximum Dynamic Flow

Flows that require time to travel over the arc and arc capacities change with respect to time are

dynamic flows. Solution of the maximum dynamic flow problem is to determine the maximum amount of

flow into the sink for a given time period T . But, the solution of the LMDF problem with intermediate

storage is to determine the maximum amount of feasible flow at each prioritized sink and to store the excess

amount of flow at the prioritized intermediate nodes.

Problem 4.1. Let N = (V,A, u, v, s, I,D, τ, T ) be a given dynamic network. The solution of LMDF problem

with intermediate storage on N is to find the maximum amount of feasible flow, with priority ordering to

the sinks. The excess amount of flow that does not reach to the sinks is sent as far as possible from the

source and stored at the intermediate nodes in priority order respecting their capacities within the given time

horizon T .

The LMDF problem without intermediate storage was introduced by Hoppe and Tardos [11, 12], where

flow is conserved at each node. Pyakurel and Dempe [20] introduced the maximum dynamic flow problem

with intermediate storage on two terminal general network. For the solution of these problems they used

lexicographic properties. Here, we introduce the LMDF problem with intermediate storage in s-D network

N = (V,A, u, v, s, I,D, τ, T ). For the solution, we present a polynomial time algorithm based on [11, 12].

Initially, the solution is obtained on the transformed network N ′ = (V ′, A′, u′, v′, s, I,D′, τ, T ) similar to

Section 3, by considering the travel time τ(i, i′) = 0. The solution obtained on the transformed network

N ′ is the LMDF solution without intermediate storage. Finally, for the LMDF solution with intermediate

storage, solution from the transformed network N ′ is transformed into the original network N by removing

the dummy arcs and nodes similar to [20]. Now, we present an algorithm for the solution of Problem 4.1.

Algorithm 3: LMDF with intermediate storage [19]

Input : Network N = (V,A, u, v, s, I,D, τ, T )

Output: LMDF with intermediate storage on N .

(1) Assign priority orderings to the nodes using Algorithm 1.

(2) Transform the network N = (V,A, u, v, s, I,D, τ, T ) into N ′ = (V ′, A′, u′, v′, s,D′, τ, T ).

(3) Determine the LMDF at each sink of D′ with priority ordering of Step 1.

(4) Transform the flow from N ′ to N by deleting dummy arcs and nodes..

Theorem 4.2. An optimal solution to the lexicographic maximum dynamic flow problem with intermediate

storage is obtained in polynomial time.

Proof. Feasibility of the solution follows from Theorem 3.4 as τ(i, j) > 0 and τ(i, i′) = 0. Now, we prove its

optimality. Each i ∈ I, on N ′ contains dummy sinks so, flow conservation constraints at the intermediate

nodes are satisfied, where N ′ is the transformed single-source multi-sink network with priority ordering on

sinks. At each prioritized sink on N ′, we determine the maximum flow. First, take a sink that is in the first

priority and determine the maximum amount of flow that can be sent at this sink. By taking this flow value

as an initial flow determine the residual network Nf . On the residual network Nf , determine the maximum

amount of flow that can be send to the sink of second priority and continue this procedure for other sinks.

Let us assume that there are r many sinks. Now, repeated use of minimum cost circulation for r times

gives the optimum LMDF solution without intermediate storage N ′ [11, 12]. Finally, flow collected to the

dummy sinks is returned back to the corresponding intermediate nodes by removing the dummy nodes and

arcs from the transformed network. According to [20], the obtained solution is equal to the LMDF solution

with intermediate storage.

The time complexity required for Priority ordering of sinks and intermediate nodes in Step (1) is poly-

nomial. Since transformation of network N into N ′ in Step (2) and transformation of solution from N ′ to
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N (4) require linear time, time complexity of our algorithm depends upon Step (3). The time complexity

required for the minimum cost circulation is O((m logn(m+n logn))) [18] and the LMDF problem without

intermediate storage is solved in O(r × (m logn(m + n logn))) time [11, 12]. Hence, the LMDF problem

with intermediate storage is solved within the time complexity of O(r × (m logn(m+ n logn))) . �

Example 4.3. We consider Figure 1 (a), with cost replaced by time and total time horizon T = 5. The

minimum distance to each node from s with respect to the travel time is d(s, t) = 3, d(s, d) = 5, d(s, 4) = 3,

d(s, p) = 1, d(s, q) = 3 d(s, r) = 1. Hence, the Priority order for the nodes is (d, z, t, q, p, r). By assumption,

p′, q′ r′ are dummy sinks and have priority order (q′, p′, r′). The sinks in D′ are prioritized as (d, z, t, q′, p′, r′).

First, determine the LMDF without intermediate storage as follows: Introduce a super source s∗ and connect

it to the source s with u(s∗, s) = ∞ and τ(s∗, s) = 0. Similarly, for each x ∈ D′, join x to s∗ with

u(x, s∗) = ∞ and τ(x, s∗) = −(T + 1). The minimum cost cycles for d are C1 : s − p − q − d − s∗ − s
and C2 : s − r − q − d − s∗ − s. Feasible flow along C1 is f1 = 4. After sending 4 units flow along the

path s − p − q − d residual network is determined. In the residual network, the feasible flow along C2 is

f2 = 1. Now, in the residual network, there does not exist minimum cost circulations for d so we delete this

sink. This process is carried out for all sinks in their respective priority order. Here, sinks d, z and t receive

5 units, 4 units and 12 units flow and dummy sinks q′, p′, r′ receive 13 units, 21 units and 20 units flow.

Transformation of flow from the dummy sinks p′, q′, r′ to the respective intermediate nodes p, q, r gives the

LMDF solution with intermediate storage. The LMDF solution without and with intermediate storage for

different time periods are tabulated in Table 1.

Table 1. LMDF without and with intermediate storage

LMDF without intermediate storage LMDF with intermediate storage

Nodes t=1 t=2 t=3 t=4 t=5 Total t=1 t=2 t=3 t=4 t=5 Total

d - - - - 5 5 - - - - 5 5

z - - - 2 2 4 - - - 2 2 4

t - - 4 4 4 12 - - 4 4 4 12

q - - - - - - - - 1 6 6 13

p - - - - - - 1 1 1 9 9 21

r - - - - - - 2 2 4 6 6 20

Total flow out of the source 21 Total flow out of the source 75

Solution in continuous time settings. The solution of lexicographic maximum dynamic flow problem

with intermediate storage obtained in the discrete time settings can be extended into the continuous time

settings. A continuous dynamic flow is a function Ψ : A × [0, T ] → [0,∞) that defines the flow rate

continuously over the time. Flow values in continuous time settings are more accurate than the flow values

obtained in discrete time settings, but are relatively harder. Let gre(θ) be the rate of flow passing through an

arc e ∈ A at discrete time settings θ ∈ {0, 1, 2, . . . , T}. Now, one can set the continuous flow rate Ψr
e(t) for

θ ≤ t < θ + 1 to reflect the equivalent discrete flow rate gre(θ). According to Fleischer and Tardos [6], this

transformation preserves optimality if we consider the constant arc capacities. In particular, at any interval

[θ, θ + k), k ∈ Z+ these two flow values are equivalent.

5. Orientation Dependent Lexicographic Maximum Dynamic Flow

Arc reversal is a flow maximization technique, widely used in emergency as it increases the flow value

and reduces the time period. Authors in [3, 24] introduced maximum dynamic flow problem without inter-

mediate storage and the solution with intermediate storage is presented in [20]. Theses problems are solved

within the capacity of polynomial time complexity. The unused arc capacities, towards the source are used

by reversing the direction of the arcs towards the sink as in [22, 20, 3, 24], where authors have considered

the symmetric travel time along the arcs. Here, we assume that, the anti-parallel arcs have unequal travel
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time and in this work we consider the travel time along the direction of the arcs towards which it is reversed,

similar to [17], as shown in Figure 2. The components along the arcs represent their capacity and required

travel time. Figure 2 (a) is the given network. Figure 2 (b) arc (q, p) is reversed with same travel time.

Figure 2 (c) and (d) represent the orientation dependent travel time when arc (q, p) and (p, q) are reversed

respectively.

p q

(a) Anti parallel arcs

u2, τ2

u1, τ1
p q

u1 + u2, τ1

(b) Arc (q, p) is reversed

p q
u1 + u2, τ2

(c) Arc (p, q) is reversed

Figure 2. Arc reversals with orientation based travel time

Problem 5.1. Let N = (V,A, u, v, s, I,D, τ, T ) be a given dynamic s-D network. For a prespecified time

horizon T , the solution of orientation dependent LMDF problem with intermediate storage, is to determine

the maximum amount of feasible flow that can be sent from source to the sinks and intermediate nodes in the

priority ordering. The excess amount of flow that does not reach to the sinks is stored at the intermediate

nodes within their capacities, if direction of the arcs can be reversed at zero time.

For the solution of Problem 5.1, an auxiliary network Na = (V,Aa, ua, v, s, I,D, τa, T ) is constructed

corresponding to the given network N = (V,A, u, v, s, I,D, τ, T ). On auxiliary network Na, set of nodes and

their capacity remain same but this case does not remain same for the set of arcs. Arc capacities are increased

by using the capacities of the arcs in the both directions. Travel time along the arcs on Na depends upon the

direction of the arcs towards which it is reversed. The auxiliary network Na = (V,Aa, ua, v, s, I,D, τa, T )

is transformed to N ′a = (V ′, A′a, u
′
a, v, s, I,D

′, τ ′a, T ) similar to Section 3 and 4, where τ ′a(i, i′) = 0. On

N ′a, determine the LMDF solution, which is independent of intermediate storage. The solution from N ′a is

transformed to Na by removing the dummy arcs and sinks, which is the LMDF solution with intermediate

storage on Na [20]. The LMDF solution on the auxiliary network Na is equiivalent to the LMDF solution

with arc reversals in the given network N [22]. We present an algorithm for the solution of Problem 5.1.

Algorithm 4: Orientation dependent LMDF with intermediate storage
Input : A dynamic network N = (V,A, u, v, s, I,D, τ, T )

Output: Orientation dependent LMDF with intermediate storage

(1) Construct the auxiliary network Na = (V,Aa, ua, v, s,D, τaT ), with redefined arcs capacity

ua(i, j) = u(i, j) + u(j, i) where u(i, j) = 0 if (i, j) ∈ A and travel times

τa(i, j) =

{
τ(i, j) if (j, i) is reversed along (i, j) or (j, i) /∈ A.

τ(j, i) if (i, j) is reversed along (j, i) or (i, j) /∈ A.

(2) Set priority orderings on Na using Algorithm 1.

(3) Transform the network Na into N ′a = (V ′, A′a, u
′
a, v
′, s, I,D′, τ, T ) with dummy sinks.

(4) Determine the LMDF solution on N ′a without intermediate storage.

(5) Transform the solution from N ′a to Na by removing the dummy nodes and arcs to obtain the

LMDF solution with intermediate storage.

(6) Decompose the flow obtained in Step 4 into paths and cycles and remove the cycle flows.

(7) Reverse the arc (j, i) ∈ A iff g(i, j) > u(i, j) up to g(i, j)− u(i, j) and u(i, j) = 0 for (i, j) /∈ A

Theorem 5.2. Algorithm 4 solves the orientation dependent lexicographic maximum dynamic flow problem

with intermediate storage optimally in polynomial time.

Proof. For the proof of the theorem, we observe the feasibility, optimality and complexity of the Algorithm

4. For the feasibility of Algorithm 4, it is enough to observe the feasibility of Step (7). Decomposition of

flow along the cycles and paths in Step (6) ensures that flow is sent along one direction but not on both
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directions. Moreover, such flow does not exceed sum of the arc capacities. Hence, Step (7) is also feasible.

For the optimal solution, we construct an auxiliary network Na by reversing the arcs at zero time and

once the arcs are reversed they remain reversed throughout the execution of the algorithm. Construction of

auxiliary network requires linear time. The auxiliary network Na is transformed to N ′a, where we determine

the LMDF solution similar to Section 4 using the procedure in [11, 12] which gives an optimal solution

within the capacity of polynomial time complexity. Decomposition of flow in Step (6) requires O(mn) time

[2]. Flow from dummy nodes is returned back to the respective intermediate nodes at zero time. The LMDF

solution on auxiliary network Na is equivalent to the LMDF solution with arc reversals in the given network

N [22]. Finally, the amount of flow stored at the intermediate nodes in auxiliary network Na is equal to the

amount of flow stored at the intermediate nodes in the original network N [20]. �

Example 5.3. Consider a flow network with source s and sinks {t, d} in Figure 3 (a), where flow is allowed

to move in either direction. The numbers along the arcs represent capacity and travel time and the number

along the nodes represent their storage capacity. Figure 3 (b) is an auxiliary network Na constructed

according to Step 1 of Algorithm 4. The reversals of arc (p, q) does not increase flow value due to the smaller

capacity on the arc (p, t) so arc (q, p) is reversed. Minimum time required to reach the nodes p, q, t, d is 1, 2,

3 and 4 units, respectively. Based on travel time, the nodes are prioritized as d, t, q, p. The LMDF solution

with intermediate storage at different time period, without arc reversals and with orientation dependent arc

reversals is shown in Table 2.

s

p20

q30

2,1 2,2
t

d

2,2

6,1

4,1

5,2

3,2

3,1

6, 2

(a) Given network

s

p20

q30

t

d

4,1

8,1

9,2

3,2

6,2

3,1

(b) Auxiliary network

s

p20

q30

t

d

p′

q′

4,1

8,1

9,2

3,2

6,2

3,1

20,0

30,0

(c) Transformed network with dummy sinks

Figure 3. LMDF with travel time depending upon the orientation of non-reversed

arc (Arc: capacity, travel time and node: capacity).
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Table 2. LMDF without and with arc reversals

LMDF without arc reversals LMDF with arc reversals

Nodes t = 1 t = 2 t = 3 t = 4 Total t = 1 t = 2 t = 3 t = 4 Total

t - - 5 5 10 - - 6 6 12

d - - - - 5 - - - 6 6

q - - 5 7 12 - 4 10 13 27

p 1 1 4 6 12 1 1 4 8 14

Total flow out of the source 39 Total flow out of the source 59

6. Conclusions

Based on some circumstances, different locations have relative importance and based on some circum-

stances they should be prioritized. Network flow models without intermediate storage are studied literature,

where total amount of flow that can be sent into the sinks from the source is equal to the minimum cut

capacity. But, if sum of the arcs capacity outgoing from the source is more than the minimum cut capacity,

total amount of flow extracted from the source may not reach to the sinks and there remains excess amount

flow at the intermediate nodes. If flow is allowed to store at the intermediate nodes within their capacity, flow

value outgoing from the source can be increased significantly and this flow value is more than the minimum

cut capacity. To hold the excess amount of flow at the intermediate nodes, we have introduced lexicographic

maximum flow problems with intermediate storage in static and dynamic networks. This approach max-

imizes the flow value outgoing from the source significantly by holding the excess amount of flow at the

intermediate nodes in priority order without violating the nodes capacity under the assumption that sum of

the arcs capacity outgoing from the source exceeds the minimum cut capacity. The notion of lexicographic

maximum flow is extended to the arc reversals technique where travel time along the anti-parallel arcs is

assumed to be asymmetric. For the solution of these problems, polynomial time algorithms are presented.
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