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Abstract: Flow movement in unsaturated soil can be expressed by Richards equation.

This equation can be obtained by applying the mass conversation law and the Darcy law.

In this work, we solve one-dimensional Kirchhoff transformed Richards equation with loss

of water due to the evaporation of unsaturated porous media (soils) and transpiration of

plants numerically using Crank-Nicolson method. The result has compared with evapotran-

spiration function and without it in the governing equation. It has found that an additional

work in time and flow movement is needs to reach the given boundary condition for the

model without evapotranspiration.
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1. Introduction

In many branches of science and engineering such as soil mechanics, fluid mechanics,

agricultural engineering, environmental engineering and ground water hydrology, prediction

of fluid movement in unsaturated porous media(soil) is an emerging problem. In unsatu-

rated zone the fluid motion is assumed to obey the classical Richards equation, which is

obtained by applying the mass conservation law and the Darcy law and can be expressed

as different forms either pressure head ψ or moisture content θ as the dependent variable.

The constitutive relationship between θ = θ(z, t) and ψ = ψ(z, t) allows the conversion from

one another where t is the time, z is the vertical dimension (downward positive). Equation

(1.1) shows the coupled (mixed) form of Richards Equation[1].

∂θ

∂t
−∇.K(ψ)∇ψ − ∂K

∂z
= ET(1.1)

Where, θ is the volumetric moisture content, ψ is the pressure head K(ψ) is the unsaturated

hydraulic conductivity, describes the ease with which water can move through pore space,

and depends on the intrinsic permeability of the material and the properties of fluid such
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as degree of saturation, density and the viscosity[2]. ET is the evapotranspiration and it

represents the loss of water due to the evaporation of the unsaturated porous media (soils)

and transpiration of plants and can be estimated by Penman-Monteith formula as [3]

(1.2) ET =
0.408∆(Rn −G) + γ 900

T+273u2(es − ea)
∆ + γ(1 + 0.34u2)

Where ET : The reference evapotranspiration, Rn: The net radiation at the crop surface,

G: The soil heat flux density, T : The mean daily air temperature at 2m height, u2: The

wind speed at 2m height, es: The saturation vapor pressure, ea is actual vapor pressure,

es − ea: The saturation vapor pressure deficit, ∆ is slop vapor pressure curve and γ: The

psychometric constant.

Constitutive relations between θ = θ(z, t) and ψ = ψ(z, t) and the relation between K

and ψ are developed appropriately, which consequently gives nonlinear behavior to equa-

tion (1.1). Reliable approximation of these relations are in general tedious to develop and

thus also challenging. To gather the parameters either from field measurements or labora-

tory experiments are relatively expensive and such relations are limited to particular cases.

Perhaps the most widely used empirical constitutive relations for the moisture content and

hydraulic conductivity is due to the work of van Genuchten and Haverkamp et al.(particular

case of van Genuchten). The following popular model from ground water hydrology due to

Haverkamp et al[4], which describes these constitutive relation as the continuous function

of ψ.

(1.3) θ(ψ) = θr +
α(θs − θr)
α+ |ψ|β

,K(ψ) =
KsA

A+ |ψ|γ

where the subscript s refer to the saturation i.e. the value of θ for which ψ = 0 and the

subscript r to residual moisture content and A, α, β, γ are dimensionless soil parameters.

Both the function K(ψ) and θ(ψ) in equation (1.3) are highly nonlinear since they can be

dramatically changed over a small range of ψ. With these the Richards equation (1.1) be-

comes a highly nonlinear partial differential equation and analytical solution is not possible

except for some special cases.

The flow of water in unsaturated porous media(soil) is complex in nature. Because of

its complexity and lack of absolute and reliable analytical solution to calculate the flow in

unsaturated zone, the use of numerical methods to solve the problems related to unsatu-

rated flow(Richards equation) has grown considerably in recent years. Since the expressions

of equation (1.3) make the equation (1.1)highly nonlinear, it is important to utilize efficient

and accurate solution procedures. Different numerical methods are used to approximate the

solution of equation(1.1). Different methods yield different accuracy with computationally

expensive and are not reliable for some cases. Therefore infiltration problems are still con-

sidered to be one of the most important topics of interest in groundwater hydrology. Many

numerical schemes based on finite difference, finite element, finite volume and Adaptive

time-stepping strategies have been developed to approximate the solution of the Richards

equation [5], [6], [7], [8], [9], [10], [11].

Because of the strong stability restriction of the Forward Euler schemes for the parabolic

partial differential equations, it seems there has not been much attention given to develop
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Forward Euler schemes for the Richards equation and adequate amount of research work

is devoted in developing Backward Euler schemes. Due to the highly nonlinear nature of

the problem, to implement Backward Euler schemes, no mater which numerical approaches

we use, the problem has to be linearized somehow at some stage. As such some iterative

approaches need to be applied to tackle this highly nonlinear problem [4, 12]. The Backward

Euler schemes are unconditionally stable, but with the iterative process involved they all

turn out to be computationally expensive and in certain circumstances, unreliable.

Contemporary research trends in computational approach is to develop efficient parallel

algorithm for High-performing Computers. For parallelize the numerical procedures, the

algorithm should be iteration free. For this, an Forward Euler scheme is the best option. In

[13], a linearized Richards equation model is studied. In [9], stability analysis of Forward

Euler scheme for the Richards equation is studied. In [14] an explicit stabilized Runge-

Kutta- Legendre super time-stepping scheme for the Richards equation is studied. Here w

Kirchhoff integral transform is used to reduce the highly nonlinear equation to a functional

linear parabolic equation and solve it numerically.

The aim of this paper is to implement finite difference scheme(Crank-Nicolson) to

Kirchhoff transformed Richards equation with evapotranspiration. The work here presented,

describes and verifies the employment and accuracy of a Crank-Nicolson scheme to simulate

flow in unsaturated porous media with evaporation of bare soils and transpiration of plants.

The advantage of using our scheme is that it is unconditionally stable, easy to implement,

can be easily extended to problems in higher dimensions, and can be easily parallelized.

This paper is organized as follows: In section 2, we present Kirchhoff transformation to

(spatially) linearize the Richards equation. In section 3, we present the numerical methods

based on finite difference method. In section 4, we compare the result with and without

the sink terms in the Richards equation. Finally, in section 5 we present our conclusions.

2. Simplified one-dimensional Richards equation

Richards equation (1.1) in one space dimension with loss of water due to the evaporation

of unsaturated porous media (soils) and transpiration of plants is considered as: .

(2.1)
∂θ

∂t
=

∂

∂z

(
K(ψ)

∂ψ

∂z

)
− ∂K

∂z
+ ET

Generally Richards equation (2.1) is used to simulate infiltration experiments. These

experiments begin with a wetting soil on top of the ground surface, showing a clear con-

nection with the Darcy’s law. Assuming that the infiltration with known pressure head

at the top and bottom of the soil column. That is for the following initial and boundary

conditions.

(2.2)


ψ(z, 0) = ψ0(z), 0 < z < L

K(ψ)−K(ψ)∂ψ∂z = q(t), z > 0, t > 0

ψ(L, t) = β(t), t > 0
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2.1. Kirchhof integral transform. Applying Kirchhof integral transformation to equa-

tion (2.1), with h = ψ − z (say) and define

(2.3) φ(h) =

∫ h

0
K̄(λ)dλ

Since K(h) > 0 from (1.3), the function φ(h) is strictly increasing with K̄(h) = K(ψ).

Taking derivative of both sides of the transformation, we obtain :

(2.4)
∂φ

∂z
=
∂φ

∂h

∂h

∂z
= K̄(h)

∂(ψ − z)
∂z

= K(ψ)(
∂ψ

∂z
− 1) = K(ψ)

∂ψ

∂z
−K(ψ)

Again taking derivative of equation (2.4),

(2.5)
∂2φ

∂z2
=
∂(K(ψ)∂ψ∂z )

∂z
− ∂

∂z
(K(ψ))

Using the equation (2.5), the Richards equation (2.1) takes the form

(2.6)
∂θ̄

∂t
=
∂2φ

∂z2
+ ET

with θ̄(φ) = θ(h). The corresponding initial and boundary conditions for the transformed

equation (2.6) takes the following form

(2.7)


φ(z, 0) = φ0(z), 0 < z < L
∂φ
∂z = q̄(t), z > 0, t > 0

φ(L, t) = β̄(t), t > 0

The Kirchhoff transformation transformed the doubly nonlinear equation (2.1) to a

nonlinear parabolic problem (2.6). Also noted that the Kirchhoff transformation preserves

the uniqueness result for the transformed problem.

3. Numerical Method

To solve the equation (2.6) numerically with above mentioned initial and boundary

conditions (2.7), it is more convenient to have a single state variable. For this, assuming θ

and φ are single valued continuous functions of one another and rearrange to obtain

(3.1)
∂θ

∂t
=
∂θ

∂φ

∂φ

∂t
= (

1
∂φ
∂θ

)
∂φ

∂t
,

∂φ

∂θ
=
∂φ

∂h

∂h

∂θ

Differentiating (1.3) and (2.3) with respect to h

(3.2)
∂θ

∂h
= α(θs − θr)(α+ |h|β)−2.β|h|β−1, ∂φ

∂h
= K̄(h) = K(ψ).

Using (3.1) and (3.2), the transformed Richards equation (2.6) takes the form:

(3.3) c(φ)
∂φ

∂t
=
∂2φ

∂z2
+ ET,

where the functional coefficient c depends on φ through h as

(3.4) c(φ(h)) =
αβ(θs − θr)|h|β−1

K̄(h)(α+ |h|β)2
.
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3.1. Finite difference discretization. Let ∆z = L/M and ∆t = T/N . We construct a

grid (zj , tn), with zj = j∆z, j = 0, 1, 2, · · · ,M and tn = n∆t, n = 0, 1, 2, · · ·N . Let φnj
denote φ(zj , tn). The partial differential equation (3.3) can be approximated using forward

difference in time and central difference in space as

(3.5)
∂φ

∂t

∣∣∣∣
(zj ,tn)

≈
φn+1
j − φnj

∆t
,

∂2φ

∂z2

∣∣∣∣
(zj ,tn)

≈
φnj−1 − 2φnj + φnj+1

∆z2
.

Let 0 ≤ λ ≤ 1. Using a weighted average of the derivative ∂2φ
∂z2

at two time levels, tn

and tn+1, the equation (3.3) can be discretized as:

(3.6) φn+1
j = φnj +σnj

[
λ(φn+1

j−1 − 2φn+1
j + φn+1

j+1 ) + (1− λ)(φnj−1 − 2φnj + φnj+1)
]
+σn1j(ET )nj

where σnj = ∆t/(cnj ∆z2), σn1j = ∆t/cnj .

Equation (3.6) is used to update the values of φn+1
j for the internal nodes. Using

the second order central difference with ghost node approach at the upper boundary and

constant pressure head at the lower boundary, we get

(3.7)
(1 + 2λσnj )φn+1

0 − 2λσnj φ
n+1
1 = [1− 2(1− λ)σn0 ]φn0+

2(1− λ)σn0φ
n
1 −2∆z

[
λσn+1

0 q(tn+1) + (1− λ)σn0 q(tn)
]

+ σn10(ET )n0
φn+1
M = β̄(tn+1)

The numerical scheme (3.6)-(3.7) represents a forward in time central in space (FTCS),

backward in time central in space (BTCS) and Crank-Nicolson (CN) schemes for λ = 0, λ =

1 and λ = 1
2 respectively [15]. The error associated with this approximation is O(∆z2 +∆t)

for all λ 6= 1
2 . In the case of Crank-Nicolson, it is O(∆z2 + ∆t2), second order accurate in

both space and time.

The above numerical procedure can be expressed in a tridiagonal matrix system as

(3.8)



1 + 2λσn0 −2λσn0 0 ... 0 0 0

−λσn1 1 + 2λσn1 −λσn1 ... 0 0 0

... ... ... ... .... .... ....

... ... ... ... .... .... ....

0 0 0 ... −λσnM−1 1 + 2λσnM−1 −λσnM−1
0 0 0 ... 0 0 1





φn+1
0

φn+1
1

...

...

φn+1
M−1
φn+1
M


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=

(1− 2(1− λ)σn0 )φn0 + 2(1− λ)σn0φ
n
1 − 2∆z

(
λσn+1

0 q(tn+1) + (1− λ)σn0 q(tn)
)

(1− λ)σn1φ
n
0 + (1− 2(1− λ)σn1 )φn1 + (1− λ)σn1φ

n
2

...

...

...

(1− λ)σnM−1φ
n
M−2 +

(
1− 2(1− λ)σnM−1

)
φnM−1 + (1− λ)σnM−1φ

n
M

β̄(tn+1)


+



σn10ET
n
0

σn11ET
n
1

...

...

...

σn1M−1ET
n
M−1

0


When λ = 1

2 equation (3.8) takes the form

(3.9)



1 + σn0 −σn0 0 ... 0 0 0

−1
2σ

n
1 1 + σn1 −1

2σ
n
1 ... 0 0 0

... ... ... ... .... .... ....

... ... ... ... .... .... ....

0 0 0 ... −1
2σ

n
M−1 1 + σnM−1 −1

2σ
n
M−1

0 0 0 ... 0 0 1





φn+1
0

φn+1
1

...

...

φn+1
M−1
φn+1
M


=

(1− σn0 )φn0 + σn0φ
n
1 −∆z

(
σn+1
0 q(tn+1) + σn0 q(tn)

)
1
2σ

n
1φ

n
0 + (1− σn1 )φn1 + 1

2σ
n
1φ

n
2

...

...

...
1
2σ

n
M−1φ

n
M−2 +

(
1− σnM−1

)
φnM−1 + 1

2σ
n
M−1φ

n
M

β̄(tn+1)


+



σn10ET
n
0

σn11ET
n
1

...

...

...

σn1M−1ET
n
M−1

0


The numerical scheme (3.9) can be used to update the transformed variable φnj to its

value in the next time level φn+1
j . But it cannot advance the algorithm to the next time level

φn+2
j without evaluating the function c(φn+1

j ) which requires computing the intermediate

variable hn+1
j . For this, the equation (3.2)is employed which can be approximated as

(3.10) hn+1
j = hnj +

φn+1
j − φnj
K̄(hnj )

.

3.2. von Neumann Stability analysis. .

From equation (3.6), the difference scheme for λ = 1
2 can be written as

(3.11)

−1

2
σnj φ

n+1
j−1+(1+σnj )φn+1

j −1

2
σnj φ

n+1
j+1 =

1

2
σnj φ

n
j−1+[1−σnj ]φnj +

1

2
σnj φ

n
j+1+σ

n
ij(ET )nj , j = 0 ,±1, ...

at (n+1) time step, the error calculation has in the form:

(3.12)

− 1

2
σnj E

n+1
j−1 + (1 +σnj )En+1

j − 1

2
σnj E

n+1
j+1 =

1

2
σnj E

n
j−1 + [1−σnj ]Enj +

1

2
σnj E

n
j+1, j = 0 ,±1, ...

assuming a Fourier component for

(3.13) Enj = Ẽneji2πhξ
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The scheme(3.12) becomes:

−1

2
σnj e

−2iπhξẼn+1+(1+σnj )Ẽn+1−1

2
σnj e

2iπhξẼn+1 =
1

2
σnj e

−2iπhξẼn+[1−σnj ]Ẽn+
1

2
σnj e

2iπhξẼn

⇒ 1

2
σnj (−e−2iπhξ + 2− e2iπhξ) ˜En+1 + 2 ˜En+1 =

1

2
σnj (e−2iπhξ − 2 + e2iπhξ)Ẽn + 2φ̃n

Introducing an amplification factor such that Ẽn+1
j = GẼnj , then

Ẽn+1(1 +
1

2
σnj (−e−2iπhξ + 2− e2iπhξ)) = Ẽn(1 +

1

2
σnj (e−2iπhξ − 2 + e2iπhξ))

Utilizing the relation

2hπξ = u, cosu =
eiu + e−iu

2

Ẽn+1(1 + σnj (1− cosu)) = Ẽn(1− σnj (1− cosu))

⇒ G =
(1− σnj (1− cosu))

(1 + σnj (1− cosu))
=

1− 2σnj sin2 u
2

1 + 2σnj sin2 u
2

For a stable solution the absolute value of G must be less than or equal to 1 for all

values of u. Since G′(u) = 0 at u=0, ±π and G(0) = 1 the stability requirement can be

expressed as

(3.14)
(1− 2σnj
1 + 2σnj

≤ 1

is always true for

σnj ≥ 0

It can be shown that the numerical scheme (3.9) is unconditionally stable. Note that

when c(φ) = 0 in (3.3) becomes purely a diffusion equation. Thus, to avoid degeneracy it

needs to adjust a small parameter in the calculation of c(φnj ).

4. Simulation Results

4.1. Numerical Setup. The numerical procedure developed in the previous section is

written in Python, and ran on a laptop with 2.8 GHz Quad-Core Intel Core i7 processor

. We inspect the behavior of the numerical scheme presented in the previous section in

a specific infiltration experiment. In this simulation we consider a vertical soil column of

depth L = 70cm in a time period of tmax = 1hr with reference evapotranspiration .0000175

cm/hr.

Following Haverkamp et al. [8], using the soil parameters and the characteristics re-

lationship between the soil moisture content θ(ψ) and the hydraulic conductivity K(ψ) in

the following way

θ(ψ) = θr +
α(θs − θr)
α+ |ψ|β

= 0.075 +
1.616× 106(.287− .075)

1.616× 106 + |ψ|3.96

K(ψ) = Ks
A

A+ |ψ|γ
=

34× 1.175× 106

1.175× 106 + |ψ|4.74
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The simulation starts with a uniform saturation θ = 0.1 cm3/cm3 and a constant water

head ψ = −61.5 cm is maintained at the bottom boundary z = L. At the upper boundary

z = 0 (the soil surface), a constant flux q(t) = 13.69 cm/hr for t < 0.3 hr and zero normal

flux condition for t > 0.3 hr.

The problem is simulate with Crank-Nicolson method which is unconditionally stable

and have no restriction of time step size. The step size is limited only by the accuracy of

approximation. We run CN scheme for the problem with or without sink terms and compare

the results. To deal with the nonlinear dependence of the functional coefficient c(φ) in the

CN scheme, we use fix point iteration with maximum allowable iteration MAXIT = 10

and relative error tolerance TOL = 10−6.

4.2. Results and Discussion. Richards equation is highly non-linear. The non-linear

behavior of Richards equation appears by use of relationship between θ and ψ and K and

ψ. Figure 1 shows the relative curve developed by Haverkamp et al. [8] using experimental

data with appropriate parameter values.

Figure 1. The shape of function θ(ψ) (left) and K(ψ) (right).

Figure 2. variational trend of moisture content in depth(left) and pressure

head(right) without evapotranspiration.

The numerical solution of Richards equation has computed using Crank-Nicolson method

. First it has computed the equation without evapotranspiration with a fairly fine mesh

of ∆z = 2cm and ∆t = 0.001sec as the reference solution. Figure 2 describes the profile

of moisture retention function and the pressure head phenomenon. In which the drainage
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Figure 3. variational trend of moisture content in depth(left) and pressure

head(right) with evapotranspiration.

takes place at 29 cm, 50 cm, and 65 cm at the corresponding time .25 hr, .50 hr, .75 hr re-

spectively. Secondly the equation has computed with evapotranspiration as the same mesh

and same time step with reference evapotranspiration 0.0000175cm/hr. Figure 3 describes

the corresponding profile for pressure head and the moisturity. Where the drainage takes

place at 26 cm, 42 cm, and 55 cm at the corresponding time .25 hr, .50 hr,.75 hr respec-

tively. The comparison between the computed result shows that the cost for computation

in drainage is expensive in the case of Richards equation without the loss of water due to

the evaporation of unsaturated porous media (soils) and transpiration of plants. in figure

4 and 5, we describe the profile of moisture content θ(z, t) and pressure head ψ(z, t) along

the soil depth at various times t = 0.1, 0.2, ..., 1hr without evapotranspiration and with

evaporation.

Figure 4. Variational trend of moisture content in depth and time (left)

and pressure head (right) without evapotranspiration

.

5. Conclusion

In this work, we considered one-dimensional Richards equation and solve it numerically

by using Crank-Nicolson method. We compare the model with and without the loss of water

due to the evaporation of unsaturated porous media (soils) and transpiration of plants. Our

result has realistic significance as expected. It has shown that an additional work in time



44

Figure 5. Variational trend of moisture content in depth and time (left)

and pressure head (right) with evapotranspiration

.

and flow movement is needs to reach the given boundary condition for the model without

evapotranspiration. Although Richards equation is a phenomenological model, depending

on Darcy’s law and constitutive relationship θ(ψ) and K(ψ), equation (1.1) becomes a useful

model with the ability to quantitatively predict water infiltration in unsaturated soil with

naturally recharge and evapotranspiration for higher dimension.
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