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Abstract: In the present study, a wider class of sequence is used for a least set of sufficient conditions for

absolute Cesàro ϕ− |C,α, β; δ; γ|k summable factor for an infinite series. Many corollaries have been deter-

mined by using sutaible conditions in the main theorem. Validation of the theorem done by the previous

findings of summablity. In this way, system’s stability is improved by finding the conditions for absolute

summability.
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1. Introduction

Let partial sums’ sequence of
∑
an is given by sn =

∑n
k=0 ak and nth sequence to sequence

transform of the sequence {sn} is determined by un, s.t.,

(1.1) un =

∞∑
k=0

unksk

An infinite series
∑
an is absolutely summable, if

(1.2) lim
i→∞

ui = s
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and

(1.3)

∞∑
i=1

|ui−ui−1| <∞.

Definition 1 [1]: Let {nan} be a sequence. The nth Cesàro mean of this sequence is

represented by tαn. This mean is of order α (0 < α ≤ 1). Then
∑
an is summable |C,α; δ|k

for δ ≥ 0 and k ≥ 1, if

(1.4)
∞∑
n=1

nδk−1|tαn|
k
<∞,

where tαn is

(1.5) tαn =
1

Aαn

n∑
p=1

Aα−1
n−ppap,

and

(1.6) Aαn =


O (nα) , for n > 0,

1, for n = 0,

0, for n < 0.

Definition 2: If sequence of means {tαn} satisfies:

(1.7)
∞∑
n=1

ϕk−1
n

nk−δk
|tαn|k <∞,

then
∑
an is ϕ− |C,α; δ|k summable. Where {ϕn} is a positive real number sequence, δ ≥ 0

and k ≥ 1.

Definition 3: Let tα, βn represents the nth Cesàro means of order (α, β), with α+ β > −1,

for a sequence {nan}, i.e.

(1.8) tα, βn =
1

Aα+β
n

n∑
v=1

Aα−1
n−vA

β
vvav,

where

(1.9) Aα+β
n =

{ 0, n < 0,

1, n = 0,

O(nα+β), n > 0.

If the sequence {tα, βn } satisfies,

(1.10)
∞∑
n=1

ϕk−1
n

nk
|tα, βn |k <∞,

then the infinite series
∞∑
n=0

an is indexed absolute ϕ− |C, α, β|k summable.

Definition 4: For a series
∑
an, if the condition given below is satisfied,

(1.11)
∞∑
n=1

ϕ
(δk+k−1)
n

nk
|tα, βn |k <∞,

then it is said to be ϕ− |C, α, β; δ|k summable, where δ ≥ 0, k ≥ 1 and {ϕn} is a sequence

containing (+)ve real numbers.
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Definition 5: The series
∑
an is indexed ϕ − |C, α, β; δ; γ|k summable for k ≥ 1, δ ≥ 0

and γ is a real number, if

(1.12)
∞∑
n=1

ϕ
γ(δk+k−1)
n

nk
|tα, βn |k <∞.

Bor [2-6] has determined various important results by using absolute summability factors

for infinite series with the application of diffferent classes of sequences. Özarslan derived

the theorems on absolute matrix summable factors [7, 8] and (K, 1, α) summable factor has

been used by Parashar in [9]. Absolute product summability has been used by Chandra and

Jain [10] for Fourier series. Various theorems on absolute Cesàro summability have been

established by Sonker and Munjal in [11, 12] and they used triangle matrices for infinite

series in [13].

2. Known results

A positive sequence B = {Bn} is quasi-f -power increasing sequence [14] with K =

K(B, f) ≥ 1 for all 1 ≤ m ≤ n s.t.

(2.1) KfnBn ≥ fmBm

(2.2) f = [fn (ς, η)] = {nς(logn )η, 0 < ς < 1, η ≥ 0} .

A wider class has been used in [15] and Bor [16] used absolute summable factor of order α

for the result.

Theorem 2.1. Let {Bn} be a wider class (a quasi-f-power sequence), which is an increasing

sequence for ς (0 <ς <1). Assume ∃ a sequence {Dn} s.t. it is ξ-quasi-monotone with

conditions:

(2.3)
∑

nξnBn = O (1) ,

(2.4) ∆Dn ≤ ξn,

(2.5) |∆λn| ≤ |Dn| ,

(2.6)
∑

DnBn is convergent for all n.

If the following two conditions

(2.7)

p∑
i=1

(wαi )k

i
= O (Bp) as p→∞,

(2.8) |λi|Bi = O (1) as i→∞,

are satisfied, then |C,α|k summable factor has been followed by infinite series
∑
anλn with

0 < α ≤ 1 and k ≥ 1.
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3. Main results

Increasing sequences are very useful for establishing a number of results on absolute

summable factor. In the present study, quasi-f-power sequence is playing an important role

for summable factor of a generalized series. Conditions are determined on absolute summa-

ble factor which are sufficient for an infinite series to make it absolute summable.

Theorem 3.1. Let {Bn} be a wider class of sequence (A quasi-f-power sequence), which is a

increasing sequence for ς (0 <ς <1). Assume ∃ a sequence {Dn} s.t. it is ξ-quasi-monotone

with conditions:

(3.1)
∑

nξnBn = O (1) ,

(3.2) ∆Dn ≤ ξn,

(3.3) |∆λn| ≤ |Dn| ,

(3.4) |λn|Bn = O (1) as n→∞.

If the following two conditions

(3.5)
∑

DnBn <∞ for all n,

(3.6)

m∑
n=1

(wα, βn )kϕ
γ(δk+k−1)
n

nk
= O(Bm) as m→∞,

(3.7)
m∑
n=v

ϕ
γ(δk+k−1)
n

nk(1+α+β)
=

ϕ
γ(δk+k−1)
v

vk(1+α+β)−1
,

are satisfied, then generalized summable factor ϕ−|C, α, β; δ; γ|k has been followed by in-

finite series
∑
anλn, where k ≥ 1, α+β > 0, 0 < α ≤ 1, β > −1, δ ≥ 0, γ (real number) .

The term of sequence {wα, βn } is

(3.8) wα, βn =

{
max

1≤v≤n
|tα, βv |, β > −1, 0 < α < 1,

|tα, βn |, β > −1, α = 1.

4. Proof of the Theorem

The series
∑
anλn will follow ϕ − |C, α, β; δ; γ|k summable factor, if the nth mean

satisfies the condition,

(4.1)

∞∑
n=1

ϕ
γ(δk+k−1)
n

nk
|tα, βn |k <∞.

The nth sequence to sequence transform (C,α, β) of {nanλn} is

Tα, βn =
1

Aα+β
n

n∑
v=1

Aα−1
n−vA

β
vvavλv
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=
1

Aα+β
n

n−1∑
v=1

∆λv

v∑
p=1

Aα−1
n−pA

β
ppap +

λn

Aα+β
n

n∑
v=1

Aα−1
n−vA

β
vvav.(4.2)

By taking modulus value of both sides and using the concept of modulus,

|Tα, βn | ≤ 1

Aα+β
n

n−1∑
v=1

|∆λv|

∣∣∣∣∣
v∑
p=1

Aβ−1
n−pA

α
p pap

∣∣∣∣∣+
|λn|
Aα+β
n

∣∣∣∣∣
n∑
v=1

Aβ−1
n−vA

α
v vav

∣∣∣∣∣
≤ 1

Aα+β
n

n−1∑
v=1

Aα, βv wα, βv |∆λv|+ |λn|wα, βn

= Tα, βn,1 + Tα, βn,2 .(4.3)

With the use of Minkowski’s inequality’s concept,

(4.4) |Tα, βn |k = |Tα, βn,1 + Tα, βn,2 |
k ≤ 2k

(
|Tα, βn,1 |

k + |Tα, βn,2 |
k
)
.

It is enough to prove that

(4.5)
∞∑
n=1

ϕ
γ(δk+k−1)
n

nk
|Tα, βn,r |k <∞, for r = 1, 2.

For Tα, β
n,1 : By applying Abel’s transformation and Hölder’s inequality, we have

m+1∑
n=2

ϕ
γ(δk+k−1)
n

nk
|Tα, βn,1 |

k

≤
m+1∑
n=2

ϕ
γ(δk+k−1)
n

nk
1

(Aα+β
n )k

(
n−1∑
v=1

Aα, βv wα, βv |∆λv|

)k

≤
m+1∑
n=2

ϕ
γ(δk+k−1)
n

nk(1+α+β)

n−1∑
v=1

v(α+β)k(wα, βv )k|Dv|

(
n−1∑
v=1

|Dv|

)k−1

= O(1)

m∑
v=1

v(α+β)k(wα, βv )k|Dv|
m+1∑
n=v+1

ϕ
γ(δk+k−1)
n

nk(1+α+β)

= O(1)

m∑
v=1

v(α+β)k(wα, βv )k|Dv|
ϕ
γ(δk+k−1)
v

vk(1+α+β)−1

= O(1)

m∑
v=1

v|Dv|(wα, βv )k
ϕ
γ(δk+k−1)
v

vk

= O(1)
m−1∑
v=1

∆(v|Dv|)
v∑
r=1

(wα, βr )k
ϕ
γ(δk+k−1)
r

rk

+O(1)m|Dm|
m∑
v=1

(wα, βv )k
ϕ
γ(δk+k−1)
v

vk

= O(1)

m−1∑
v=1

∣∣∣(v + 1)∆|Dv| − |Dv|
∣∣∣Bv +O(1)m|Dm|Bm

= O(1)
m−1∑
v=1

v|∆Dv|Bv +O(1)
m−1∑
v=1

|Dv|Bv +O(1)m|Dm|Bm
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= O(1)

m−1∑
v=1

vξvBv +O(1)
m−1∑
v=1

|Dv|Bv +O(1)m|Dm|Bm

= O(1) as m→∞,(4.6)

For Tα, β
n,2 : By applying Abel’s transformation and Hölder’s inequality, we have

m∑
n=2

ϕ
γ(δk+k−1)
n

nk
|Tα, βn,2 |

k = O(1)
m∑
n=1

|λn|(wα, βn )k
ϕ
γ(δk+k−1)
n

nk

= O(1)
m−1∑
n=1

∆|λn|
n∑
v=1

(wα, βv )k
ϕ
γ(δk+k−1)
v

vk

+O(1)|λm|
m∑
n=1

(wα, βn )k
ϕ
γ(δk+k−1)
n

nk

= O(1)

m−1∑
n=1

|∆λn|Bn +O(1)|λm|Bm

= O(1)
m−1∑
n=1

|Dn|Bn +O(1)|λm|Bm

= O(1) as m→∞.(4.7)

Collecting (4.2) - (4.7), we have

(4.8)

∞∑
n=1

ϕ
γ(δk+k−1)
n

nk
|Tα, βn |k <∞.

Hence the proof of the theorem is completed.

5. Corollaries

Corollary 5.1. Let {Bn} be a wider class of sequence (quasi-f-power sequence), which is an

increasing sequence for ς (0 <ς <1). Assume ∃ a sequence {Dn} s.t. it is ξ-quasi-monotone

with conditions (3.1-3.5) and

(5.1)

p∑
i=1

ϕ
(k−1)
i (wαi )k

ik
= O (Bp) as p→∞,

(5.2)

p∑
i=v

ϕ
(k−1)
i

i(α+1)k
= O

(
ϕ

(k−1)
v

v(α+1)k−1

)
,

then ϕ− |C,α|k summable factor followed by the series
∑
anλn with k ≥ 1, 0 < α ≤ 1 and

wαn is

(5.3) wαn =

 max
1≤v≤n

|tαv | , 0 < α < 1,

|tαn| , α = 1.

Proof: Use γ = 1, δ = 0 and β = 0 in the present result.
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Corollary 5.2. Let {Bn} be a wider class of sequence (quasi-f-power sequence), which is an

increasing sequence for ς (0 <ς <1). Assume ∃ a sequence {Dn} s.t. it is ξ-quasi-monotone

with conditions (3.1-3.5) and

(5.4)

p∑
i=1

(wαi )k

i
= O (Bp) as p→∞,

then |C,α|k summable factor followed by
∑
anλn series with k ≥ 1, 0 < α ≤ 1 and wαn is

(5.5) wαn =

 max
1≤v≤n

|tαv | , 0 < α < 1,

|tαn| , α = 1.

Proof: By using ϕn = n, γ = 1, δ = 0 and β = 0 in the present resent.

6. Conclusion

Present work is on absolute summability factor which makes the system stable. If an

impulse response be absolutely summable, then the system is BIBO stable, i.e.,

(6.1) BIBO stable ⇐⇒
∞∑

n=−∞
|h (n)| <∞.

With the help of summable factor, error is minimized and the output is made stable.

Absolute summable factor is used to predict the input data and the complete changes in

the process.

Present work is applicable in rectification of signals in Filter. By finding the corollary,

we can be concluded that present result is very important. This is a generalized research on

absolute summability which is used for find various previous results. Validation of present

work is done by corollary 5.2, which is establised by Bor [16] for infinite series to be absolute

summable.
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