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Abstract: The human body is made by 100 trillion cells. The uncontrolled and abnormal growth of cells

causes tumors. Due to the presence of tumor, the skin surface temperature of body provides abnormal

behavior than normal. Most of the breast tumor develops in lobules and milk ducts of glandular layer. In

this study, tumor is assumed in glandular layer. The study of this work is focused to find the temperature

distribution in tumor embedded female breast tissue with different tumor location and different tumor size.

For this, the finite element method is used to solve two-dimensional Pennes bioheat equation. The results

show that the skin surface temperature of breast is higher with nearest tumor from areola. The temperature

variation in breast tissue with tumors located at symmetrical position about the central line of the breast

are identical.
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1. Introduction

The human body is made by 100 trillion cells [5], which can survive for months or

years. When these cells are died or are damaged, they are replaced by new one. During

their life cycle, the cell is divided into two new cells. When cell division is uncontrolled,

the cell is divided into more than two cells. The uncontrolled and abnormal growth of cells

causes tumors. The main two types of tumors are benign and malignant. Benign tumors

are not dangerous to health. They don’t spread to other parts of the body. But malignant

tumors are cancerous, aggressive, and spread to other parts of the body. Blood perfusion

and metabolic rate are high in tumor due to fulfilling needs of more nutrition for growth.

Breast tumor develops in the cell of breast tissue. It causes the abnormal temperature

variation in the breast tissue.

Sudharsan and Ng [19] developed a two-dimensional model of surface temperature distribu-

tion of female breast with and without tumor. Saxena and Pardasani [15], Pardasani and

Adlakha [12] studied the problems involving tumor in skin and subcutaneous tissue (SST)

regions of human body. Lawson and Chughtai [7] established the regional temperature dif-

ference of breast skin surface with increased blood perfusion and increased metabolism in
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tumor. Makrariya and Pardasani [8] numerically studied on the heat transfer in uniformly

perfused tumor of female breast tissue during menstrual cycle under cold environment. Xu

et al. [20] described the temperature distribution in tumor and surrounding healthy tissue

in cancer treatment.

Shrestha et al. [16, 17] studied one-dimensional finite element method on thermal analysis of

female breast tissue with different size and location of tumor. They studied the temperature

variation of breast tissue with tumor on central line of the breast only. The present paper is

the extension of one-dimensional work of Shrestha et al. [16, 17] to two-dimensional, which

provides the more realistic in geometric structure and physical phenomena of the breast

tissue. In this work, tumor’s position is located at different part of the glandular layer (not

only central line) of the breast with different size and find the temperatures of tumorous

breast tissue. The aim of the study is to solve two-dimensional Pennes bioheat equation for

temperature variation of tumor embedded female breast tissue using finite element method.

2. Model Formulation

The breast is hemi-spherical shape with five main layers: epidermis, dermis, subcuta-

neous tissue, glandular layer and muscle with thoracic wall. The domain of the breast is

assumed to be 72 mm from areola to the body core [9, 10, 11, 16, 17] with thickness of

epidermis, dermis, subcutaneous tissue, glandular layer and muscle with thoracic wall are

taken 1.5 mm, 2 mm, 1.5 mm, 45 mm and 22 mm, respectively. X-axis is central line

of the breast. The part of the breast is symmetrical about the central line. Most of the

breast tumor develops in lobules and milk ducts of glandular layer. So, tumor is assumed in

glandular layer in the study. Figure 1 represents the schematic diagram of two-dimensional

discretization of breast tissue with tumors T1, T2, T3, T4 and T5. The diameter of tumors

T1, T2, T3 is taken 20 mm and for tumors T4 and T5 is 10 mm. Tumor T2 is assumed at

central line of the breast and tumors T1, T3 exist in opposite direction and parallel to the

central line of the breast at equi-distance from tumor T2. Tumors T4 and T5 lie on the

central line of the breast at different positions. The center of tumors T1, T2, T3, T4 and T5

are (35, 0), (35, 37), (35, -37), (10, 0) and (35, 0), respectively. T2 and T4 are concentric

tumors with different size.

2.1. Governing Equation: For numerical solution, Pennes bioheat equation [14] of two-

dimensional model is used, which describes the energy balance between metabolism and

blood perfusion in a living tissue. The simplified form of bioheat equation is:

K ∆T + P (Tb − T ) + Mh + Mt = 0(2.1)

where, K is thermal conductivity of tissue [W/m ◦C], ∆ = ∇2 is Laplacian operator,

P = wb cb ρb [W/m3 ◦C], wb is volumetric blood perfusion rate per unit volume [s−1], cb is

specific heat of the blood [J/kg ◦C], ρb is density of the blood [kg/m3], Tb is arterial blood

temperature [◦C], T is local temperature of tissue [◦C], Mh is metabolic heat generation rate

of healthy tissue [W/m3] and Mt is extra heat generation due to tumor [W/m3]. Mt = 0

for normal breast tissue.
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Figure 1. Schematic diagram of 2-D discretization of breast tissue with tumors.

2.2. Boundary Condition: Skin is the outer surface of the breast, which is in direct

contact with the environment. Heat loss from skin is caused by convection, radiation and

sweat evaporation. The mixed boundary condition [3, 16] is used in outer surface of the

breast:

Γ1 : K
∂T

∂η
= hc(T − TR) + LE(2.2)

where, η is the normal direction to the surface boundary, hc is combined heat transfer

coefficient due to convection and radiation [W/m2 ◦C], TR is room temperature [◦C], L

is Latent heat of evaporation [J/kg] and E is sweat evaporation rate [kg/m2sec]. The

boundary condition 2.2 can be written as:

Γ1 : K
∂T

∂η
+ h T = g, h > 0(2.3)

where, h = −hc, g = −hc TR + LE.

Thoracic wall is attached with body core, where the temperature is maintained at 37◦C.

So the Dirichlet boundary condition is used in inner part of breast:

Γ2 : S, S = 37◦C(2.4)

For continuity, the temperatures at the interface of breast tissue layers are defined as:

Ki
∂Ti
∂η

= Ki+1
∂Ti+1

∂η

(2.5)

Ti = Ti+1

2.3. Existence and Uniqueness of weak solution of Model Equation: The governing

equation is:

− K ∆T + P T = f in Ω(2.6)
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where, f = P Tb +Mh +Mt

With Boundary conditions:

K
∂T

∂η
+ h T = g on Γ1(2.7)

Tb = S on Γ2(2.8)

∂Ω = Γ1 ∪ Γ2, Γ1 ∩ Γ2 = φ

Let H1(Ω) be Hilbert space [2] defined as:

H1(Ω) = {u ∈ L2(Ω) :
∂u

∂xj
∈ L2(Ω), j = 1, 2, ..., n}

with norm ∥∥u∥∥
H1(Ω)

=

(∫
Ω
|u|2 +

∫
Ω
|u′|2

)1/2

where,

L2(Ω) = {u : Ω→ R|u is measureable and

∫
Ω
|u|2 <∞}

with norm ∥∥u∥∥
L2(Ω)

=

(∫
Ω
|u(x)|2dx

)1/2

Define V = {v ∈ H1(Ω)| v = 0 on Γ2} with inner product [4]

(u, v)V =

∫
Ω

(uv + Ou · Ov), for all u, v ∈ V(2.9)

Assume that T = w + G, where G ∈ H1(Ω) is a function such that G = S on Γ2, and

S ∈ H
1
2 (Γ2) [4, 6],

where,

H
1
2 (Γ2) := tr(H1(Ω)) := {G ∈ H1(Ω)| tr(G) = S}

Here, w = T −G. So, w = 0 on Γ2 and w ∈ V .

Multiplying (2.6) with the test function v ∈ V and integrating over the domain Ω yields

K

∫
Ω
Ow · Ov + P

∫
Ω
w v + h

∫
Γ1

w v =

∫
Ω
f v −K

∫
Ω
OG · Ov(2.10)

− P

∫
Ω
G v − h

∫
Γ1

G v +

∫
Γ1

g v

Thus, the weak form or variational problem of governing equation (2.6) is:

find T = w +G, w ∈ V such that

a(w, v) = `(v) for all v ∈ V(2.11)
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where,

a(w, v) = K

∫
Ω
Ow · Ov + P

∫
Ω
w v + h

∫
Γ1

w v

`(v) =

∫
Ω
fv −K

∫
Ω
OG · Ov − P

∫
Ω
G v − h

∫
Γ1

G v +

∫
Γ1

g v

(i) As a(w, v) = a(v, w), a(·, ·) is symmetric.

(ii) for w1, w2, v ∈ V and α1, α2 ∈ R
a(α1w1 + α2w2, v) = α1 a(w1, v) + α2 a(w2, v)

and, for w, v1, v2 ∈ V and β1, β2 ∈ R
a(w, β1v1 + β2v2) = β1 a(w, v1) + β2 a(w, v2)

Therefore, a(·, ·) is a bilinear functional on V × V .

(iii) Since | a(w, v) | ≤ C1 ‖w‖V ‖v‖V , v, w ∈ V, C1 > 0, a(·, ·) is bounded and hence

continuous.

(iv) Since a(v, v) ≥ C2 ‖v‖2H1(Ω), v ∈ V, C2 > 0, a(·, ·) is Coercive or V-elliptic.

(v) `(·) is bounded since
∣∣`(v)

∣∣ ≤ C3 ‖v‖V , C3 > 0.

(vi) For v1, v2 ∈ V and α1, α2 ∈ R, `(α1v1 + α2v2) = α1`(v1) + α2`(v2)

Therefore, `(·) is linear.

Here, a(·, ·) : V × V −→ R, is bilinear, bounded and V-elliptic (The detail solution is given

in Appendix). Also, ` : V → R is a bounded linear functional and ` ∈ V ∗, the dual space

of V . Hence by the Lax-Milgram theorem, there exists a weak solution w ∈ V , which is

unique. Also, T = w + G exists. For uniqueness of T , assume that T1 and T2 are two

solutions of the problem (2.11). Then,

a(T1, v) = `(v), a(T2, v) = `(v), ∀v ∈ V

Here, T1 − T2 = w1 +G− w2 −G = w1 − w2 ∈ V (Since, w1 − w2 = 0 on Γ2)

Then, T1 − T2 satisfies

T1 − T2 ∈ V, a(T1 − T2, v) = a(T1, v)− a(T2, v), ∀ v ∈ V

K

∫
Ω
O(T1 − T2) · Ov + P

∫
Ω

(T1 − T2) v + h

∫
Γ1

(T1 − T2) v = `(v)− `(v)

Taking v = T1 − T2,

K

∫
Ω
|O(T1 − T2)|2 + P

∫
Ω
|T1 − T2|2 + h

∫
Γ1

|T1 − T2|2 = 0

Thus, O(T1 − T2) = 0, T1 − T2 = 0

So, T1 = T2

Therefore, T is unique.

Since a(·, ·) is symmetric, the variational problem (2.11) is equivalent to the minimization

problem;

I[T (x, y)]=
1

2
a(T, T )− `(T )
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The variational form of the partial differential Equation (2.1) together with its boundary

condition (2.2) in two dimension is given by;

I[T (x, y)] =
1

2

∫∫
Ω

[
K

((
∂T

∂x

)2

+

(
∂T

∂y

)2
)

+ P (Tb − T )2 − 2MT

]
dxdy

+
1

2

∫
Γ1

[
hc (T − T∞)2 + LET

]
dΓ1(2.12)

where, M = Mh +Mt

For minimization,

dI

dTi
= 0(2.13)

where, Ti represents the temperature in ith triangular mesh.

The system of equation (2.13) can be written in matrix form:

A T = B(2.14)

where, T = [Ti] is N × 1 vector, B = [Bi] is N × 1 load vector matrix and A is N × N
Conductance matrix respectively, N is the total number of nodal points in discretization of

the domain.

Since a(·, ·) : V × V −→ R, V = H1(Ω) is symmetric and its associated bilinear form is

Coercive, A is symmetric positive definite matrix. So, its eigenvalues are all positive and

A is nonsingular matrix. Hence, A is invertible and the system of equation (2.14) has a

unique solution:

T = A−1 B(2.15)

2.4. Methodology: The temperature variation in tumor embedded breast has studied with

different position and size of tumor. For numerical solution, whole domain of the breast

is divided into 862 triangular finite elements. The epidermal, dermal and subcutaneous

layers of SST region are divided into 128, 128, 130 triangular finite elements, respectively.

The glandular layer with tumor and muscle with thoracic wall are divided into 434 and 42

triangular finite elements, respectively. Tumors T1, T2, T3 are divided into 52 triangular

finite elements. Tumors T4 and T5 are divided into 28 triangular finite elements. Tumors

are assumed to be uniformly perfused tissue. The parameter values used in model are shown

in Tables 1 and 2.

3. Results and Discussion

Figure 2 presents the temperature profile of the breast tissue at different tumor position.

Tumor T2 is located at central line of the breast. The results show that the temperature of

breast tissue increases from breast surface to the tumor region due to high blood perfusion

in tumor, then steady state to the body core, which meets the realistic phenomena of the

human body. The body core temperature of human body is assumed to be maintained at

37◦C and environment temperature is assumed at 25◦C. Since environment temperature

is less than body core temperature, the temperature of the breast tissue is continuously
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Table 1. Values of thermal conductivity, perfusion and metabolism

Layers of Breast Thermal Perfusion Metabolism

Tissue Conductivity wb cb ρb M

K (W/m ◦C) (W/m3 ◦C) (W/m3)

Epidermis 0.20934 0 0

[1, 16, 17] [1, 16, 17] [1, 16, 17]

Dermis 0.31401 800 400

[1, 16, 17] [16, 17] [16, 17]

Subcutaneous 0.41868 800 400

[1, 16, 17] [9, 16, 17, 19] [9, 16, 17, 19]

Glandular 0.48 2400 700

[9, 16, 17, 19] [9, 16, 17, 19] [9, 16, 17, 19]

Muscle with 0.48 2400 700

Thoracic wall [9, 16, 17, 19] [9, 16, 17, 19] [9, 16, 17, 19]

Tumor 0.55 48000 1400

[18] [9, 16, 17, 19] [16, 17, 19]

Table 2. Parameter values used in Model

Parameters Values Units Source

Density of tissue (ρ) 1050 kg/m3 [1, 16, 17]

Specific heat of tissue (c) 3475.044 J/kg oC [1, 16, 17]

Heat transfer coefficient (hc) 13.5 W/m2 oC [11, 17, 19]

Latent heat of evaporation (L) 2.4 ×106 J/kg [1, 16, 17]

Sweat evaporation rate (E) 3.0806× 10−6 kg/m2sec [13]

Room temperature (TR) 25 oC [13]

Body core temperature (Tb) 37 oC [16, 17, 19]

increasing from the skin surface to the tumor region and maintains deep tissue temperature

[17]. The similar behavior of the temperature in tumors T1 and T3 are shown in Figures

3 and 4 respectively. It is observed from the Figures 5 and 6 that when the tumor size is

taken 10 mm, temperature of the breast tissue increases from breast surface to the body

core due to small size of tumor.

Figure 7 represent the temperature profiles of the breast tissue with tumor size 20 mm.

Figure 7(b) presents the temperature profiles of the central line of the breast. The results

show that the temperature of tumor T2 is higher than tumors T1 and T3 because tumor T2

lies on the central line of the breast. The central temperature of tumor T2 is higher than

tumors T1 and T3 by 0.22◦C. The skin surface temperature of tumor T2 is 32.30◦C. Tumors

T1 and T3 have same skin surface temperatures 32.27◦C due to symmetric position from
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(a) Tumor T2 at center (35, 0) in unit mm. (b) Temperature profiles of breast with tumor

T2.

Figure 2. Breast tissue with tumor on central line of the breast.

(a) Tumor T1 at center (35, 37) in unit mm. (b) Temperature profiles of breast with tumor

T1.

Figure 3. Breast tissue with tumor parallel to central line (above x-axis)

of the breast.

(a) Tumor T3 at center (35, -37) in unit mm. (b) Temperature profiles of breast with tumor

T3.

Figure 4. Breast tissue with tumor parallel to central line (below x-axis)

of the breast.
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(a) Tumor T4 at center (10, 0) in unit mm. (b) Temperature profiles of breast with tumor

T4.

Figure 5. Breast tissue with tumor 10 mm far from areola at central line

of the breast.

(a) Tumor T5 at center (35, 0) in unit mm. (b) Temperature profiles of breast with tumor

T5.

Figure 6. Breast tissue with tumor 35 mm far from areola at central line

of the breast.

central line of the breast.

(a) Tumors T1, T2, T3 at differ-

ent position

(b) Breast central line (c) Tumor central line

Figure 7. Temperature profiles of the breast tissue with tumor size 20 mm.

Figure 7(c) presents the temperature profiles of the central line of the tumors. The central
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line of tumors T1 and T3 are opposite direction and parallel to the central line of the breast

(i.e., x-axis) and located at a symmetrical position from tumor T2. The results show that

the temperature of the central line of tumor having equi-distance from central line of breast

are identical.

(a) Tumors T4, T5 at different location. (b) Temperature profiles of the breast tissue

with umors T4 and T5.

Figure 8. Temperature profiles of the breast tissue with tumor size 10 mm.

(a) Tumors T2, T5 with different size (b) Temperature profiles of the breast tissue

with tumor T2, T5.

Figure 9. Temperature profiles of the breast tissue with different tumor size.

The temperature profiles of the breast tissue with tumors T4 and T5 are shown in Figure

8. Tumors T4 and T5 with tumor size 10 mm are located at distance 10 mm and 35 mm,

respectively from areola. The exhibited graphs show that the temperature of breast tissue

with tumor T4 is higher than T5. The skin surface temperature of breast tissue with tumors

T4 is higher than T5 by 1.09◦C because tumor T4 is nearest to areola than T5.

Figure 9 exhibits the temperature profile of the breast tissue with different tumor size.

There are two concentric tumors T5 and T2 with different tumor size 10 mm and 20 mm,

respectively, located at center (35, 0). Tumor T2 covers a large area of the breast than

tumor T5 which causes the tumor T2 nearest from areola than tumor T5. The results show
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that the temperature in tumor T2 is higher than tumor T5 due to smaller size of tumor

T5. The skin surface temperature of breast tissue with tumor T2 is higher than tumor T5

by 0.04◦C because tumor T2 is nearest to areola than tumor T5. There is small variation

between temperature of tumors T2 and T5 due to tumors position are 35 mm far from areloa.

4. Conclusions

In this work, the two-dimensional bioheat equation based on steady state temperature

distribution of the female breast is studied at different tumor size and location using finite

element method. The temperature of tumorous breast increases from skin surface to the

tumor center then steady state to the body core due to high impact of blood perfusion and

metabolism in tumor. The breast tissue with symmetric position of tumor from central line

of the breast (i.e., x-axis) are identical. Tumorous breast temperature increases when tu-

mor size increases. The skin surface temperature of breast tissue is higher with the nearest

tumor from areola.
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APPENDIX

For a(·, ·) symmetric

a(w, v) = K

∫
Ω
Ow · Ov + P

∫
Ω
w v + h

∫
Γ1

w v

= K

∫
Ω
Ov · Ow + P

∫
Ω
v w + h

∫
Γ1

v w

= a(v, w)

Therefore, a(·, ·) is symmetric.
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For a(·, ·) bilinear

(i) for w1, w2, v ∈ V and α1, α2 ∈ R

a(α1w1 + α2w2, v) = K

∫
Ω
O(α1w1 + α2w2) · Ov + P

∫
Ω

(α1w1 + α2w2) v

+ h

∫
Γ1

(α1w1 + α2w2) v

= α1

(
K

∫
Ω
Ow1 · Ov + P

∫
Ω
w1 v + h

∫
Γ1

w1 v

)
+ α2

(
K

∫
Ω
Ow2 · Ov + P

∫
Ω
w2 v + h

∫
Γ1

w2 v

)
= α1 a(w1, v) + α2 a(w2, v)

(ii) For w, v1, v2 ∈ V and β1, β2 ∈ R

a(w, β1v1 + β2v2) = K

∫
Ω
Ow · O(β1v1 + β2v2) + P

∫
Ω
w (β1v1 + β2v2)

+ h

∫
Γ1

w (β1v1 + β2v2)

= β1

(
K

∫
Ω
Ow · Ov1 + P

∫
Ω
w v1 + h

∫
Γ1

w v1

)
+ β2

(
K

∫
Ω
Ow · Ov2 + P

∫
Ω
w v2 + h

∫
Γ1

w v2

)
= β1 a(w, v1) + β2 a(w, v2)

Therefore, a(·, ·) is a bilinear functional on V × V .

For a(·, ·) is bounded (or continuous)

| a(w, v) | =

∣∣∣∣∣K
∫

Ω
Ow · Ov + P

∫
Ω
w v + h

∫
Γ1

w v

∣∣∣∣∣
≤ K

∫
Ω
|Ow · Ov| + P

∫
Ω
|w v|+ h

∫
Γ1

|w v|

≤ K‖Ow‖L2(Ω) ‖Ov‖L2(Ω) + P‖w‖L2(Ω) ‖v‖L2(Ω) + h‖w‖L2(Γ1) ‖v‖L2(Γ1)

(∵ By Cauchy-Schwarz inequality [4])

Since

‖Ow‖2L2(Ω) =

∫
Ω
Ow · Ow ≤

∫
Ω

(w2 + Ow · Ow) = ‖w‖2V

‖w‖2L2(Ω) =

∫
Ω
w2 ≤

∫
Ω

(w2 + Ow · Ow) = ‖w‖2V

and similarly for v, it follows that∣∣a(w, v)
∣∣ ≤ K‖w‖V ‖v‖V + P‖w‖V ‖v‖V + h‖w‖V ‖v‖V

= C1‖w‖V ‖v‖V , C1 = K + P + h > 0

Therefore, a(·, ·) is a bounded and hence continuous.
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For a(·, ·) is V-elliptic or Coercive:

We have,

a(v, v) =

∫
Ω
KOv · Ov + P

∫
Ω
v v +

∫
Γ1

h v v

= K

∫
Ω
Ov · Ov + P

∫
Ω
v2 + h

∫
Γ1

v2

≥ K C‖v‖2H1(Ω) + P‖v‖2L2(Ω) + h‖v‖2L2(Γ1), v ∈ V ( ∵ By Poincare

inequality [4],

∫
Ω
Ov · Ov ≥ C‖v‖2H1(Ω), v ∈ V, C > 0)

≥ C2 ‖v‖2H1(Ω), v ∈ V, C2 = KC

So, a(·, ·) is Coercive or V-elliptic.

For `(·) is bounded

we have,

∣∣`(v)
∣∣ =

∣∣∣ ∫
Ω
fvdx −K

∫
Ω
OG · Ov − P

∫
Ω
G v − h

∫
Γ1

G v +

∫
Γ1

g v
∣∣∣

≤
∫

Ω
|fv|dx+K

∫
Ω
|OG · Ov|+ P

∫
Ω
|G v| + h

∫
Γ1

|G v| +

∫
Γ1

|g v|

≤ ‖f‖L2(Ω)‖v‖L2(Ω) +K ‖OG‖L2(Ω)‖Ov‖L2(Ω) + P ‖G‖L2(Ω)‖v‖L2(Ω)

+h ‖G‖L2(Γ1)‖v‖L2(Γ1) + g ‖v‖L2(Γ1)

( ∵ by Cauchy-Schwarz inequality)

≤ ξ ‖v‖V +K ‖v‖V ‖G‖V + P ‖G‖V ‖v‖V + h ‖G‖V ‖v‖V + g ‖v‖V
= C3 ‖v‖V , C3 = ξ + (K + P + h)‖G‖V + g

since,

f ∈ L2(Ω), ‖f‖L2(Ω) =

(∫
Ω
|f |
)1/2

≤ ξ, ξ > 0

Thus, `(·) is bounded.

For linearity of `(·)
For v1, v2 ∈ V and α1, α2 ∈ R,
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`(α1v1 + α2v2) =

∫
Ω
f(α1v1 + α2v2)dx−K

∫
Ω
OG · (α1Ov1 + α2Ov2)

− P
∫

Ω
G (α1v1 + α2v2) − h

∫
Γ1

G (α1v1 + α2v2)

+

∫
Γ1

g (α1v1 + α2v2)

= α1

(∫
Ω
fv1dx−K

∫
Ω
OG · Ov1 − P

∫
Ω
Gv1 − h

∫
Γ1

Gv1 +

∫
Γ1

gv1

)
+ α2

(∫
Ω
fv2dx−K

∫
Ω
OG · Ov2 − P

∫
Ω
Gv2 − h

∫
Γ1

Gv2 +

∫
Γ1

gv2

)
= α1`(v1) + α2`(v2)

∴ `(·) is linear.
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