
Volume 6, Number 1 February 2025



 



NEPAL JOURNAL 
OF  

MATHEMATICAL SCIENCES 
 (NJMS) 

 

ISSN: 2738-9928 (Online), 2738-9812 (Print) 

Volume-6, Number -1 (February 2025) 

Editorial Team 
Advisors 

Prof. Dr. Shankar Prasad Khanal, Dean, Institute of Science and Technology, Tribhuvan University,  Nepal 

Assoc. Prof. Nawaraj Paudel,  Director, School of Mathematical Sciences, Tribhuvan University,  Nepal 

Editorial Board 

Prof. Dr. Narayan Prasad Pahari (Editor-in-Chief ) 

               Central Department of Mathematics, Tribhuvan  University, Kirtipur,  Kathmandu, Nepal 

Prof. Dr.  Subarna Shakya             (Member) 

               Institute of Engineering, Tribhuvan University, Pulchowk, Lalitpur, Nepal 

Prof. Dr.  Srijan Lal Shrestha       (Member) 

               Central Department of Statistics, Tribhuvan University, Kirtipur, Kathmandu, Nepal 

Prof. Dr.  Gyan Bahadur Thapa   (Member) 

               Institute of Engineering, Tribhuvan University, Pulchowk, Lalitpur, Nepal 

                                                          Editors 
Prof. Dr. Bal  Krishna Bal, Department of Computer Engineering, Kathmandu University,  Nepal 

Prof. Dr. Binod Chandra Tripathy, Department of Mathematics Tripura University, India 

Prof. Dr. Chet Raj Bhatta, Central Department of Mathematics, Tribhuvan University, Nepal 

Prof. Dr. Danda  Bir  Rawat, Department of Computer Science, Howard University, Washington, DC, USA 

Prof. Dr. Dil Bahadur Gurung, School of Natural Sciences, Kathmandu University, Nepal 

Prof. Dr. Dinesh Panthi, Department of Mathematics, Nepal Sanskrit University, Nepal 

Prof. Dr. Dipak Kumar Jana, Applied Science, Haldia Institute of Technology, W.B., India  
Prof. Dr. Jyotsna Kumar Mandal, Department of Computer Sciences, Kalyani University, West Bengal, India 

Prof. Dr. Narayan Adhikari, Central Department of Physics, Tribhuvan University, Nepal 

Prof. Dr. Ram Prasad Ghimire, School of Natural Sciences, Kathmandu University, Nepal 

Prof. Dr. Vijay Kumar, Department of Statistics, DDU Gorakhpur University,  India     

Prof. Dr. Vikash Kumar KC, Department of Statistics, Prithwi Narayan Campus, Tribhuvan University, Nepal 

Prof. Dr. Vikash Raj Satyal, Department of Statistics, Amrit Campus, Tribhuvan University, Nepal    

Dr. Badri  Adhikari, Department of Computer  Science, University of Missouri-St. Louis, USA 

Dr. Bishnu Hari Subedi, Central Department of Mathematics, Tribhuvan University, Nepal 

Dr. Chakra Bahadur  Khadka, School of Mathematical Sciences, Tribhuvan University, Nepal 

Dr.  Debendra  Banjade, Department of Mathematics, Coastal Carolina University,  USA 

Dr. Durga Jang KC, Central Department of Mathematics, Tribhuvan University, Nepal  

Dr. Ganesh B. Malla, Department of Statistics, University of Cincinnati – Clermont, USA 

Dr. Ghanshyam Bhatt, Department of Mathematics, Tennessee State University, USA 

Dr. Ishwari Jang Kunwar,  Department of Mathematics & Computer Science, Fort Valley State University, USA 

Dr. Milan Bimali, Department of Biostatistics, University of Arkansas for Medical Sciences, USA 

Dr. Parameshwari  Kattel, Dept. of Mathematics, Trichandra Multiple Campus, Tribhuvan University, Nepal 

Dr. Rama Shanker, Department of Statistics, Assam University, Silchar, India 

Dr. Sahadeb Upretee, Department of Actuarial Science, Central Washington University, USA 

Dr. Shree Ram Khadka, Central Department of Mathematics, Tribhuvan University, Nepal 

Managing Coordinator 

Mr.Keshab  Raj  Phulara, School of  Mathematical  Sciences, Tribhuvan University, Nepal 

https://www.facebook.com/UAMShealth/?eid=ARANqt342_juAAGy_kVRREpvza8UZQa_y_EQE207zSRyv6_Ozog0dO7ghlQD_Ad-fILqD6AK7Ep3Ws7y&timeline_context_item_type=intro_card_work&timeline_context_item_source=1565573742&fref=tag


 

 

 

 

 

 

 

 

 

NEPAL JOURNAL OF  MATHEMATICAL )SCIENCES (NJMS 

Volume-6, Number-1 (February, 2025) 

School of Mathematical Sciences, Tribhuvan University 

The views and interpretations in this journal are those of the author(s) and they are not 
attributable to the School of Mathematical Sciences, Tribhuvan University. 

The Nepal Journal of Mathematical Sciences (NJMS) is now available on NepJOL 
at https://www.nepjol.info/index.php/njmathsci/index 

 

 

MAILING ADDRESS 

Nepal Journal of Mathematical Sciences 
School of Mathematical Sciences 
Tribhuvan University, Kirtipur 

Kathmandu, Nepal 
Website: www.sms.tu.edu.np 

 

Email: njmseditor@gmail.com 

https://www.nepjol.info/index.php/njmathsci/index
http://www.sms.tu.edu.np/
mailto:njmseditor@gmail.com


 
 
 

Editorial 

We are pleased to announce the release of the first issue of Volume 6 of the Nepal Journal 

of Mathematical Sciences (NJMS) for the year 2025. This issue features six research articles 

that cover a wide range of topics in mathematics and mathematical sciences. 

We would like to express our sincere gratitude to all the authors for their valuable 

contributions to this issue. Our heartfelt thanks also go to the reviewers and editors for their 

dedicated support and expert guidance, which have been crucial in bringing this publication 

to life. 

We extend an invitation to professors, research scholars, and scientists to submit their 

original research work for consideration in future issues of NJMS. Your contributions are 

vital to advancing the field of mathematical sciences and enriching the scholarly 

community. 

Thank you for your continued support. 

                                                                   Editor-in-Chief     

                                                                 April 8, 2025 

 

 

                     



 
 
 

CONTENTS 
 

SN Article Titles and Authors Page No. 

1. On ϑ – Curvature Tensor of Finslerian Hypersurfaces Given by 

Generalised Kropina Type Metric 

 Poonam Miyan, Hemlata Pande & Dhirendra Thakur 

  DOI: 10.3126/njmathsci.v6i1.77368 

1-6 

2. Analysis of Foreign Exchange Rate Forecasting of Nepal using 

Long Short-Term Memory and Gated Recurrent Unit 

 Nissan Neupane & Nawaraj Paudel 

 DOI: 10.3126/njmathsci.v6i1.77369 

7-20 

3. A Spectrum of Cardiac Health Risk Assessment Intelligent System  

 Pankaj Srivastava & Krishna Nandan Kumar 

 DOI: 10.3126/njmathsci.v6i1.77372 

21-34 

4. On Some Sequence Spaces of Bicomplex Numbers 

 Purushottam Parajuli,  Narayan Prasad Pahari,  Jhavi Lal Ghimire    

   &  Molhu Prasad Jaiswal 

DOI: 10.3126/njmathsci.v6i1.77374 

35-44 

5. Extension of Hermite-Hadamard Type Integral Inequality Whose 

Second Order Derivatives are m- Convex Functions 

 Pitamber Tiwari & Chet Raj Bhatta 

    DOI: 10.3126/njmathsci.v6i1.77377 

45-50 

6. Interpolative Contraction and Discontinuity at Fixed Point on 

Partial Metric Spaces 

 Nabaraj Adhikari 

   DOI: 10.3126/njmathsci.v6i1.77378 

 

51-60 

 



 

    Nepal Journal of Mathematical Sciences (NJMS)  

    ISSN: 2738-9928 (online), 2738-9812 (print) 

   Vol. 6, No. 1, 2025 (February): 1-6 

    DOI: 10.3126/njmathsci.v6i1.77368 

    School of Mathematical Sciences, 

    Tribhuvan  University, Kathmandu, Nepal 

  Research Article 

  Received Date: August  15, 2024 

  Accepted Date: January 10, 2025                 

   Published Date: April 8, 2025   

 

1 
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Abstract:  The purpose of the present paper is to find  angular metric tensor ,carton torsion tensor, v-

curvature tensor in a generalized Kropina space and the relation between v -curvatures with respect to 

Cartan connection CΓ of a Finsler space Fn = (Mn, L)  and a Finsler space F*n = (Mn, L*) whose metric  

L* is derived from the metric L of Fn by L* (x, y) = μ1/2 (x, y) β1/2 (x, y), where μ1/2 (x, y) = (L1/2 + β1/2) 

(x, y) and β = bi(x) yi. The Finsler space F*n is called a generalized Kropina space under certain 

conditions.  

 

Keywords: Finsler metric, Kropina space, Cartan connection, h- vectors ϑ -curvature tensor. 

 

Mathematics subject classification: 2000: 53B 20, 53B 28, 53B 40, 53B 18. 

 

 

1. Introduction 

 
The study of Finsler spaces, with special metrics, has attracted considerable attention over the years. 

Among these, the Kropina metric, introduced by V.K. Kropina, has been a focal point due to its unique 

properties and applications. The Kropina metric is a special case of the (α, β)-metric, where the metric 

function is given by 

𝐿(𝑥, 𝑦) =
𝛼2

𝛽
,  

with 𝛼 being a Riemannian metric and 𝛽 a 1-form. 

This metric has been extensively studied in the context of Finslerian hypersurfaces, where the interplay 

between the intrinsic and induced geometries provides deep insights into the structure of the space. 

A significant milestone in the development of Finslerian hypersurfaces was the introduction of the 

Kropina metric by Kropina himself. This class of Finsler metrics, given by 

𝐿(𝑥, 𝑦) = 𝛼𝑚𝛽𝑛 (where 𝑚 ≠ 0, −1) 

was extensively studied by Shibata [8], who investigated its geometrical properties and provided 

foundational results on its structure. Later, Shibata et al. [9] extended this work by introducing the 

transformation of Finsler metrics using  

mailto:poocares4u@gmail.com


P. Miyan , H. Pande & D. Thakur /On ϑ – Curvature Tensor of Finslerian Hypersurfaces Given By …   

 

2 

 

                               𝐿∗(𝑥, 𝑦) = 𝑓(𝐿, 𝛽),                                                                                  (1) 

where 𝑓 is a positively homogeneous function of degree one in 𝐿. This transformation played a crucial 

role in understanding the induced and intrinsic theories of hypersurfaces in Kropina spaces. 

Hashiguchi et al. [1] studied the properties of Landsberg spaces with (𝛼, 𝛽) metrics, providing insights 

into two-dimensional Finslerian structures. Their work was further expanded by Kitayama [2], who 

explored metric transformations and their impact on hypersurfaces in Finsler spaces. Additionally, 

Matsumoto [3] developed the induced and intrinsic connections of Finslerian hypersurfaces, 

contributing significantly to the study of projective geometry in Finsler spaces. 

Prasad [4] and Prasad & Tripathi [5] examined torsion tensors and hypersurface structures in Finsler 

spaces with Kropina changes, establishing important results on the interactions between different types 

of metric transformations. Rastogi [6] extended these ideas by analyzing the properties of (𝛼, 𝛽) 

metrics, further refining our understanding of Finslerian geometry. 

Recent studies have continued to build on these foundational works. Shanker et al. [7] investigated 

curvature properties in homogeneous Finsler spaces, revealing new relationships between curvature 

tensors and metric deformations. Singh et al. [10] and Singh & Srivastava [11] explored h-

transformations and Kropina-type modifications in special Finsler spaces, shedding light on the 

structural modifications induced by such transformations. 

Izumi introduced the concept of h-vectors 𝑏𝑖 that are 𝜗-covariantly constant with respect to the Cartan 

connection, leading to new insights into the interplay between conformal transformations and 

directional dependencies in Finsler spaces. Srivastava and Pandey [12] , [13], extended this idea by 

examining generalized Kropina-type metrics under 𝛽-change and their implications for Finslerian 

hypersurfaces. Their work provided key relations between the original and transformed hypersurfaces, 

establishing conditions under which these transformations preserve geometric properties. 

In this paper, we consider a generalized Kropina-type metric given by: 

                                         𝐿∗(𝑥, 𝑦) = 𝜇1/2(𝑥, 𝑦)𝛽1/2(𝑥, 𝑦),                                                    (2) 

where 

𝜇1/2(𝑥, 𝑦) = (𝐿1/2 + 𝛽1/2)(𝑥, 𝑦) and 𝛽 = 𝑏𝑖𝑦𝑖, 

with the vector 𝑏𝑖 as a function of positional coordinates 𝑥𝑖 only. When 𝐿(𝑥, 𝑦) corresponds to a 

Riemannian space, 𝐿∗(𝑥, 𝑦) reduces to the Kropina metric function.  

Izumi while studying a conformal transformation of a Finsler space, introduced the h – vector bi which 

is ϑ covariantly constant with respect to Cartan connection CΓ and 

LCh i j b
h = ρ hij. 

The h – vector bi    is not only a function of positional coordinates xi but also a function of directional 

arguments yi. In fact 

L(∂bi / ∂yj) = ρ hij. 

Here bi(x, y) is an h – vector in (M 
n
, L). 

 Let b
i
 is an h-vector in the Finsler space (M 

n
, L) and (M 

n
, L*) be another Finsler space. The 

fundamental metric function L*(x ,y) is defined by  

                                            L* (x, y) = (L1/2 + β1/2) (x, y) β1/2 (x, y).                                          (3) 
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         Let us call the Finsler space F
n* = (M

n
, L*) as generalazed Kropina space. To distinguish the 

geometrical objects of F
n* from those of the Finsler space F

n, we shall put a * sign on the corresponding 

objects of F
n
.   

This metric plays a crucial role in analyzing the curvature properties of Finslerian hypersurfaces, 

particularly through the 𝜗-curvature tensor, which provides insights into the geometric deformations 

induced by the generalized Kropina-type metric. 

Building upon the existing body of research, this study aims to further examine the properties of 

Finslerian hypersurfaces defined by the generalized Kropina-type metric and analyze the implications 

of the 𝜗-curvature tensor in this context. 

 

 For an h-vector b
i  
we have the following lemmas [1] : 

Lemma 1.   If b
i
 is an h-vector then the function  and  l

*

i
 = b

i
 - l

i
 are independent of y.  

Lemma 2. The magnitude of an h-vector b
i
 is independent of y.  

2. Preliminaries 
 

Let b
i
 is a vector field in the Finsler space (M

n
, L). If b

i 
satisfy the conditions [4]  

                 b
i l j 

= 0                

 and  LC
h

i j
 b

h
 =  h

i j
,                                                                                                        (4)  

then the vector field bi is called an h-vector. Here |
j
 denotes the covariant differentiation  with  respect  

to  Cartan’s  connection  C, C
h i j 

is the Cartan’s  C-tensor, h
i j

 is the angular metric tensor, and  is a 

function described by  

   = (n-1) -1 L C
i
 b

i ,                                                                                                  (5)  

We have 
𝜕𝛽

𝜕𝑦𝑖 = 𝑏𝑖 by using the indicatory property. 

Differentiating of (3) with respect to yi yields.  

  𝑙𝑖
∗ = (

1

2

𝛽
1
2

𝐿
1
2

) 𝑙𝑖 + (1 +
1

2

𝐿
1
2

𝛽
1
2

) 𝑏𝑖.                                                                               (6) 

We know that 

𝜕𝑙𝑖

𝜕𝑦𝑗 = 𝐿−1ℎ𝑖𝑗. 

From the above relation 

  ℎ𝑖𝑗
∗ = (

𝛽

2𝐿
) 𝐴0ℎ𝑖𝑗 +

1

4
𝐴0(𝑙𝑖𝑏𝑗 + 𝑙𝑗𝑏𝑖) − (

𝛽

4𝐿
) 𝐴0𝑙𝑖𝑙𝑗 − (

𝐿

4𝛽
) 𝐴0𝑏𝑖𝑏𝑗.                      (7) 

   where  

𝐴0 = 1 +
𝛽

1
2

𝑙
1
2

. 
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Theorem   2.1 (Angular Metric Tensor Transformation) 

Under the transformation (3)   

L* (x, y) = (L1/2 + β1/2) (x, y) β1/2 (x, y). 

  the angular metric tensor (h
*

i j 
)  of  F

*n
  is given by (7)  as follow: 

       ℎ𝑖𝑗
∗ = (

𝛽

2𝐿
) 𝐴0ℎ𝑖𝑗 +

1

4
𝐴0(𝑙𝑖𝑏𝑗 + 𝑙𝑗𝑏𝑖) − (

𝛽

4𝐿
) 𝐴0𝑙𝑖𝑙𝑗 − (

𝐿

4𝛽
) 𝐴0𝑏𝑖𝑏𝑗 

              where               𝐴0 = 1 +
𝛽

1
2

𝑙
1
2

. 

Further from equation (7) and g
i j

  = h
i j 

+ l
i
 l

j
  one gets 

  𝑔𝑖𝑗
∗ = (

𝛽

2𝐿
) 𝐴0𝑔𝑖𝑗 +

1

2
𝑈0(𝑙𝑖𝑏𝑗 + 𝑙𝑗𝑏𝑖) − (

𝛽

2𝐿
) 𝑈0𝑙𝑖𝑙𝑗 + 𝑈1𝑏𝑖𝑏𝑗                                (8) 

       where             𝑈0 = 1 +
3𝛽

1
2

2𝑙
1
2

       

              and         𝑈1 = 1 +
3𝐿

1
2

2𝛽
1
2

. 

Theorem 2.2. Under the transformation (3), the metric   tensor   of   F
*n

    (g
*

i j
)  is  described  by  (8). 

 From equation (8) and 𝐶𝑖𝑗𝑘 =  (
1

2
)

𝜕𝑔𝑖𝑗

𝜕𝑦𝑘   ,we get 

 𝐶𝑖𝑗𝑘
∗ = (

𝛽

2𝐿
) 𝐴0𝐶𝑖𝑗𝑘 +

1

2
𝑈0(ℎ𝑖𝑗𝑚𝑘 + ℎ𝑗𝑘𝑚𝑖 + ℎ𝑘𝑖𝑚𝐽) − (

3𝐿
1
2

8𝛽
3
2

) (𝑚𝐼 + 𝑚𝐽 + 𝑚𝐾).                        (9) 

where   𝑚𝑖 = 𝑏𝑖 − (
𝛽

𝐿
) 𝑙𝑖. 

     Theorem 2.3. If the angular metric tensor h
i j 

 of F
n vanishes, the torsion tensor  of  F

*n
  (C*

i j k ) also 

vanishes. 

With the help of lemma (1) and relation 

                  𝜎 = (1 +
𝛽𝜌

𝐿
),  

we get 

  
𝜕𝜎

𝜕𝑦𝑖 =
𝜌

𝐿
𝑚𝑖.                                                                                                            (10)  

From the definition of mi, we get the following identities: 

(i) m
i
 l 

i
 = 0,                                   

(ii)     m
i
 b

i
 = m

i
 m

i
 = b

2 - (
2
/ L

2 ),  

(ii) h
i j 

m
i = h

i j 
b

i
 = m

j      
and           

(iv) C
h

i j 
m

h
 = L

-1 
 h

i j
.                                                                                                                (11) 
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3. ϑ – Curvature Tensor 
 

Definition 3.1.    The   v – curvature   tensor   S
h i j k    

of  F
n 

= (M
n
, L)  with  respect  to  Cartan’s  

connection  C  is defined in [4] by 

 𝑆ℎ𝑖𝑗𝑘 = 𝐶ℎ𝑘𝑚𝐶𝑖𝑗
𝑚 − 𝐶ℎ𝑗𝑚𝐶𝑖𝑘

𝑚                                                                                           (12)  

From (4), (8) and (11), we get 

𝐶𝑖𝑗
∗ℎ = 𝐶𝑖𝑗

ℎ + 𝑅1(ℎ𝑖𝑗𝑚𝑘 + ℎ𝑗
𝑘𝑚𝑖 + ℎ𝑖

𝑘𝑚𝑗) − 𝑅2(ℎ𝑖𝑗𝑙𝑘𝑅3 + 𝑚𝑖𝑚𝑗𝑙𝑘) +   𝑅4(ℎ𝑖𝑗𝑏ℎ𝑅3 + 𝑚𝑖𝑚𝑗𝑏ℎ).         (13) 

     where    𝑅1 = (
3𝛽

2𝐿
)

𝜌

𝜎
 , 

                   𝑅2 = (
3(1−𝜎)𝛽𝜌

𝐿2 ) 𝑅0 , 

                   𝑅3 =
𝛽

1
2

4𝑙
1
2

(𝑏2 −
𝛽2

𝐿2 ) + 𝜎 ,  

                    𝑅4 = (
𝛽

4𝐿
) 𝜌𝑅0  

             and  𝑅0 =
1

𝜎{(1−𝜎)𝛽2−𝐿2}

𝐿2 −𝑏2
. 

From equation (9) and (13) ,we get 

       𝐶ℎ𝑘𝑚
∗ 𝐶𝑖𝑗

∗ = 𝐶ℎ𝑘𝑚𝐶𝑖𝑗
ℎ + µ1ℎ𝑖𝑗ℎ𝑘 + 𝐶1ℎℎ𝑘𝑚𝑖𝑚𝑗 + 𝐶2ℎ𝑖𝑗𝑚ℎ𝑚𝑘 + 𝐶0(𝐶𝑖𝑗𝑘𝑚ℎ +  𝐶𝑖𝑗ℎ𝑚ℎ +  𝐶𝑖ℎ𝑘𝑚𝑗 + 𝐶𝑗ℎ𝑘𝑚𝑖) 

                         +𝐶0
2𝐴3(ℎ𝑗𝑘𝑚𝑖𝑚ℎ + ℎ𝑖ℎ𝑚𝑗𝑚𝑘 + ℎ𝑗ℎ𝑚𝑖𝑚𝑘 + ℎ𝑖𝑘𝑚𝑗𝑚𝑘)                       (14) 

where 

                µ1 = (𝑏2 −
3𝛽2

4𝐿2 ) (
𝜎𝜌2

𝐿2 𝑅0 +
𝜌2

4𝐿2 +
𝜌2

4𝐿2 𝑅0) +
𝜌2𝜎2

𝐿2 𝑅0, 

                𝐶0 =
3𝛽

2𝐿
𝜌,   

                𝐶1 =
𝛽2𝜌2

4𝐿2 𝑅0(𝜎 + 1) +
𝛽2𝜌2

𝜎𝐿2    

       and    𝐶2 =
3𝛽2𝜌2

4𝜎𝐿2 +
𝜌2

2𝐿2 𝑅0 {𝜎 +
1

2
(𝑏2 −

𝛽2

𝐿2 )}. 

Thus from (12) and (14) , we obtain the following 

 

Theorem 3.1. (ϑ - Curvature Tensor Transformation) 

Under the transformation (3) the v-curvature tensor    (S
*

h i j k )  of  F
*n

  is written in the form  

         𝑆ℎ𝑖𝑗𝑘
∗ = 𝜎 (

𝛽
1
2

𝐿
1
2

) 𝑠ℎ𝑖𝑗𝑘 +
3

4𝛽
ℎ𝑖𝑗𝑒ℎ𝑘 +

3𝐿

4
ℎℎ𝑘(𝑒𝑖𝑗 + 1) −

𝐿
1
2

4𝛽
1
2

ℎ𝑖𝑘𝑒ℎ𝑗 −
𝛽

1
2

4𝐿
1
2

ℎℎ𝑗𝑒𝑖𝑘.                   (15)  

where          𝑒𝑖𝑗 =
1

4
µ1ℎ𝑖𝑗 +

3

4
µ2𝑚𝑖𝑚𝑗       

and             µ2 =
3𝛽2𝜌2

4𝐿2 𝑅0 {𝜎 + (𝑏2 −
𝛽2

𝐿2 )}. 
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Theorem 3.2.  The  v - curvature tensor (S
*

h i j k
) of the transformed Finsler space F

*n  vanishes if  the 

angular  metric  tensor (h
i j 

)   of  F
n

  also vanishes,  i. e.  
*

hi jkS =0 .                                                                               
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Abstract: Foreign exchange rate represents the value of one currency relative to another and influences 

international trade and investment. It is crucial for a country's economy as it affects the cost of imports and 

exports, impacting trade balances and inflation rates. This study compares the forecasting of the forex rate 

of Nepal and its volatility by using Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) 

models. The study uses secondary time series data that consists of foreign exchange rate from 2005 to 2024 

A.D. Various error metrics were used to compare the performance of these models to predict the foreign 

exchange rate. The final result showed that the LSTM model outperformed GRU with superior forecasting 

accuracy, achieving a Mean Squared Error (MSE) of 4.7056, a Root Mean Squared Error (RMSE) of 

2.1692, a Mean Absolute Error (MAE) of 2.0262, and a Mean Absolute Percentage Error (MAPE) of 

1.5764%. In contrast, the GRU model yielded higher error metrics with an MSE of 7.1607, RMSE of 2.6759, 

MAE of 2.5673, and MAPE of 2.0061%. These findings highlight the effectiveness of LSTM in capturing 

historical trends and managing volatility, suggesting its robustness for forex rate prediction. Although the 

study focused on historical forex rates of the Nepalese Rupee against the US Dollar, incorporating 

additional economic indicators such as interest rates and Foreign Direct Investment (FDI) could enhance 

the model’s predictive capabilities. 

Keywords: Forex rate, Long Short-Term Memory, Gated Recurrent Unit 

1. Introduction 

In today’s globalized economy, the exchange rate between currencies plays a crucial role in shaping 

the economic landscape of a nation. The foreign exchange market is a global marketplace for exchanging 

national currencies against one another, and it is the largest and most liquid financial market in the world. 

Exchange rates fluctuate constantly due to various factors, including economic indicators, geopolitical 

events, and market speculation. For countries like Nepal, where the economy is significantly influenced by 

international trade and remittances, the exchange rate between the Nepalese Rupee and the US Dollar is 

particularly significant. This exchange rate impacts economy in multiple ways. Since Nepal is heavily 

dependent on imports, particularly from India and other countries where transactions are often denominated 

in USD, any fluctuations in the exchange rate can affect the cost of goods and services in the country. A 

depreciation of the NPR against the USD can lead to higher import costs, which may contribute to 
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inflationary pressures within the domestic economy. Conversely, an appreciation of the NPR could make 

imports cheaper but might reduce the competitiveness of Nepalese exports, thereby affecting the trade 

balance. These dynamics underscore the importance of accurate forex rate forecasting, which can help 

policymakers, businesses, and investors make informed decisions [13]. 

Traditional forex forecasting methods like Autoregressive Integrated Moving Average and Vector 

Autoregression have been widely used, relying on historical data to identify trends. However, these linear 

models struggle to capture the non-linear relationships and complex dependencies typical in financial time 

series, limiting their forecasting accuracy [2]. 

In response to the limitations of traditional forecasting methods, the use of machine learning and 

deep learning techniques has gained significant attention in recent years. Machine learning models, 

particularly Neural Networks have shown great potential in forecasting complex time series data. GRU 

networks are a type of Recurrent Neural Network which use gating mechanisms to control the flow of 

information, helping to overcome the issues of exploding gradients commonly encountered in traditional 

RNNs. GRUs are particularly valuable for tasks such as time series forecasting and financial predictions, 

where capturing historical dependencies can significantly improve accuracy [4]. LSTM networks, another 

type of Recurrent Neural Network, are designed to address the problem of long-term dependencies in time 

series data. Traditional RNNs struggle with the vanishing gradient problem, where the gradients used to 

update the weights of the network become extremely small, leading to difficulties in learning long-term 

dependencies. LSTMs overcome this issue by introducing memory cells and gates that control the flow of 

information, allowing the network to retain important information over long sequences and thus providing 

more accurate forecasts [9]. The application of LSTM and GRU models to forex rate forecasting has been 

explored in various studies with promising results. Authors in [1] suggested that LSTM and Artificial 

Neural Network are the most commonly used machine learning algorithms for forex market. Similarly, 

authors in [7] highlighted the effectiveness of LSTM networks in financial forecasting, noting their ability 

to model the sequential nature of time series data more effectively than traditional models. Despite 

extensive research on machine learning, limited work has focused on emerging markets like Nepal. Most 

studies target developed economies with different data and market conditions. This study addresses that 

gap by comparing LSTM and GRU models in forecasting Nepal's USD/NPR exchange rate. 

1.1. Research Questions 

The specific research question that is addressed is as follows: 

 How do LSTM and GRU models forecast foreign exchange rate of Nepalese Rupee against US 

Dollar? 

 What is the comparative performance of LSTM and GRU models in predicting the Nepalese Rupee 

against US Dollar? 

1.2. Research Objectives 

The objectives of this study are: 

 To develop and implement LSTM and GRU models for forecasting Nepalese Rupee against US 

Dollar. 

 To evaluate and compare the prediction performance of LSTM and GRU models in forecasting 

Nepalese Rupee against US Dollar. 
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2. Literature Review 

Over the years, various models and approaches have been developed to predict exchange rate 

movements, ranging from traditional economic theories such as purchasing power parity (PPP) and interest 

rate parity (IRP) to more advanced econometric and machine learning techniques. Early studies, such as 

those by [10], challenged the predictive power of fundamental models, emphasizing the superiority of 

random walk behavior. Since then, researchers have explored time series models, artificial intelligence, and 

hybrid approaches to improve forecasting accuracy. Despite these advancements, exchange rate prediction 

remains a complex and debated field due to the influence of multiple economic, political, and speculative 

factors. Numerous experiments have been carried out over time to forecast foreign exchange rate using 

different machine learning methods. This literature review examines key theoretical frameworks, empirical 

findings, and emerging methodologies in foreign exchange rate forecasting, identifying trends and gaps in 

the existing research. 

Authors in [6] built an effective model for predicting forex price trends by leveraging Recurrent 

Neural Networks (RNNs), with a particular focus on LSTM networks. This research utilized secondary data 

comprising historical forex prices from several financial markets over an extended period. The data was 

meticulously preprocessed and divided into a training set and a testing set, following the standard approach 

of assigning 70% to training and 30% to testing. The performance of the model was evaluated using Mean 

Squared Error (MSE) and Mean Absolute Error (MAE) as key metrics. The LSTM model achieved an MSE 

value of 0.003052 and a MAE of 0.002390. Based on these findings, the study recommended the use of 

LSTM networks for forex price trend forecasting in financial institutions and trading firms as LSTM is 

superior to traditional methods for forecasting forex price trends. Additionally, the comparative analysis of 

traditional statistical methods with modern machine learning techniques provided a comprehensive 

evaluation of the models' performance, highlighting the advantages of using RNNs for time series 

forecasting. The study also contributed to the growing body of literature on the application of deep learning 

techniques in finance, demonstrating the practical benefits of these methods in enhancing prediction 

accuracy. The detailed analysis and comparison of various models ensured that the study's conclusions were 

well-rounded and supported by empirical evidence. 

Yildirim et al. explored the use of LSTM models for forecasting the directional movement of the 

EUR/USD currency pair over different time horizons, specifically one day, three days, and five days ahead. 

The study introduced a novel performance metric, profit_accuracy, to evaluate the effectiveness of the 

predictions in generating profitable transactions. The data included both macroeconomic indicators and 

technical indicators, which were used to train and evaluate the LSTM models. The research applied two 

separate LSTM models, one trained using macroeconomic data (ME_LSTM) and the other using technical 

indicators (TI_LSTM). A classifier was developed to determine the directional movement of the EUR/USD 

pair into three classes: no_action, decrease, and increase. The hybrid model, which combined both 

macroeconomic and technical indicator features (ME_TI_LSTM), was also tested. The study found that the 

ME_LSTM model slightly outperformed the TI_LSTM model in terms of both profit_accuracy and the 

number of transactions generated, though the difference was minimal and statistically insignificant. The 

hybrid model (ME_TI_LSTM), which combined all features, did not show a significant improvement in 

accuracy compared to the individual models. However, the proposed hybrid model demonstrated the best 

overall performance, achieving an average profit_accuracy of 73.61% across all prediction periods. It also 

reduced the number of transactions by 40.37% on average compared to the baseline models, primarily by 

dropping risky transactions. In conclusion, the study provided compelling evidence that the hybrid LSTM 

model offers a robust approach to forecasting the directional movement of the EUR/USD currency pair 

[15]. 
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Authors in [12] explored the effectiveness of LSTM networks, particularly when combined with 

event-driven inputs, for predicting foreign exchange rates. The study focused on developing a model that 

could leverage both the sequential patterns inherent in time series data and the impact of specific events, 

which often cause significant fluctuations in forex markets. The data utilized in this research consisted of 

historical forex rates and event data over a substantial period, including major economic announcements, 

geopolitical events, and other news that could influence forex prices. The LSTM model was constructed, 

incorporating event-driven features to enhance its predictive capabilities. The hybrid approach aimed to 

address the limitations of traditional LSTM models, which may not fully capture the impact of sporadic, 

yet significant events on forex prices. The study's results demonstrated that the event-driven LSTM model 

significantly improved the accuracy of forex price predictions compared to standard LSTM models and 

other traditional methods. The performance of the model was evaluated using metrics such as Root Mean 

Error (RME), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute 

Percentage Error (MAPE). The event-driven LSTM achieved an RME of 0.006*10^(-3), RMSE of 

2.407*10^(-3), MAE of 1.708*10^(-3), and MAPE of 0.194% highlighting its effectiveness in capturing 

the complex, event-driven patterns within the forex market. 

Authors in [11] explored the effectiveness of combining Perceptron with Genetic Algorithms (GAs) 

for predicting foreign exchange rates. The study focused on developing a hybrid model that leverages the 

strengths of both techniques. The data utilized in this research consisted of historical forex rates from 

multiple currency pairs over a substantial period. The hybrid model aimed to enhance prediction accuracy 

by addressing the limitations of individual methods. The results demonstrated that the hybrid Perceptron-

GA model significantly improved the accuracy of forex rate predictions compared to traditional methods 

and standalone Perceptron models. The evaluation of model performance was based on metrics such as 

Mean Squared Error (MSE) and Mean Absolute Error (MAE). The hybrid model achieved an MSE of 0.01 

and a MAE of 0.0082. This result underscored the effectiveness of integrating Perceptron and GAs in 

capturing the complex, non-linear patterns inherent in forex data. One of the key strengths of this study was 

its innovative approach to combining machine learning and evolutionary algorithms to tackle a real-world 

financial problem. The research also contributed to the broader field of financial forecasting by 

demonstrating the potential of hybrid models in enhancing prediction accuracy. The focus on optimizing 

neural networks using evolutionary algorithms added a new dimension to the existing literature, showcasing 

the practical benefits of this approach in finance. 

Authors in [14] investigated the effectiveness of tree ensemble methods, including Random Forests, 

Gradient Boosting Machines (GBMs), and Extreme Gradient Boosting (XGBoost), for predicting trends in 

the forex market. The study utilized historical forex rate data spanning multiple currency pairs over a 

significant time period. The results of the study indicated that XGBoost significantly outperformed 

traditional methods and simpler machine learning models in predicting forex market trends. The 

performance of the models was evaluated using metrics such as Mean Squared Error (MSE) and Mean 

Absolute Error (MAE), with XGBoost achieving MSE of 0.009 and MAE of 0.0075. These results 

underscored the models' ability to handle the intricacies of forex data, making them highly effective for 

trend prediction. The research also contributed to the broader field of financial forecasting by demonstrating 

the effectiveness of tree ensemble methods in capturing complex patterns in forex data. 

Despite the importance of exchange rate fluctuations for Nepal's economy, little research has 

focused on forecasting forex rates in the Nepalese context. Most studies target developed countries, with 

limited use of advanced machine learning methods. This study aims to fill that gap by applying and 

comparing GRU and LSTM models to predict the Nepali Rupee exchange rate, identifying which model 

offers better forecasting accuracy. 
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3. Methodology 

Forecasting foreign exchange rates involves predicting the value of one currency relative to 

another. Accurate predictions are crucial for various stakeholders, including investors, businesses engaged 

in international trade, and policymakers. Effective forecasting helps in managing currency risk, optimizing 

investment strategies, and implementing sound economic policies [3]. In Nepal, which has a significant 

reliance on remittances and international trade, precise forex rate forecasts are vital for maintaining 

economic stability and improving growth. The analysis of forecasting forex rates in Nepal using LSTM and 

GRU models is rooted in the intersection of financial forecasting and advanced machine learning 

techniques. Accurate prediction of forex rates is essential for effective financial decision-making, economic 

planning, and risk management. This study focuses on applying two advanced machine learning models: 

LSTM and GRU to forecast the forex rate of Nepal in relation to major currency such as USD. 

3.1. Data Collection 

The dataset used in this study consists of time series data encompassing historical records relevant 

to forex rates. This data is sourced from secondary sources, specifically from the Nepal Rastra Bank. The 

time series dataset includes historical forex rate information from 2005 to 2024 that provides insights into 

past currency fluctuations, which is essential for evaluating the forecasting capabilities of the LSTM and 

GRU models. This historical data provides the foundation for evaluating the forecasting performance of 

the LSTM and GRU models. The data includes time series records of forex rates between the Nepalese 

Rupee and major currency, the US Dollar. 

3.2. Stationarity Test 

For an accurate forecasting of a time series forecasting, a key concept is stationarity. Stationarity 

in the context of time series data refers to the property of a time series where its statistical properties, such 

as mean, variance, and autocorrelation, remain constant. For time series data to be stationarity, it should 

not exhibit trends, seasonality, or other time-dependent structures that cause its statistical properties to 

change over time. When the data is stationary, it is easier to model and forecast future values, as the past 

behavior of the time series can be used to predict future behavior. The Augmented Dickey-Fuller test is a 

parametric method used to assess whether a unit root is present in a dataset. The existence of a unit root 

suggests that the data is non-stationary, indicating that it may display a trend or seasonal pattern. To perform 

the ADF test, an autoregressive model with a differencing term is fitted to the data, and the significance of 

the differencing coefficient is evaluated. 

Table 1. Augmented Dickey-Fuller Test 

Variables Dickey-Fuller Lag order p-value Stationarity 

Actual Forex Rate -2.9564 0 0.1732(>0.05) Non-stationary 

1st order difference -16.0064 1 0.0100(<0.05) Stationary 

The table 1 summarizes the results of the ADF test applied to the actual forex rate and its first-order 

difference to determine stationarity. For the actual forex rate, the Dickey-Fuller test statistic is -

2.95645431195, with a lag order of 0. The corresponding p-value is 0.173228, which is greater than the 

significance level of 0.05. This result indicates that the null hypothesis of a unit root cannot be rejected, 

suggesting that the actual forex rate series is non-stationary. In contrast, when the first-order difference of 

the forex rate is tested, the Dickey-Fuller test statistic is -16.0064402294 with a lag order of 1. The p-value 
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for this test is 0.010, which is significantly less than 0.05. This implies that the null hypothesis of a unit 

root is rejected, indicating that the first-order differenced series is stationary. Therefore, while the original 

forex rate series exhibits non-stationarity, differencing the series once renders it stationary, which is 

essential for further time series analysis and forecasting. 

3.3. Data Preprocessing and Splitting 

The collected data was cleaned to address any inconsistencies or missing values. This included 

handling outliers, correcting data entry errors, and interpolating missing values where necessary to ensure 

a complete and accurate dataset. The data was then transformed to make it suitable for analysis using 

normalization and feature engineering. Normalization was done for scaling the data to a uniform range to 

improve the performance and convergence of the models. Min-Max scaling technique was applied for 

normalization. Feature engineering was done for creating relevant features from the raw data that can 

enhance the predictive capability of the models. This includes lag variables, and moving averages. The 

dataset was divided into training and test subsets using an 80-20 split ratio. This division allows for robust 

model training and evaluation, helping to assess the model's performance on unseen data. 

3.4. Model Description 

Long Short-Term Memory (LSTM) is a type of recurrent neural network (RNN) designed to 

address the limitations of traditional RNNs, particularly the vanishing gradient problem. Proposed by [9], 

LSTMs are highly effective in capturing long-term dependencies in sequential data, making them well-

suited for time series forecasting tasks such as foreign exchange rate prediction. Unlike standard RNNs, 

LSTMs incorporate specialized gating mechanisms – the forget gate, input gate, and output gate – which 

regulate the flow of information through the network. These gates enable LSTMs to retain relevant 

historical data while discarding irrelevant information, leading to improved predictive performance in 

highly volatile financial markets. Due to their ability to model complex temporal relationships, LSTMs 

have been widely applied in financial time series forecasting, demonstrating superior accuracy compared 

to traditional econometric models like ARIMA and GARCH [7]. By capturing both short-term and long-

term dependencies, LSTMs are highly effective for tasks like time series forecasting, where the future 

values depend on a complex and non-linear relationship with past observations [8]. The different equations 

of LSTM are as follows. 

𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑓)    Forget gate 

𝑖𝑡 = 𝜎(𝑊𝑖  . [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑖)    Input gate 

�̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶  . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)   Candidate cell state 

𝐶𝑡 = 𝑓𝑡 ∗  𝐶𝑡−1 + 𝑖𝑡 ∗ �̃�𝑡    Update cell state 

𝑜𝑡 = 𝜎(𝑊𝑜 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)    Output gate 

ℎ𝑡 = 𝑜𝑡 ∗ tanh (𝐶𝑡)     Hidden state update 

GRU is a variant of recurrent neural networks (RNNs) introduced by [4] to address the vanishing 

gradient problem and improve sequence modeling efficiency. Similar to LSTM, GRU is designed to capture 

long-term dependencies in sequential data, making them suitable for time series forecasting tasks such as 

foreign exchange rate prediction. However, GRUs have a simpler architecture than LSTMs, as they use 

only two gates – the reset gate and update gate – instead of three. This reduction in complexity allows 
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GRUs to achieve comparable performance with LSTMs while being more computationally efficient  [5]. 

Recent studies have demonstrated the effectiveness of GRU-based models in financial forecasting, showing 

their ability to adapt to the nonlinear and volatile nature of exchange rate movements. Given their efficiency 

and accuracy, GRUs have become a popular alternative to LSTMs in deep learning applications for time 

series analysis. The different equations of GRU are as follows. 

𝑟𝑡 = 𝜎(𝑊𝑟 . [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑟)    Reset gate 

𝑧𝑡 = 𝜎(𝑊𝑧 . [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑧)    Update gate 

ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎ  . [𝑟𝑡 ∗ ℎ𝑡−1, 𝑥𝑡] +  𝑏ℎ)   Candidate hidden state 

ℎ𝑡 = (1 − 𝑧𝑡) ∗ ℎ𝑡−1 + 𝑧𝑡 ∗ ℎ̃𝑡)    Reset gate 

3.5. Experimental Setup 

Both LSTM and GRU algorithms were implemented using Python Programming Language and the 

libraries such as Keras, Pandas, NumPy, and Matplotlib. The models underwent training and testing on 

Microsoft Windows 11, AMD Ryzen 5 5500U CPU @ 2.10 GHz, and 8 GB RAM. 

3.6. Performance Evaluation 

The performance of both LSTM and GRU models are assessed using Mean Squared Error (MSE), 

Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error 

(MAPE). MSE quantifies the average squared difference between the predicted values and the actual 

values. It helps to evaluate how well a model performs. A lower MSE indicates a better model. 

𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1                                              (1) 

RMSE measures the average magnitude of errors by taking the square root of the MSE. This metric 

expresses the error in the same units as the predicted values, which makes it easier to interpret compared 

to MSE. It penalizes large errors more than small ones. Lower RMSE values indicate that the model's 

predictions are closer to the actual values, and the model has fewer and smaller errors overall. 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸                                               (2) 

MAE measures the average absolute difference between actual and predicted values. It provides a 

straightforward interpretation of how far predictions are from actual values. It is less sensitive to outliers 

compared to MSE and RMSE. It expresses the error in the same unit as the original data, making it easy to 

interpret. A lower MAE indicates a more accurate model. 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑦𝑖 − �̂�𝑖|𝑛

𝑖=1                                                    (3) 

MAPE evaluates the accuracy of the model's predictions as a percentage of the actual values. This 

metric provides a relative measure of error, making it useful for comparing the performance of different 

forecasting models or datasets. MAPE calculates the average percentage by which the predicted values 

deviate from the actual values. A lower MAPE indicates that the model's forecasts are more accurate in 

percentage terms, giving a clear understanding of prediction accuracy relative to the size of the actual 

values. 

𝑀𝐴𝑃𝐸 =  
1

𝑛
∑ |

𝑦𝑖−�̂�𝑖

𝑦𝑖
|𝑛

𝑖=1 × 100                                             (4) 
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4. Result Analysis 

The Figure 1 presents the historical trend of the Nepalese rupee against the US dollar over a period 

of days. The chart reveals a steady upward movement in the forex rate, showing a gradual appreciation of 

the Nepalese rupee against the US dollar. A notable point in the chart is the period of increased volatility, 

which occurs around the earlier days, particularly between days 3000 and 3500. This fluctuation suggests 

that there were significant market events or interventions influencing the exchange rate during that time. 

From day 3500 onward, the chart shows a consistent increase in the forex rate with only occasional small 

fluctuations. The general upward trend implies a gradual depreciation of the Nepalese rupee, indicating that 

more units of the rupee are needed to purchase one US dollar as time progresses. 

 

Figure 1. Trendline of Forex Rate of Nepal (2005-2024) 

4.1. Analysis of LSTM 

The Figure 2 illustrates the training loss of LSTM model over 100 epochs. The vertical axis 

represents the loss value, which quantifies the difference between the predicted and actual values during 

training, while the horizontal axis shows the number of epochs. The chart indicates a rapid decrease in the 

training loss within the first few epochs, with the loss value dropping sharply from above 0.52 to around 

0.48 within the first 5 epochs. After this initial decline, the training loss plateaus and stabilizes, maintaining 

a relatively constant value just below 0.48 for the remainder of the training process up to 100 epochs. 

The pattern shows that the model learns quickly during the initial training phase, with a steep loss 

decline. After that, further training offers minimal improvement, suggesting diminishing returns. This 

stabilization indicates the model has minimized error, and additional training may lead to overfitting 

without significant gains. 
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Figure 2. Training Loss of LSTM 

Table 2. Summary Result of LSTM Model 

Input Feature Metrics 

Unit MSE RMSE MAE MAPE 

30 7.0025 2.6462 2.4719 1.9225% 

40 5.3176 2.3059 2.1393 1.6623% 

50 4.7056 2.1692 2.0262 1.5764% 

60 4.9369 2.2219 2.1189 1.6547% 

The Table 2 provides a detailed comparison of the performance metrics for testing dataset of LSTM 

with varying numbers of unit while maintaining the same epoch count of 50, batch size of 64, and dropout 

rate of 0.3. The models differ only in the number of LSTM units, and their performance is evaluated using 

four metrics: Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error 

(MAE), and Mean Absolute Percentage Error (MAPE). 

For the LSTM model with 30 units, the MSE is 7.0025, indicating the average squared difference 

between actual and predicted values. The RMSE, which translates this into the same units as the data, is 

2.6462, providing a tangible measure of the prediction error. The MAE is 2.4719, representing the average 

absolute magnitude of prediction errors, and the MAPE is 1.9225%, suggesting a relatively low prediction 

error as a percentage of the actual values. When the number of units is increased to 40, the model shows 

improved performance across all metrics. The MSE decreases to 5.3176, and the RMSE to 2.3059, 

reflecting a reduced prediction error. Similarly, the MAE drops to 2.1393, and the MAPE to 1.6623%, 

indicating better accuracy and robustness in predictions. The model with 50 units continues this trend, 

achieving the lowest overall MSE of 4.7056, RMSE of 2.1692, MAE of 2.0262, and MAPE of 1.5764% 

among all models. These metrics suggest this model provides the most accurate and reliable predictions 

within this setup. However, increasing the number of units to 60 slightly increases the errors, with an MSE 

of 4.9369, RMSE of 2.2219, MAE of 2.1189, and MAPE of 1.6547%. While still competitive, this model 

demonstrates that adding more units does not always lead to better performance, potentially due to 

diminishing returns in predictive accuracy. 

Among all the models evaluated, the LSTM model with 50 units demonstrates the best overall 

performance, achieving the lowest error metrics. This indicates that the configuration with 50 units is 

optimal for balancing complexity and predictive accuracy for the forecasting of forex rate of Nepal. 
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Figure 3. Actual Vs Predicted Forex Rate of LSTM 

The Figure 3 illustrates the performance of the testing dataset for the best-performing Long Short-

Term Memory (LSTM) model, identified as the LSTM model trained with 50 units. The blue line represents 

the actual forex rates, while the red line depicts the predicted forex rates generated by the model. From the 

figure, it is evident that the model closely follows the actual forex rates over time, particularly in the earlier 

stages, where the blue and red lines are nearly overlapping. This close alignment demonstrates the model's 

ability to effectively learn and replicate the trends and patterns present in the historical data. 

As the time progresses, however, there is a noticeable divergence between the actual and predicted 

values, particularly in the latter part of the dataset. This gap suggests that while the model is highly accurate, 

it may face challenges in fully capturing the more volatile or less predictable fluctuations in forex rates in 

these later periods. 

Overall, the small differences between the actual and predicted values align with the previously 

discussed performance metrics, such as the low Mean Squared Error (MSE), Root Mean Squared Error 

(RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). These metrics 

underscore the model's robustness and accuracy in forecasting forex rates, making it a reliable tool for time 

series predictions in scenarios requiring precision, such as currency exchange rate forecasting. 

4.2. Analysis of GRU 

The Figure 4 illustrates the training loss of an GRU model as a function of the number of epochs 

during the training process. The vertical axis represents the loss, while the horizontal axis shows the number 

of epochs, ranging from 0 to 70. The chart indicates that the training loss starts relatively high at the 

beginning of the training. However, it rapidly decreases within the first few epochs, which is a common 

pattern indicating that the model is quickly learning the key patterns in the data. After about 10 to 20 epochs, 

the loss begins to stabilize, approaching a value close to zero.  

This flattening of the curve suggests that the model has reached a point where further training brings 

minimal improvements in reducing the loss, indicating convergence. The steady loss value towards the end 
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of the epochs indicates that the model has effectively learned from the training data, and additional epochs 

are unlikely to significantly improve its performance. This suggests that the training process is efficient and 

that the chosen number of epochs is sufficient for the model to achieve optimal performance without 

overfitting. 

 

Figure 4. Training Loss of GRU 

Table 3. Summary Result of GRU Model 

Input Feature Metrics 

Unit MSE RMSE MAE MAPE 

30 20.4508 4.5222 4.4064 3.4539% 

40 11.5716 3.4017 3.2905 2.5753% 

50 7.1607 2.6759 2.5673 2.0065% 

60 8.3174 2.8839 2.8074 2.2012% 

The Table 3 provides a detailed comparison of the performance metrics for the testing dataset of 

Gated Recurrent Unit (GRU) models with varying numbers of units, while maintaining a constant epoch 

count of 50, batch size of 64, and dropout rate of 0.3. The models are evaluated using four metrics: Mean 

Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean 

Absolute Percentage Error (MAPE). 

For the GRU model with 30 units, the MSE is 20.4508, which is relatively high compared to the 

other configurations. This translates into an RMSE of 4.5222, indicating a significant prediction error in 

the same units as the data. The MAE is 4.4064, reflecting the average magnitude of prediction errors, while 

the MAPE of 3.4539% suggests a moderate percentage error relative to the actual values. Increasing the 

number of units to 40 leads to substantial improvements in performance. The MSE decreases to 11.5716, 

and the RMSE to 3.4017, showing a notable reduction in prediction error. Similarly, the MAE drops to 

3.2905, and the MAPE to 2.5753%, indicating enhanced accuracy and better trend-capturing capability. 

The model with 50 units achieves the best overall performance, with the lowest MSE of 7.1607, RMSE of 

2.6759, MAE of 2.5673, and MAPE of 2.0065%. These metrics confirm that this configuration provides 

the most accurate and reliable predictions for the testing dataset. However, increasing the number of units 

to 60 slightly worsens the performance, as evidenced by an MSE of 8.3174, RMSE of 2.8839, MAE of 

2.8074, and MAPE of 2.2012%. This suggests that adding more units beyond a certain point may lead to 

diminishing returns, possibly due to an increase in model complexity without corresponding gains in 

predictive accuracy. 
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Among the GRU models evaluated, the configuration with 50 units stands out as the optimal choice, 

achieving the lowest error metrics across all categories. This indicates that the model with 50 units strikes 

the best balance between complexity and accuracy, making it the most effective for forecasting tasks in this 

scenario. 

Figure 5. Actual Vs Predicted Forex Rate of GRU 

The Figure 5 illustrates the performance of the testing dataset for the best-performing GRU model, 

identified as the GRU model trained with 50 units. The blue line represents the actual forex rates, while the 

red line depicts the predicted forex rates generated by the model. From the figure, it is clear that the model 

closely tracks the actual forex rates over time, especially in the earlier segments where the blue and red 

lines almost overlap. This alignment highlights the model's capability to accurately capture the underlying 

trends and patterns in the historical data, showcasing its predictive strength. 

However, as time progresses, a slight divergence between the actual and predicted values becomes 

apparent, particularly in the latter stages of the dataset. This gap indicates that while the model performs 

exceptionally well overall, it encounters some difficulty in fully capturing the more volatile or less 

predictable fluctuations in forex rates toward the end of the time series. 

The small differences between the actual and predicted values reflect the previously discussed 

performance metrics, such as the low Mean Squared Error (MSE), Root Mean Squared Error (RMSE), 

Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). These metrics confirm the 

model's robustness and accuracy in forecasting forex rates, making it a reliable tool for time series 

predictions in practical applications like currency exchange rate forecasting. 

4.3. Model Comparison 

This research focuses on identifying the most accurate and reliable model for predicting forex rates. 

To achieve this, best-performing versions of each Long Short-Term Memory and Gated Recurrent Unit 

models are selected for comparison. These versions are chosen based on their superior performance metrics, 
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such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and 

Mean Absolute Percentage Error (MAPE). By focusing on these top-performing models, the comparison 

aims to determine which architecture: LSTM or GRU offers the most effective and precise predictions for 

the given data and task. 

Table 4. Model Comparison 

Model 
Metrics 

MSE RMSE MAE MAPE 

LSTM 4.7056 2.1692 2.0262 1.5764% 

GRU 7.1607 2.6759 2.5673 2.0065% 

The Table 4 presents a comparative analysis of two models, LSTM and GRU, using four evaluation 

metrics: Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), 

and Mean Absolute Percentage Error (MAPE). The MSE value of the LSTM model is 4.7056, which 

indicates that average squared difference between the predicted and actual values, compared to MSE of 

7.1607 for GRU model. The RMSE value of the LSTM model is 2.1692, which measures the squared root 

of average squared difference between predicted values, compared to RMSE of 2.6759 for GRU. The 

average absolute difference between the predicted and actual values of LSTM model is 2.0262 compared 

to that of 2.5673 of GRU model. The MAPE value of 1.5764% of LSTM model means that the average 

difference between the forecasted value and the actual value is 1.5764% compared to that of 2.0065% of 

GRU model. Lower values of MSE, RMSE, MAE, and MAPE indicate better model performance. Thus, 

LSTM model outperforms GRU model in all four of the metrics for forecasting the forex rate of Nepal. 

5. Conclusion 

This study employed historical data of forex rate of Nepali Rupee against US dollar. The 

Augmented Dickey-Fuller (ADF) test was employed to assess stationarity. The result showed that the actual 

forex rate was non-stationary (p-value = 0.173228 > 0.05). However, after first-order differencing, the series 

becomes stationary (p-value = 0.010 < 0.05). Based on the ADF test results, a lag of 1 was chosen for model 

computations. The dataset was split into training (80%) and testing (20%) subsets. Min-Max scaling was 

applied to normalize the features, ensuring all features contribute equally and improving the convergence 

of learning algorithms. Both LSTM and GRU models were implemented using Python programming 

language. The best performance was achieved by the LSTM model with 50 units, showing the MSE of 

4.7056, RMSE of 2.1692, MAE of 2.0262, and MAPE of 1.5764%.  Similarly, the best performance was 

observed in the GRU model with 50 units, with the lowest MSE of 7.1607, RMSE of 2.6759, MAE of 

2.5673, and MAPE of 2.0065%. The analysis demonstrated that the LSTM model significantly 

outperformed the GRU model in accuracy and precision, as shown by lower MSE, RMSE, MAE, and 

MAPE metrics. The LSTM model's superior ability to capture historical trends and handle time series data 

with minimal error highlighted its robustness in forecasting volatile exchange rates. The findings indicated 

that the LSTM model is more effective in predicting the forex rate of Nepal. Given the ability of LSTM 

model to effectively capture historical trends and handle time series data with minimal error, it is 

recommended to use LSTM models for forecasting the forex rate of Nepal. 

Although the study focused on historical forex rates of NPR against US Dollar, incorporating 

additional economic indicators such as interest rates, Foreign Direct Investment (FDI) etc. could further 

enhance the model’s predictive capabilities. The collaboration between academic institutions, financial 

organizations, and government bodies should be encouraged to promote the use of advanced forecasting 

techniques for forex forecasting. 
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Abstract. Medical diagnosis, particularly for cardiac conditions, is complex due to 

clinical variability, subjectivity, and incomplete information, which can lead to delays or 

errors. This article presents the development of an intelligent system using ECG data to 

enhance clinical efficiency, reduce diagnostic errors, and support medical decision-

making. The system smoothly integrates into clinical workflows, analyzes complex data, 

and enhances patient outcomes. The Python programming language has been used to 

develop the code for this model. 
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1. Introduction 

The inherent complexity of medical diagnosis arises from the impreciseness and vague characteristics 

of symptoms and medical data. This challenge is particularly evident in the medical sciences, where 

certainty and complete information can hinder accurate diagnosis and treatment. In medicine, 

practitioners often face situations where clear-cut scientific models and strict diagnostic guidelines are 

insufficient to account for the variability in patient presentations. Consequently, medical experts 

frequently rely on their experience, clinical intuition, and judgment to make decisions, particularly in 

complex cases where the symptoms do not align perfectly with known medical conditions. Although 

medical professionals gain valuable knowledge through their experiences, utilizing this vast expertise 

effectively in every case is challenging, particularly during real-time clinical decision-making. The fast-

paced nature of clinical settings often limits the ability to tap into their extensive knowledge base fully, 

making applying it comprehensively to each unique patient scenario challenging. 

The concept of decision-making using fuzzy variables was first introduced by Jain, Ramesh [10]. Later,  

Bellman, R.E. and  Zadeh, L.A. [3] extended this idea by proposing the application of fuzzy tools in 

medicine. Cho, Seongwon, Ersoy, Okan K., and Lehto, Mark [4] developed an algorithm to compute 

the degree of match (DM) between the antecedent part of a classification rule and an assertion. 

In 1994, L.A. Zadeh [19] proposed the concept of Soft Computing for answers to this problem, with the 

goal of addressing partial truths, imprecision, and ambiguity in decision-making processes. Soft 

Computing is intended to be more flexible and adaptive to real-world settings where data is frequently 

ambiguous or missing, in contrast to traditional computing approaches that depend on accurate and 

complete data. Fuzzy logic is a crucial feature of Soft Computing and is especially important in medical 

applications. By combining intuition, approximation reasoning, and subjective evaluations—all of 

which are frequently crucial in medical practice—fuzzy tools mimic human thinking and decision-

making. 
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Soft Computing techniques have become increasingly popular in recent years for the detection and 

management of cardiac conditions, especially fuzzy tools, which assist in controlling the degree of 

ambiguity involved in interpreting test findings, patient-reported data, and clinical symptoms. For 

example, electrocardiograms (ECGs), which employ skill and flexibility to interpret cardiac rhythms 

and spot abnormalities, are frequently used in the diagnosis of cardiac diseases. The electrocardiograph 

(ECG) was invented by Dutch scientist Willem Einthoven [2], who made important discoveries that 

allowed for accurate measurement of the electrical activity of the heart. 

In summary, the development of the electrocardiograph was a cumulative process built on the 

foundations laid by earlier scientists who explored the relationship between electrical impulses and 

muscle movement. Einthoven's creation was pivotal in medical history, transforming cardiology and 

paving the way for the modern understanding of heart health. 

In 1790, the Italian scientist Aloysio Luigi Galvani [5,8,9] caused a dead frog’s legs to move through 

electrical stimulation from a completed circuit connecting dissimilar metals. In 1820, the Danish 

scientist Hans Christian Oersted [11] observed that changes in electrical current could deflect a needle. 

This led to the creation of the electric rheoscope, later known as the galvanometer, in tribute to Galvani. 

In 1842, Matteucci [6] introduced and described the term “action potential” after demonstrating that the 

nerve of a suitably prepared frog limb, when placed over the muscle of a similarly prepared limb and 

stimulated, could contract the muscle below it. 

Willem Einthoven [1,12] (1860–1927), known as the creator of the electrocardiograph, won a Nobel 

Prize in 1924 for his contributions to electrocardiography. Today, electrocardiography is essential for 

evaluating patients presenting with cardiac complaints. It is a crucial, non-invasive, cost-effective tool 

for assessing arrhythmias and ischemic heart disease. 

Willem Einthoven built upon these earlier innovations. He realized that a more sensitive and precise 

instrument was needed to measure the heart's electrical activity accurately. In 1901, Einthoven 

introduced the string galvanometer, a susceptible device that allowed for the first accurate recordings 

of the heart's electrical signals. The results were dramatic: the device could produce clear, reproducible 

tracings of the heart's electrical activity. Einthoven's invention rapidly transformed cardiology. It 

provided a non-invasive method to diagnose heart conditions, allowing physicians to understand the 

electrical behavior of the heart in unprecedented detail. Over time, the electrocardiograph evolved, 

becoming more compact, reliable, and sophisticated, but the fundamental principles remain unchanged. 

Today, the ECG is a standard medical diagnostic tool used globally to monitor and diagnose heart 

conditions. 

Several researchers have played critical roles in advancing Soft Computing, particularly in cardiac 

diagnostics. Among them, Srivastava Pankaj and his colleagues have made notable strides in applying 

Soft Computing techniques to medical applications. For instance, Srivastava Pankaj and Sharma 

Neeraja [13] developed a Spectrum of Soft Computing Model for Medical Diagnosis that leverages Soft 

Computing to identify and predict various cardiac conditions. This approach enhances the accuracy of 

classifying heart rhythm irregularities by blending clinical expertise with fuzzy algorithms. 

In addition, Srivastava Pankaj and Srivastava Amit [14] created a comprehensive fuzzy expert system 

to assess the risk of coronary heart disease (CHD) in the Indian population. This system evaluates risk 

factors—such as cholesterol levels, blood pressure, lifestyle habits, and family history—to offer 

personalized recommendations, guiding patients on whether they can maintain their current lifestyle, 

need to adopt a modified diet, or require medical intervention through drug therapy. This fuzzy expert 
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system has proven to be a valuable resource for healthcare professionals, allowing them to make more 

informed decisions by providing a detailed analysis of patient risk profiles. 

Soft Computing has also demonstrated potential beyond cardiac diseases, showing promise in 

diagnosing and managing other critical health conditions. For instance, Srivastava Pankaj, Srivastava 

Amit, and Sirohi Ritu developed a Soft Computing-based classification system for hepatitis B [15]. This 

system simplifies the diagnostic process and helps determine the stage of the disease. Likewise, the 

classification of ECG beats, which signals different phases of cardiac conditions, has been further 

improved by Srivastava Pankaj and Sharma Neeraja [16,17], contributing to detecting and monitoring 

cardiac anomalies. 

Another significant application of Soft Computing is in diabetes management. Srivastava Pankaj, 

together with Sharma Neeraja and Singh Richa [18], created a diagnostic system using fuzzy tools to 

assist in diagnosing diabetes and recommending suitable interventions to help patients regulate their 

blood sugar levels. Their work highlights the importance of developing intelligent systems that integrate 

with real-time data, offering personalized health recommendations for better diabetes management. 

In collaboration with Rajkrishna Mondal, Pankaj Srivastava [7] developed a Diabetes Diagnostic 

Intelligent Information System, which enhances healthcare professionals’ ability to manage diabetes by 

providing an intelligent system derived from patient data. This system significantly advances diabetes 

care, showing the decisive role of Soft Computing in medical diagnosis. 

This article aims to design and develop an Intelligent system for assessing the current health status of 

patients. The proposed system utilizes Soft Computing techniques and ECG data from a standard 12-

lead ECG machine. 

 

2. Preliminaries 

             The following features of fuzzy have been considered for designing the model. 

2.1 Definition 

(i) Fuzzy set 

 Let U be a non-empty set known as the universe of discourse or simply domain. A fuzzy set 𝐴 on 𝑈 is 

defined by a membership function μA: U → [0,1]. The function μA represents the membership grade 

of an element  x  in the fuzzy set A. 

𝑨 = {(𝒙, 𝝁𝑨(𝒙)): 𝒙 ∈ 𝑼} 

(ii) Intersection of two Fuzzy set 

Let 𝐴  and  𝐵  be two fuzzy sets in the universe of discourse 𝑈 , with their respective membership 

functions μ𝐴 and μ𝐵. The fuzzy intersection of  𝐴  and 𝐵 , denoted as  𝐴 ∩ 𝐵  or the AND operation, 

is defined as a new fuzzy set. In this set, the membership grade of any element 𝑥 ∈ 𝑈 is given by:   

μ𝐴∩𝐵(𝑥) = min{ μ𝐴(𝑥), μ𝐵(𝑥): 𝑥 ∈ 𝑈}. 

(iii) Fuzzy Rule 

In a fuzzy inference system, a fuzzy rule captures uncertain and imprecise knowledge. It connects a 

condition, which is formed using AND/OR operations on relevant linguistic variables, to a 

corresponding conclusion. 

(iv) Degree of Match 

The degree of match (DM) measures how well the inputs and outputs align. It is calculated by using 

the membership grades of the input and output values in their respective fuzzy sets. 
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3. Methodology 

a. Algorithm 

(i) Initially, imprecise and uncertain facts are organized into 𝑟  input fuzzy sets 𝑋𝑖 where 𝑖 =

 1, 2, … , 𝑟  and  𝑛  output fuzzy sets 𝐵𝑡 (where 𝑡 =  1, 2, … , 𝑛 , based on their corresponding 

possibilities. 

(ii) Partition each fuzzy set into 𝑘𝑖 distinct linguistic terms, 𝐿𝑖𝑗, where 𝑖 =  1, 2, … , 𝑟  and 𝑗 =

1,2,… , 𝑘𝑖. 

(iii) Generate 𝑚 = 𝑘1𝑘2…𝑘𝑟 linguistic strings 𝐽𝐾, where 𝐾 =  1, 2,… ,𝑚 , by applying 

appropriate AND/OR operations to the linguistic terms 𝐿𝑖𝑗 from each fuzzy set 𝑋𝑖, for  𝑖 =

 1, 2, … , 𝑟  and 𝑗 = 1,2,… , 𝑘𝑖. 

(iv) Construct an appropriate membership function for each linguistic term in every fuzzy set, 

based on the available data. 

(v) Developed possible fuzzy rules with the help of medical experts. 

(vi) Construct of utility matrix 𝑈 of order 𝑝 × 𝑞. Where 𝑝 is a number of outputs and 𝑞 is a 

number of linguistic variables based on designed fuzzy rules. 

(vii) Develop 𝑞  utility sets, 𝑈𝐼, where 𝐼 =  1, 2, 3, … , 𝑞, each corresponding to a different 

alternatives, by applying the operation  𝑥 ⊕ 𝑦 =  𝑥 +  𝑦 −  𝑥𝑦  for each pair of values 

𝑥, 𝑦 ∈ 𝑈 . 

(viii) Construct  𝑞  maximizing sets 𝑈𝑀𝐼, where  𝐼 =  1, 2, 3, … , 𝑞, corresponding to each 

alternatives. 

(ix) Let 𝑈𝑂𝐼, where  𝐼 =  1, 2, 3, … , 𝑞 , represent the set of  𝑞   optimal fuzzy utility sets. Each 

𝑈𝑂𝐼 is obtained from fuzzy intersection (∧) of the fuzzy utility set  𝑈𝐼 and the maximizing 

set 𝑈𝑀𝐼. The membership function for 𝑈𝑂𝐼 is given by:   

μ𝑈𝑂𝐼(𝑥) = min{ μ𝑈𝐼(𝑥), μ𝑈𝑀𝑇(𝑥)}, for all 𝑥 ∈ 𝑋, 

(x) Select the highest membership value from each optimal utility fuzzy set. 

(xi) The best alternative, denoted as 𝐵𝑂  , is selected by finding the highest membership value 

among all available options. It is mathematically written as:  

          𝐵𝑂 = {max(𝜇𝑂𝐼(𝑥), 𝐵𝐼) : ∀ 𝐼 ∈ 𝑈𝑂𝐼},    𝑤ℎ𝑒𝑟𝑒 𝐼 = 1,2,3,…… . , 𝑛 
 

(xii) To assess how closely the given inputs, outputs, and computed outputs align with the 

expected results, the degree of match method is applied to determine the level of 

satisfaction. 

(xiii) The degree of match 𝐷𝑀𝑖 for each input  𝑖 =  1, 2, 3, … , 𝑟  measures how well a precise 

input value (𝑥𝑖) aligns with its corresponding fuzzy input set 𝑋𝑖 . It is computed by this 

formula:   

𝐷𝑀𝑖 = 2𝜇𝑋𝑖(𝑥𝑖) − 1 

(xiv) The total degree of match 𝐷𝑀𝐼 for the input is calculated by taking the minimum value 

among all individual degrees of match  𝐷𝑀𝑖 for  𝑖 =  1, 2, … , 𝑟 . This can be expressed as:  

𝐷𝑀𝐼 = min{𝐷𝑀1, 𝐷𝑀2, … , 𝐷𝑀𝑟} 

and, the degree of match  𝐷𝑀𝑂  for the optimal alternatives. 

(xv) To assess satisfaction, calculate the difference (𝐷 = |𝐷𝑀𝐼 −𝐷𝑀𝑂|). If  0 ≤ 𝐷 <  1  or 

 𝐷  is close to zero, it means the output is satisfactorily aligned with the fuzzy inputs. 
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b. Flow chart 
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                                                            Fig. 1. Flow chart 

Categorize Fuzzy inputs,𝑋𝑖, 𝑖 = 1,2,3…… . . 𝑟 

Construct their membership function 

Construct the Utility matrix 𝑈 

Construct Fuzzy rules 

Find Fuzzy utility sets 𝑈𝐼  , 𝐼 = 1,2,3, . . 𝑛 

Calculate membership values of input variables 

Stop 

Find maximizing set 𝐷𝑀𝐼 , 𝐼 = 1,2,3, . . . . 𝑛 

Calculate difference  𝐷 =  |𝐷𝑀𝐼 − 𝐷𝑀𝑂| 

Yes 

Is 0 ≤ 𝐷 <  1 ? 

No 
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4. Decision Making Methods 

In order to design and develop Intelligent system, we have taken some basic features of ECG graphs as 

input variables, like Heart rate, QRS complex, RR and PR interval, and we have used trapezoidal and 

gaussian membership functions for their classification, which are as follows: 

a. Heart rate 

Heart rate is categorized into 7 linguistic variables, and their membership functions are given below: 

Table 1. Heart rate classification 

Linguistic 

variables 

Heart rate (bpm) Membership function 

Very Slow  10-45 
μ𝑉𝑒𝑟𝑦 𝑠𝑙𝑜𝑤(𝑥) = 𝑚𝑎𝑥 (𝑚𝑖𝑛 (

𝑥 − 10

10
, 1,
45 − 𝑥

15
) , 0) 

Slow 35-60 
μ𝑆𝑙𝑜𝑤(𝑥) = 𝑚𝑎𝑥 (𝑚𝑖𝑛 (

𝑥 − 35

7
, 1,
60 − 𝑥

10
) , 0) 

Medium 55-70 
μ𝑀𝑒𝑑𝑖𝑢𝑚(𝑥) = 𝑚𝑎𝑥 (𝑚𝑖𝑛 (

𝑥 − 55

5
, 1,
70 − 𝑥

5
) , 0) 

Normal 65-100 
μ𝑁𝑜𝑟𝑚𝑎𝑙(𝑥) = 𝑚𝑎𝑥 (𝑚𝑖𝑛 (

𝑥 − 65

10
, 1,
100 − 𝑥

15
) , 0) 

Little bit High 90-132 
μ𝐿𝑖𝑡𝑡𝑙𝑒 𝑏𝑖𝑡 ℎ𝑖𝑔ℎ(𝑥) = 𝑚𝑎𝑥 (𝑚𝑖𝑛 (

𝑥 − 90

15
, 1,
132 − 𝑥

12
) , 0) 

High 125-150 
μ𝐻𝑖𝑔ℎ(𝑥) = 𝑚𝑎𝑥 (𝑚𝑖𝑛 (

𝑥 − 125

10
, 1,
140 − 𝑥

18
) , 0) 

Very High 130-175 
𝜇𝑉𝑒𝑟𝑦 ℎ𝑖𝑔ℎ(𝑥) = 𝑚𝑎𝑥 (𝑚𝑖𝑛 (

𝑥 − 130

30
, 1) , 0) 

 

b. QRS complex classification 

QRS complex is categorized into 4 linguistic variables, and their membership functions are given below: 

Table 2.  QRS Classification 

Linguistic Variables QRS complex (degree) Membership functions 

Left axis deviation -90 to -30 μ𝐿𝑒𝑓𝑡 𝑎𝑥𝑖𝑠 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝑥) = 𝑔𝑎𝑢𝑠𝑠𝑚𝑓(25,−60) 

Normal axis  -30 to 90 μ𝑁𝑜𝑟𝑚𝑎𝑙 𝑎𝑥𝑖𝑠(𝑥) = 𝑔𝑎𝑢𝑠𝑠𝑚𝑓(7,30) 

Right axis deviation 90 to 180 μ𝑅𝑖𝑔ℎ𝑡 𝑎𝑥𝑖𝑠 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝑥) = 𝑔𝑎𝑢𝑠𝑠𝑚𝑓(28,135) 

Extreme axis 

deviation 

-90 to 180 μ𝐸𝑥𝑡𝑟𝑒𝑚𝑒 𝑎𝑥𝑖𝑠 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝑥) = 𝑔𝑎𝑢𝑠𝑠𝑚𝑓(8,45) 

c. RR interval 

RR interval is categorized into 5 linguistic variables, and their membership functions are given below: 
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Table 3. RR interval classification 

Linguistic variables RR interval  Membership functions 

Very short 200-500 
μ𝑉𝑒𝑟𝑦 𝑠ℎ𝑜𝑟𝑡(𝑥) = 𝑚𝑎𝑥 (𝑚𝑖𝑛 (

𝑥 − 200

100
, 1,
500 − 𝑥

100
) , 0) 

Short 480-600 
μ𝑆ℎ𝑜𝑟𝑡(𝑥) = 𝑚𝑎𝑥 (𝑚𝑖𝑛 (

𝑥 − 480

30
, 1,
600 − 𝑥

60
) , 0) 

Normal 580-1200 
μ𝑁𝑜𝑟𝑚𝑎𝑙(𝑥) = 𝑚𝑎𝑥 (𝑚𝑖𝑛 (

𝑥 − 580

120
, 1,
1200 − 𝑥

300
) , 0) 

Large 1180-1500 
μ𝐿𝑎𝑟𝑔𝑒(𝑥) = 𝑚𝑎𝑥 (𝑚𝑖𝑛 (

𝑥 − 1180

100
, 1,
1500 − 𝑥

110
) , 0) 

Very large 1480-1580 
μ𝑉𝑒𝑟𝑦 𝑙𝑎𝑟𝑔𝑒(𝑥) = 𝑚𝑎𝑥 (𝑚𝑖𝑛 (

𝑥 − 1480

200
, 1) , 0) 

 

d. PR interval 

PR interval is categorized into 5 linguistic variables, and their membership functions are given below: 

Table 4. PR interval classification 

Linguistic variables PR interval Membership function 

Very short 20-100 
μ𝑉𝑒𝑟𝑦 𝑠ℎ𝑜𝑟𝑡(𝑥) = 𝑚𝑎𝑥 (𝑚𝑖𝑛 (

𝑥 − 20

25
, 1,
100 − 𝑥

30
) , 0) 

Short 80-121 
μ𝑆ℎ𝑜𝑟𝑡(𝑥) = 𝑚𝑎𝑥 (𝑚𝑖𝑛 (

𝑥 − 80

10
, 1,
121 − 𝑥

5
) , 0) 

Normal 100-200 
μ𝑁𝑜𝑟𝑚𝑎𝑙(𝑥) = 𝑚𝑎𝑥 (𝑚𝑖𝑛 (

𝑥 − 100

45
, 1,
200 − 𝑥

30
) , 0) 

Large 180-220 
μ𝐿𝑎𝑟𝑔𝑒(𝑥) = 𝑚𝑎𝑥 (𝑚𝑖𝑛 (

𝑥 − 180

10
, 1,
220 − 𝑥

15
) , 0) 

Very large 200-320 
μ𝑉𝑒𝑟𝑦 𝑙𝑎𝑟𝑔𝑒(𝑥) = 𝑚𝑎𝑥 (𝑚𝑖𝑛 (

𝑥 − 200

120
, 1) , 0) 

 

5. Fuzzy Rule Base 

We have developed 700 fuzzy rules based on the suggestions of cardiac experts. However, from the 

above rules, we have selected the most relevant ones, which are given below. 

𝐽1= If heart rate is "Very Slow," QRS complex is "Left axis deviation," RR interval is "Very Short,"  

         and PR interval is "Very Short," then Risk is "Moderate." 

𝐽2= If heart rate is "Very Slow," QRS complex is "Left axis deviation," RR interval is "Very Short,"  

         and PR interval is "Short," then Risk is "Moderate." 

𝐽3 = If heart rate is "Very Slow," QRS complex is "Left axis deviation," RR interval is "Very Short,"  

         and PR interval is "Normal," then Risk is "High." 

 

𝐽4= If heart rate is "Very Slow," QRS complex is "Left axis deviation," RR interval is "Very Short,"   

          and PR interval is "Large," then Risk is "Very High." 

 ⋮ 
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      ⋮ 

𝐽313  =  If heart rate is "Normal," QRS complex is "Left axis deviation," RR interval is "Normal," and  

               PR interval is "Normal," then Risk is "Normal." 

𝐽314   =  If heart rate is "Normal," QRS complex is "Left axis deviation," RR interval is "Normal,"  

                and  PR interval is "Large," then Risk is "Moderate." 

𝐽413  = If heart rate is "Little bit high," QRS complex is "Left axis deviation," RR interval is  

              "Normal,"  and PR interval is "Normal," then Risk is "Moderate." 

𝐽414=  If heart rate is "Little bit high," QRS complex is "Left axis deviation," RR interval is "Normal,"  

              and PR interval is "Large," then Risk is "High." 

⋮ 
⋮ 
𝐽452   =  If heart rate is "Little bit high," QRS complex is "Right axis deviation," RR interval is "Very  

                Short," and PR interval is "Short," then Risk is "High." 

𝐽453    = If heart rate is "Little bit high," QRS complex is "Right axis deviation," RR interval is "Very  

                Short," and PR interval is "Normal," then Risk is "Very High." 

𝐽552    = If heart rate is "High," QRS complex is "Right axis deviation," RR interval is "Very Short,"  

                and PR interval is "Short," then Risk is "Very High." 

𝐽553 =  If heart rate is "High," QRS complex is "Right axis deviation," RR interval is "Very Short,"  

               and PR interval is "Normal," then Risk is "Very High." 

⋮ 

⋮ 

𝐽695 = If Heart rate is "Very High", QRS complex is "Extreme axis deviation," RR interval is "Large,"  

           and PR interval is "Large," then Risk is "High." 

𝐽696 = If heart rate is "Very High," QRS complex is "Extreme axis deviation," RR interval is "Very  

           Large," and PR interval is "Very Short," then Risk is "Very High." 

𝐽697 = If heart rate is "Very High," QRS complex is "Extreme axis deviation," RR interval is "Very  

          Large," and PR interval is "Short," then Risk is "Very High." 

𝐽698 =  heart rate is "Very High," QRS complex is "Extreme axis deviation," RR interval is "Very  

            Large," and PR interval is "Normal," then Risk is "Moderate." 

𝐽699  = If heart rate is "Very High," QRS complex is "Extreme axis deviation," RR interval is "Very  

             Large," and PR interval is "Large," then Risk is "High." 

𝐽700 = If Heart rate is "Very High," QRS complex is "Extreme axis deviation," RR interval is "Very  

            Large," and PR interval is "Large," then Risk is "Very High." 

 

e. Linguistic strings 

In accordance with the respective input variables Heart Rate, QRS Complex, RR Interval, and PR 

Interval there are 700 linguistic strings were generated based on the number of layers for each variable. 

These strings are as follows: 
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𝐽1 = μ𝐻𝑒𝑎𝑟𝑡 𝑟𝑎𝑡𝑒(𝑉𝑒𝑟𝑦 𝑠𝑙𝑜𝑤) × μ𝑄𝑅𝑆 𝑐𝑜𝑚𝑝𝑙𝑒𝑥(𝐿𝑒𝑓𝑡 𝑎𝑥𝑖𝑠 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛) × μ𝑅𝑅 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙(𝑉𝑒𝑟𝑦 𝑠ℎ𝑜𝑟𝑡)

× μ𝑃𝑅 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙(𝑉𝑒𝑟𝑦 𝑠ℎ𝑜𝑟𝑡) 

𝐽2 = μ𝐻𝑒𝑎𝑟𝑡 𝑟𝑎𝑡𝑒(𝑉𝑒𝑟𝑦 𝑠𝑙𝑜𝑤) × μ𝑄𝑅𝑆 𝑐𝑜𝑚𝑝𝑙𝑒𝑥(𝐿𝑒𝑓𝑡 𝑎𝑥𝑖𝑠 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛) × μ𝑅𝑅 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙(𝑉𝑒𝑟𝑦 𝑠ℎ𝑜𝑟𝑡)

× μ𝑃𝑅 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙(𝑆ℎ𝑜𝑟𝑡) 

⋮ 

⋮ 

𝐽313 = μ𝐻𝑒𝑎𝑟𝑡 𝑟𝑎𝑡𝑒(𝑁𝑜𝑟𝑚𝑎𝑙) × μ𝑄𝑅𝑆 𝑐𝑜𝑚𝑝𝑙𝑒𝑥(𝐿𝑒𝑓𝑡 𝑎𝑥𝑖𝑠 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛) × μ𝑅𝑅 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙(𝑁𝑜𝑟𝑚𝑎𝑙)

× μ𝑃𝑅 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙(𝑁𝑜𝑟𝑚𝑎𝑙) 

J314 = μHeart rate(Normal) × μQRS complex(Left axis deviation) × 𝜇𝑅𝑅 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙(𝑁𝑜𝑟𝑚𝑎𝑙)

× 𝜇𝑃𝑅 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙(𝐿𝑎𝑟𝑔𝑒) 

𝐽413 = μ𝐻𝑒𝑎𝑟𝑡 𝑟𝑎𝑡𝑒(𝐿𝑖𝑡𝑡𝑙𝑒 𝑏𝑖𝑡 ℎ𝑖𝑔ℎ) × μ𝑄𝑅𝑆 𝑐𝑜𝑚𝑝𝑙𝑒𝑥(𝐿𝑒𝑓𝑡 𝑎𝑥𝑖𝑠 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛) × μ𝑅𝑅 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙(𝑁𝑜𝑟𝑚𝑎𝑙)

× μ𝑃𝑅 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙(𝑁𝑜𝑟𝑚𝑎𝑙) 

𝐽414 = μ𝐻𝑒𝑎𝑟𝑡 𝑟𝑎𝑡𝑒(𝐿𝑖𝑡𝑡𝑙𝑒 𝑏𝑖𝑡 ℎ𝑖𝑔ℎ) × μ𝑄𝑅𝑆 𝑐𝑜𝑚𝑝𝑙𝑒𝑥(𝐿𝑒𝑓𝑡 𝑎𝑥𝑖𝑠 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛) × μ𝑅𝑅 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙(𝑁𝑜𝑟𝑚𝑎𝑙)

× μ𝑃𝑅 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙(𝐿𝑎𝑟𝑔𝑒) 

⋮ 

⋮ 

𝐽452 = μ𝐻𝑒𝑎𝑟𝑡 𝑟𝑎𝑡𝑒(𝐿𝑖𝑡𝑡𝑙𝑒 𝑏𝑖𝑡 ℎ𝑖𝑔ℎ) × μ𝑄𝑅𝑆 𝑐𝑜𝑚𝑝𝑙𝑒𝑥(𝑅𝑖𝑔ℎ𝑡 𝑎𝑥𝑖𝑠 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛) × μ𝑅𝑅 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙(𝑉𝑒𝑟𝑦 𝑠ℎ𝑜𝑟𝑡)

× μ𝑃𝑅 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙(𝑆ℎ𝑜𝑟𝑡) 

𝐽453 = μ𝐻𝑒𝑎𝑟𝑡 𝑟𝑎𝑡𝑒(𝐿𝑖𝑡𝑡𝑙𝑒 𝑏𝑖𝑡 ℎ𝑖𝑔ℎ) × μ𝑄𝑅𝑆 𝑐𝑜𝑚𝑝𝑙𝑒𝑥(𝑅𝑖𝑔ℎ𝑡 𝑎𝑥𝑖𝑠 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛) × μ𝑅𝑅 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙(𝑉𝑒𝑟𝑦 𝑠ℎ𝑜𝑟𝑡)

× μ𝑃𝑅~𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙(𝑛𝑜𝑟𝑚𝑎𝑙) 

𝐽552 = μ𝐻𝑒𝑎𝑟𝑡𝑟𝑎𝑡𝑒(𝐻𝑖𝑔ℎ) × μ𝑄𝑅𝑆 𝑐𝑜𝑚𝑝𝑙𝑒𝑥(𝑅𝑖𝑔ℎ𝑡 𝑎𝑥𝑖𝑠 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛) × μ𝑅𝑅 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙(𝑉𝑒𝑟𝑦 𝑠ℎ𝑜𝑟𝑡)

× μ𝑃𝑅 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙(𝑆ℎ𝑜𝑟𝑡) 

𝐽553 = μ𝐻𝑒𝑎𝑟𝑡 𝑟𝑎𝑡𝑒(𝐻𝑖𝑔ℎ) × μ𝑄𝑅𝑆 𝑐𝑜𝑚𝑝𝑙𝑒𝑥(𝑅𝑖𝑔ℎ𝑡 𝑎𝑥𝑖𝑠 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛) × μ𝑅𝑅 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙(𝑉𝑒𝑟𝑦 𝑠ℎ𝑜𝑟𝑡)

× μ𝑃𝑅 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙(𝑛𝑜𝑟𝑚𝑎𝑙) 

⋮ 

⋮ 

𝐽698 = μ𝐻𝑒𝑎𝑟𝑡 𝑟𝑎𝑡𝑒(𝑉𝑒𝑟𝑦 ℎ𝑖𝑔ℎ) × μ𝑄𝑅𝑆 𝑐𝑜𝑚𝑝𝑙𝑒𝑥(𝐸𝑥𝑡𝑟𝑒𝑚𝑒 𝑎𝑥𝑖𝑠 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛) × μ𝑅𝑅 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙(𝑉𝑒𝑟𝑦 𝑙𝑎𝑟𝑔𝑒)

× μ𝑃𝑅 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙(𝑁𝑜𝑟𝑚𝑎𝑙) 

𝐽699 = μ𝐻𝑒𝑎𝑟𝑡 𝑟𝑎𝑡𝑒(𝑉𝑒𝑟𝑦 ℎ𝑖𝑔ℎ) × μ𝑄𝑅𝑆 𝑐𝑜𝑚𝑝𝑙𝑒𝑥(𝐸𝑥𝑡𝑟𝑒𝑚𝑒 𝑎𝑥𝑖𝑠 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛) × μ𝑅𝑅 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙(𝑉𝑒𝑟𝑦 𝑙𝑎𝑟𝑔𝑒)

× μ𝑃𝑅 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙(𝐿𝑎𝑟𝑔𝑒) 

𝐽700 = μ𝐻𝑒𝑎𝑟𝑡 𝑟𝑎𝑡𝑒(𝑉𝑒𝑟𝑦 ℎ𝑖𝑔ℎ) × μ𝑄𝑅𝑆 𝑐𝑜𝑚𝑝𝑙𝑒𝑥(𝐸𝑥𝑡𝑟𝑒𝑚𝑒 𝑎𝑥𝑖𝑠 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛) × μ𝑅𝑅 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙(𝑉𝑒𝑟𝑦 𝑙𝑎𝑟𝑔𝑒)

× μ𝑃𝑅 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙(𝐿𝑎𝑟𝑔𝑒) 

f. Output classification 

The status of heart health is categorized into 5 outputs: 

𝑂1= Low, 𝑂2=Normal, 𝑂3=Moderate, 𝑂4=High, 𝑂5= Very high. 
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6. Computation 

The utility matrix 𝑈 designed of order 5 × 700 as per fuzzy rule base: 

𝑈 =

(

 
 

40 12 . . . 18 10 . . . 15 12
50 50 . . . 42 20 . . . 45 25
35 35 . . . 60 65 . . . 75 60
45 45 . . . 33 50 . . . 65 55
55 55 . . . 71 35 . . . 55 40)

 
 

 

Case-I 

Heart rate=131 bpm, QRS complex=90∘, RR interval= 458 ms, PR interval=112 ms 

The given fuzzy set which represents the state of concerned patients: 

Heart rate={(Very slow,0),(Slow,0),(Medium,0),(Normal,0.46666667),(Little bit high,0.2),(High,0), (Very high,0)} 

QRS complex={(Left axis deviation,0.910909),(Normal axis,0),(Right axis deviation,0), 

(Extreme axis deviation, 0)} 

RR interval={(Very short,0),(Short,0),(Normal,0.5416667 ),(Large,0),(very large,0)} 

PR interval={(Very short,0),(Short,0),(Normal,0.433333 ),(Large,0.7),(very large,0)} 

The state of the system of concerned patients is as follows: 

 𝐴 = (0.09977811, 𝐽313), (0.16118015, 𝐽314), (0.04276211, 𝐽413), (0.06907730, 𝐽414) 

The fuzzy utilities with each alternatives sets are as follows: 

𝑈1 = {(0.00962048,20), (0.00256546,10), (0.08081202,15), (0.02154987,12)} 

𝑈2 = {(0.00962048,35), (0.00256546,20), (0.08081202,45), (0.02154987,25)} 

𝑈3 = {(0.00962048,80), (0.00256546,65), (0.08081202,75), (0.02154987,60)} 

𝑈4 = {(0.08965505,65), (0.00256546,50), (0.02154987,55)} 

𝑈5 = {(0.00962048,50), (0.00256546,35), (0.08081202,55), (0.02154987,40)} 

The maximizing sets corresponding to each alternatives are as follows: 

𝑈𝑀1 = {(0.00024414,20), (0.00000381,10), (0.00004345,15), (0.00001139,12)} 

𝑈𝑀2 = {(0.00701243,35), (0.0024414,20), (0.03167635,45), (0.00093132,25)} 

𝑈𝑀3 = {(1.0000000,80), (0.28770024,65), (0.67893416,75), (0.17797852,60)} 

𝑈𝑀4 = {(0.28770024,65), (0.05960464,50), (0.10559326,55)} 

𝑈𝑀5 = {(0.05960464,50), (0.00701243,35), (0.10559326,55), (0.01562500,40)} 

The optimal fuzzy utilities sets are as follows: 

𝑈01 = {(0.00024414,20), (0.00000381,10), (0.00004345,15), (0.00001139,12)} 

𝑈02 = {(0.00701243,35), (0.00024414,20), (0.03167635,45), (0.00093132,12)} 

𝑈03 = {(0.00962048,80), (0.00256546,20), (0.08081202,45), (0.02154987,60)} 

𝑈04 = {(0.08965505,65), (0.00256546,50), (0.02154987,55)} 

𝑈05 = {(0.00962048,50), (0.00256546,35), (0.08081202,55), (0.02154987,40)} 
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The set of optimal alternatives are as follows: 

𝐵0={ (0.00024414, Low), (0.03167635, Normal), (0.08081202, Moderate), (0.08965505, High), (0.08081202, Very high)} 

The sets having the greatest grade of membership value, hence the best alternative, is High. 

Fig. 2. Output for case-I

 

The above graphical sketches clearly indicate that the patients are in the high-risk category. 

Degree of match for inputs as given below: 

𝐷𝑀𝐼1′ = 2μ𝐻𝑒𝑎𝑟𝑡 𝑟𝑎𝑡𝑒𝐿𝑖𝑡𝑡𝑙𝑒 𝑏𝑖𝑡 ℎ𝑖𝑔ℎ(131) = 2(0.08333333) − 1 = −0.83333334 

𝐷𝑀𝐼1′′ = 2μ𝐻𝑒𝑎𝑟𝑡 𝑟𝑎𝑡𝑒𝐻𝑖𝑔ℎ(131) = 2(0.7) − 1 = 0.40000000 

𝐷𝑀𝐼2 = 2μ𝑄𝑅𝑆 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑅𝑖𝑔ℎ𝑡 𝑎𝑥𝑖𝑠 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(90
∘) = 2(0.2748708) − 1 = −0.4502584 

𝐷𝑀𝐼3 = 2μ𝑅𝑅 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑉𝑒𝑟𝑦 𝑠ℎ𝑜𝑟𝑡(458) = 2(0.42) − 1 = −0.16 

𝐷𝑀𝐼4′ = 2μ𝑃𝑅 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑆ℎ𝑜𝑟𝑡(112) = 2(1) − 1 = 1.00000000 

𝐷𝑀𝐼4′′ = 2μ𝑃𝑅 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑁𝑜𝑟𝑚𝑎𝑙(112) = 2(0.26666667) − 1 = −0.4666666 

To verify the consistency between input and output observations, the degree of match for the input 

(𝐷𝑀𝐼) is determined the minimum value among the given inputs:   

𝐷𝑀𝐼 = min{ − 0.83333334,0.4,−0.4502584,−0.16,1,−0.4666666} = −0.83333334. 

The degree of match for the optimal alternative (𝐷𝑀0) is calculated using the given formula:   

𝐷𝑀0 = 2(0.08965505) − 1 = −0.8206899. 

The absolute difference between the two degrees of match is computed as:   

𝐷 = |𝐷𝑀𝐼 − 𝐷𝑀0| = |−0.83333334 − (−0.8206899)| = 0.01264344. 

This difference within the range ([0,1]) and is very close to zero, indicating that the noise between the 

input and output observations are close to each other. This minimal difference confirms a high level of 

satisfaction. 

Case-II 

Heart rate = 93 bpm; QRS complex= −49.2∘; RR interval = 645 ms; PR interval=187 ms 

The fuzzy sets represents the state of concerned patient: 

Heart rate = {(Very short,0),(Short,0),(Medium,0),(Normal,0.46666667),(Little bit 

high,0.2),(High,0),(Very high,0)}  
QRS complex={(Left axis deviation,0.910909),(Normal axis,0),(Right axis deviation,0),(Extreme axis deviation,0)} 

RR interval={(Very short,0),(Short,0),(Normal,0.5416667),(Large,0),(Very large,0)} 
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PR interval={(Very short,0),(Short,0),(Normal,0.43333333),(Large,0.7),(Very large,0)}  

The state of the system of concerned patients is as follows: 

𝐴 = {(0.09977811, 𝐽313), (0.16118015, 𝐽314), (0.04276211, 𝐽413), (0.06907730, 𝐽414)} 

The fuzzy utility values associated with each set of alternatives are as follows: 

𝑈1 = {(0.09977811,40), (0.16118015,12), (0.0427621,18), (0.06907730,24)}  

𝑈2 = {(0.09977811,50), (0.16118015,38), (0.0427621,42), (0.06907730,29)}  

𝑈3 = {(0.09977811,35), (0.16118015,55), (0.0427621,60), (0.06907730,34)} 

𝑈4 = {(0.09977811,45), (0.16118015,48), (0.0427621,33), (0.06907730,28)} 

𝑈5 = {(0.09977811,55), (0.16118015,25), (0.0427621,71), (0.06907730,24)}   

The maximizing sets corresponding to each alternative are presented as follows: 

𝑈1𝑀 = {(0.0567553,40), (0.00013792,12), (0.00104730,18), (0.00441331,24)} 

𝑈2𝑀 = {(0.17320414,50), (0.02169092,38), (0.07243604,42), (0.01136837,29)} 

𝑈3𝑀 = {(0.02911042,35), (0.27894699,55), (0.07243604,60), (0.01136837,34)} 

𝑈4𝑀 = {(0.10227531,45), (0.14122592,48), (0.02169092,33), (0.00953890,28)} 

𝑈5𝑀 = {(0.27898300,55), (0.14121548,25), (0.02169092,71), (0.00953890,24)} 

The optimal fuzzy utility sets are given as follows: 

𝑈01 = {(0.05675553,40), (0.0013792,12), (0.00104730,18), (0.00441331,24)} 

𝑈02 = {(0.09977811,40), (0.02169092,38), (0.0427621,42), (0.01136837,29)} 

𝑈03 = {(0.02911042,35), (0.16118015,55), (0.0427621,60), (0.01136837,34)} 

𝑈04 = {(0.09977811,45), (0.14122592,48), (0.021690927,71), (0.00953890,24)} 

The set of optimal alternative are as follows: 

𝐵𝑜={(0.05675553, Low), (0.09977811, Normal), (0.16118015, Moderate), (0.14122592, High), (0.14121548, Very high)} 

The sets having the greatest grade of membership value, hence the best alternative, is Moderate. 

                                                      Fig.3. Output for case-II 
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The above graphical sketches clearly indicate that the patients are in the moderate-risk category. 

Degree of match for input variables are as follows: 

𝐷𝑀𝐼1′ = 2μ𝐻𝑒𝑎𝑟𝑡 𝑟𝑎𝑡𝑒𝐿𝑖𝑡𝑡𝑙𝑒 𝑏𝑖𝑡 ℎ𝑖𝑔ℎ(93) = 2(0.46666666) − 1 = −0.06666668 

𝐷𝑀𝐼1′′ = 2μ𝐻𝑒𝑎𝑟𝑡 𝑟𝑎𝑡𝑒𝐻𝑖𝑔ℎ(93) = 2(0.2) − 1 = −0.600 

𝐷𝑀𝐼2 = 2μ𝑄𝑅𝑆 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝐿𝑒𝑓𝑡 𝑎𝑥𝑖𝑠 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(−49.2
∘) = 2(0.910909) − 1 = 0.8218185 

𝐷𝑀𝐼3 = 2μ𝑅𝑅 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑁𝑜𝑟𝑚𝑎𝑙(645) = 2(0.5416666) − 1 = 0.0833332 

𝐷𝑀𝐼4′ = 2μ𝑃𝑅 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑁𝑜𝑟𝑚𝑎𝑙(187) = 2(0.43333333) − 1 = −0.13333334 

𝐷𝑀𝐼4′′ = 2μ𝑃𝑅 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝐿𝑎𝑟𝑔𝑒(187) = 2(0.7) − 1 = 0.4 

The degree of match for the input (𝐷𝑀𝐼) is calculated the minimum value among the given inputs: 

𝐷𝑀𝐼 = min{ − 0.06666668,−0.6,0.8218185,0.08333332,−0.13333334,0.4,−0.13333334,−0.13333334} = −0.6. 

The degree of match for the optimal alternative (𝐷𝑀0) is determined using the formula: 

𝐷𝑀0 = 2(0.16118015) − 1 = −0.6776397. 

The difference between (𝐷𝑀𝐼) and (𝐷𝑀0) is computed as:   

𝐷 = |𝐷𝑀𝐼 − 𝐷𝑀0| = |−0.6 − (−0.6776397)| = 0.0776397. 

This difference lies within the range ([0,1]) and is close to zero. This indicates that the noise between 

the input and output observations is close to each other, verifying a high level of satisfaction. 

Similarly, we have computed the remaining patient’s data. 

 

7. Conclusion 

This research paper shows that a Soft Computing diagnostic system can effectively replicate expert 

thinking, making it useful for handling complex cases. The proposed method will help in designing 

and developing a Soft Computing-based risk assessment system to support medical experts in 

classifying the severity of cardiac issues. 
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Abstract: In 1892, Segre introduced the concept of bi-complex numbers. The main contribution in bi-

complex analysis was the pioneering works in Functional analysis. It is a new subject, not only relevant 

from a mathematical point of view, but also has significant applications in physics and engineering. 

  This article provides an overview of bi-complex numbers and examines the completeness of certain 

sequence spaces of bi-complex numbers. Additionally, the study explores their algebraic, topological, 

and geometric properties, contributing to a deeper understanding of these spaces. 

Keywords: Bi-complex numbers, Euclidean norm, Banach space, Convexity, Uniform convexity  

 

1. Introduction  

Bi-complex numbers have been studied for quite a long time, and a lot of work has been done in this 

area. In 1892, Segre [18] introduced the concept of bi-complex numbers. The most comprehensive study 

of bi-complex numbers was done by Price [15]. Alpay et al. [1] developed a general theory of functional 

analysis with bi-complex scalars. In 2004, Rochon and Shapiro [16] studied some algebraic properties 

of Bi-complex and hyperbolic numbers.  Later, Wagh [21], Degirmen and Sağır [6], Bera and Tripathy 

[3, 4], Sager and Sağır [17], and many researchers have studied the algebraic, topological, and geometric 

properties of bi-complex sequence spaces.  

    Definition 1.1. [17] A bi-complex number is denoted by 𝛾 and defined as, 

                          𝛾 = 𝑥1 + 𝑖1𝑥2 + 𝑖2𝑥3 + 𝑖1𝑖2𝑥4 

                              = (𝑥1 + 𝑖1𝑥2) + 𝑖2(𝑥3 + 𝑖1𝑥4)   

                              =   z1+ i2 z2, where, 𝑥1, 𝑥2 , 𝑥3, 𝑥4 ∈ ℂ0,  𝑧1, 𝑧2 ∈ ℂ1, 

 i1
2 = i2

2 = -1, i1 i2 = i2 i1 and ℂ0, ℂ1, are the set of real and complex numbers respectively, i1 i2 is a 

hyperbolic unit whose square is 1. 

 The set of bi-complex numbers is denoted by ℂ2 and is defined by 

ℂ2 = {z1+ i2 𝑧2:  z1, z2 ∈ ℂ1} 

There are three types of conjugations on bi-complex numbers (Rochan and Shapiro [16]) 



P. Parajuli ,  N.P. Pahari, J.L.Ghimire    & M.P.Jaiswal / On Some Sequence Spaces of Bi-complex Numbers 

 

 

36 
 

i) i1 - conjugation of 𝛾 = z1 + i2 z2 is  𝛾* = 𝑧1̅ + 𝑖2𝑧2̅ 

ii) i2 - conjugation of 𝛾 is  �̅� = z1 - i2 z2 

iii) i1i2 - conjugation of 𝛾 is  𝛾′  = 𝑧1̅ − 𝑖2 𝑧2̅ 

Definition 1.2. A bi-complex number 𝛾  = z1+i2z2 is hyperbolic if 𝛾′ = 𝛾  𝑜𝑟 𝐼𝑚(𝑧1) = 𝑅𝑒( 𝑧2) = 0 . 

The set of all hyperbolic numbers is denoted by H and is defined by H = {x1+ i1 i2 x2:   x1, x2, ∈ ℂ0} 

For example, 𝛾 = 1 + 2 i1 i2 is a hyperbolic number.     

 The bi-complex number 𝛾 = z1 + i2 z2 is singular if |z1
2 + z2

2| = 0 and non-singular if |z1
2 + z2

2| ≠ 0. 

In ℂ2 , there are exactly two non-trivial   idempotent elements e1 and e2 defined by 

𝑒1 =
1 + 𝑖1𝑖2

2
 and 𝑒2 =  

1 − 𝑖1𝑖2

2
 

Obviously, e1 + e2 = 1, e1 e2   = e2 e1 = 0, e1 
2 = e1 and e2

2 = e2 

Every bi-complex number 𝛾 = z1+ i2 z2 had unique idempotent representation as 𝛾 = μ1e1 + μ2e2, where 

μ1 = z1 - i1 z2 and μ2 = z1 + i1 z2 are the idempotent components of 𝛾  . The set {e1, e2} forms an idempotent 

basis of ℂ2. Equipped with co-ordinate wise addition, real scalar multiplication and term by term 

multiplication, ℂ2 becomes a commutative ring with unity. 

Algebraic structures of ℂ2 differ from that of ℂ1 in many aspects. A few of them are mentioned below. 

(i) Non-invertible elements exist in ℂ2 

(ii) Non-invertible idempotent elements exist in ℂ2 

(iii) Non-trivial zero divisors exist in ℂ2 

The norm (Euclidean norm) on ℂ2 is defined by 

‖𝛾‖𝐶2
= √𝑥1

2 + 𝑥2
2  +  𝑥3

2 +  𝑥4
2 = √|𝑧1|2 + |𝑧2|2  = √

|𝜇1|2+ |𝜇2|2

2
. 

Definition 1.3. A sequence in ℂ2 is a function defined by 𝛾 ∶ ℕ → ℂ2,  𝛾 = (𝛾𝑘), where 𝛾𝑘 ∈ ℂ2.  

 The sequence (𝛾𝑘) of bi-complex numbers is said to be convergent to 𝛾 ∈ ℂ2 iff for each 

 𝜀 > 0 there corresponds an 𝑛(𝜀) ∈ ℕ such that 

‖𝛾𝑘 − 𝛾‖ℂ2
< 𝜀, for all  𝑘 ≥ 𝑛(𝜀). It is written as lim

𝑘→∞
𝛾𝑘 = 𝛾. 

The sequence (𝛾𝑘) of bi-complex numbers is said to be a Cauchy sequence if for every 𝜀 > 0 there 

exists a positive integer  𝑛(ε) ∈ ℕ such that 

‖𝛾𝑚 − 𝛾𝑛‖ℂ2
< 𝜀, for all  𝑚, 𝑛 ≥ 𝑛(𝜀). 

Definition 1.4. Let E be a sequence space of bi-complex numbers and 𝐸 ̌= {(𝑢𝑛)  ∈  𝜔 (ℂ2), there exists  

𝑥𝑛 ∈ E such that  ‖𝑢𝑛‖ℂ2
 ≤ ‖𝑥𝑛‖ℂ2

 for all n ∈ ℕ. Then E is said to be solid or normal if   �̌�  ⊂ 𝐸. 

Definition 1.5. A sequence space E of bi-complex numbers is said to be symmetric if (𝛾𝑘) ∈ E implies 

𝛾𝜋(𝑘) ∈ E where 𝜋 is the permutation of ℕ 

Definition 1.6.[6] Let E be a subset of linear space X. Then E is said to be convex if  

  (1− 𝜆 ) x + 𝜆𝑦 ∈ E for all x, y ∈ E and all scalar 𝜆 ∈ [0 1].  

Definition 1.7.[6] A Banach space X is said to be strictly convex if x, y ∈  𝑆𝑋 with x ≠ 𝑦 implies that 

‖( 1 −  𝜆 ) 𝑥 +  𝜆𝑦 ‖  < 1 for all 𝜆 ∈ (0 1). 
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Definition 1.8.[6] A Banach space X is said to be uniformly convex if, to each ε > 0, 0 < ε ≤ 2  such 

that for all 𝑥, 𝑦 ∈ 𝑆𝑋, where 𝑆𝑋 represents the unit sphere, there corresponds a δ(ε) > 0 such that the 

conditions 

∥ 𝑥 ∥ = ∥ 𝑦 ∥ = 1, ∥ 𝑥 − 𝑦 ∥ ≥ 𝜀 ⟹
1

2
∥ 𝑥 + 𝑦 ∥ ≤ 1 − 𝛿(ε). 

2. Some sequence spaces over the set of bi-complex numbers.  

If  denotes the set of all functions from the set of positive integers ℕ to the field ℂ  of complex 

numbers then it becomes a vector space. Any Sequence space is defined as a set of all 

sequences 𝑥 = (𝑥𝑛) linear subspace of  over the field ℂ with the usual operations defined as  

(𝑥𝑛 ) + (𝑦𝑛) = (𝑥𝑛 + 𝑦𝑛) and 𝜆(𝑥𝑛) = (𝜆𝑥𝑛). 

Recently, several researchers, including Ghimire & Pahari [8],   Pahari [12],  Paudel, Pahari & Kumar 

[13],Pokharel , Pahari,  & Paudel [14]  and   Srivastava & Pahari[19]  have studied the theory of 

vector-valued sequence spaces using Banach sequences.  

The notations 𝜔 (ℂ2), 𝑙∞ (ℂ2), c (ℂ2), c0 (ℂ2), 𝑙𝑝(ℂ2) denote the class of all bounded, convergent, null 

and absolutely p-summable bi-complex sequences [13]. 

𝜔 (ℂ2)  = {x = (xk): 𝑥𝑘 ∈  ℂ2  for all k ∈ ℕ} 

               𝑙∞ (ℂ2)  = {x = (xk) :  𝑥𝑘  ∈ 𝜔 (ℂ2) : ||k ∈N
𝑠𝑢𝑝

 xk ||𝐶2
 < ∞} 

𝑐(ℂ2)   = {x = (xk): 𝑥𝑘  ∈ 𝜔 (ℂ2), ∃  𝑙 ∈ ℂ2:   𝑥𝑘𝑘→∞
lim  = 𝑙  } 

              𝑐0(ℂ2)  = {x = (xk): 𝑥𝑘 ∈  𝜔 (ℂ2): 𝑥𝑘𝑘→∞ 
lim  = 0} 

               𝑙𝑝(ℂ2)  = {x = (xk): 𝑥𝑘  ∈ 𝜔 (ℂ2): ∑ ||𝑥𝑘||𝑐2
𝑝∞

𝑘=1  < ∞} 

Lemma 2.1.[16] (Bi-complex Minkowski’s inequality) 

            Let p and q be real numbers with 1 < p < ∞ and xk, yk,  ∈ ℂ2 for k ∈ {1, 2, …, n}. Then, 

[(∑ || 𝑥𝑘 + 𝑦𝑘
𝑛
𝑘=1 ||ℂ2

𝑝
) ]

1

𝑝
 ≤ [(∑ || 𝑥𝑘

𝑛
𝑘=1 ||ℂ2

𝑝
) ]

1

𝑝
 +   [(∑ || 𝑦𝑘||ℂ2

𝑝𝑛
𝑘=1 )

1

𝑝
}] 

Lemma 2.2.[6] Let p be a real number with 0 < p  ≤ 1 , 𝑥 = (𝑥𝑘)  and y = (𝑦𝑘 )  ∈  ℂ2 . 

                     Then, we have  ‖ 𝑥 + 𝑦‖ℂ2

𝑝
 ≤ ‖𝑥‖ℂ2

𝑝
+ ‖𝑦‖ℂ2

𝑝
 

Lemma 2.3.[6] Let p be a real number with 2 ≤ 𝑝 <  ∞  and 𝑥 = (𝑥𝑘), 𝑦 = (𝑦𝑘)𝜖 ℂ2. Then, we have  

‖𝑥 + 𝑦‖ℂ2

𝑝
+ ||𝑥 − 𝑦||ℂ2

𝑝
≤  2𝑝−1(||𝑥||ℂ2

𝑝
+ ||𝑦||ℂ2

𝑝
||) 

Several workers    Basar [2], Degirmen & Sagir [5],  Ellidokuzoglu & Demiriz [7] , G�̈�ng�̈�r [9] , Hardy 

[10], Kumar & Tripathy[11], Srivastava & Srivastava [20] have made substantial contributions to 

the theory of series and  bicomplex numbers and sequences.  

3.Main Results 

  In this section, we present some theorems and examples exploring some algebraic and topological 

properties of the sequences of bi-complex numbers. 

Theorem 3.1. The space  𝑙∞(ℂ2) is a bi-complex solid space. 

Proof.  

Let (𝑥𝑛)  ∈ 𝑙 ̃∞(ℂ2), then there exists a sequence (𝑦𝑛)  ∈  𝑙∞(ℂ2) such that  

|| 𝑥𝑛||ℂ2
≤  || 𝑦𝑛||ℂ2

 for all n  ∈ ℕ. 
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Therefore, sup {|| 𝑦𝑛 ||ℂ2
 : n ∈  ℕ} < ∞ and so, sup{|| 𝑥𝑛 ||ℂ2

 : n ∈ ℕ} < ∞. 

This shows that (𝑥𝑛 )   ∈   𝑙∞ (ℂ2). Thus (𝑥𝑛)  ∈   𝑙∞ (ℂ2) implies (𝑥𝑛)   ∈   𝑙∞(ℂ2).   

So, 𝑙∞ (ℂ2)  ⊂ 𝑙∞(ℂ2). Hence 𝑙∞(ℂ2)  is a bi-complex solid space.  

Theorem 3. 2.  The space 𝑙∞(ℂ2) is a bi-complex symmetric space.  

Proof.  

Let (𝑥𝑛)   ∈  𝑙∞(ℂ2)  and 𝜎 ∈  𝜋. Then,  𝜎 : ℕ → ℕ is a bijective function. So, we have 

{‖𝑥𝜎(𝑛)‖
ℂ2

: 𝑛 ∈  ℕ} = {‖𝑥𝑛‖ℂ2
: 𝑛 ∈  ℕ}. 

Also, sup {‖𝑥𝜎(𝑛)‖
ℂ2

: 𝑛 ∈  ℕ} = sup {‖𝑥𝑛‖ℂ2
: 𝑛 ∈  ℕ}.  

Since (𝑥𝑛)  ∈  𝑙∞ (ℂ2), 𝑠𝑢𝑝 {‖𝑥𝑛‖ℂ2
: 𝑛 ∈  ℕ} < ∞.  Also, sup {‖𝑥𝜎(𝑛)‖

ℂ2
: 𝑛 ∈  ℕ} < ∞. 

This result shows that (𝑥𝜎(𝑛))  ∈  𝑙∞ (ℂ2). Hence 𝑙∞ (ℂ2) is a bicomplex symmetric space.  

Theorem 3.3. The space 𝑙𝑝 (ℂ2) is a bi-complex solid space for 0 < p < ∞. 

Proof.  

Let (𝑥𝑛)  ∈  𝑙𝑝 (ℂ2), then there exists a sequence (𝑦𝑛)  ∈   𝑙𝑝 (ℂ2)such that 

 ‖𝑥𝑛‖  ≤  ‖𝑦𝑛‖ for all n ∈ ℕ.  

Also, ‖𝑥𝑛‖ℂ2

𝑝
≤  ‖𝑦𝑛‖ℂ2

𝑝
for all n ∈ ℕ . 

Since the series ∑ ||𝑦𝑛|∞
𝑛=1  ||ℂ2

𝑝
 is convergent, the comparison test for convergent series implies that the 

series ∑ ||𝑥𝑛
∞
𝑛=1 ||ℂ2

 is also convergent. So, (𝑥𝑛)  ∈  𝑙𝑝 (ℂ2). 

Thus (𝑥𝑛)  ∈  𝑙 ̃𝑝 (ℂ2) imples (𝑥𝑛)  ∈ 𝑙𝑝 (ℂ2). Hence 𝑙𝑝 (ℂ2) ⊂ 𝑙𝑝(ℂ2).  

So, 𝑙𝑝(ℂ2) is a bi-complex solid space.  

Theorem 3.4. The space 𝑙𝑝(ℂ2) is a bi-complex symmetric space for 0 < p < ∞. 

Proof. 

 Let (𝑥𝑛) ∈  𝑙𝑝(ℂ2) and 𝜎 ∈  𝜋. Since 𝜎 ∶  ℕ →  ℕ   is a bijective function, we can write  

{‖𝑥𝜎(𝑛)‖
ℂ2

: 𝑛 ∈  ℕ} = {‖𝑥𝑛‖ℂ2
: 𝑛 ∈  ℕ} 

and so, {‖𝑥𝜎(𝑛)‖
ℂ2

𝑝
: 𝑛 ∈  ℕ} =  {‖𝑥𝑛‖ℂ2

𝑝
: 𝑛 ∈  ℕ} holds. 

Then, ∑ ||𝑥𝜎(𝑛)
∞
𝑛=1 ||ℂ2

𝑝
=  ∑ ||𝑥𝑛||ℂ2

𝑝∞
𝑛=1   

Since, (𝑥𝑛)  ∈  𝑙𝑝 (ℂ2), ∑ ||𝑥𝑛 
∞
𝑛=1 ||ℂ2

𝑝
 converges.  

Also, the series  ∑ ||𝑥𝜎(𝑛)
∞
𝑛=1 ||ℂ2

𝑝
 converges. 

Hence, (𝑥𝜎(𝑛))  ∈  𝑙𝑝 (ℂ2). Thus, 𝑙𝑝(ℂ2)  is a bicomplex symmetric space.   
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Theorem 3.5.[16] The set  (ℂ2) is a linear space over ℝ with respect to addition and scalar  

                         multiplication.  

Theorem 3.6.[16] The sets 𝑙∞(ℂ2), 𝑐 (ℂ2), 𝑐0 (ℂ2) and 𝑙𝑝 (ℂ2) for 0 < p < ∞ are sequence spaces.  

Theorem 3.7. The space  ℓ𝑝 (ℂ2) is a complete metric space for 0 < p < ∞ with the metric 

 𝑑𝑙𝑝
 (ℂ2) defined by 

                           𝑑𝑙𝑝(ℂ2)(𝑥, 𝑦)  = {∑ ‖𝑥𝑘 − 𝑦𝑘‖ℂ2

𝑝∞
𝑘=1 } for  0 < 𝑝 ≤ 1 

               = (∑ ‖𝑥𝑘 − 𝑦𝑘‖ℂ2

𝑝∞
𝑘=1 )

1

𝑝
 for 1 < 𝑝 <  ∞ 

                                                       where x = (𝑥𝑘), y = (𝑦𝑘) ∈ ℓ𝑝 (ℂ2).  

Proof.  

First, we show that the metric space  ℓ𝑝( ℂ2) is complete for 1 < p < ∞. 

For this let (𝑥𝑚) = (𝑥𝑘
𝑚)𝑘 ∈ ℕ  be any arbitrary Cauchy sequence in the space ℓ𝑝(ℂ2). Then, for every 

ε  > 0, there exists no (𝜀) ∈ ℕ such that 

𝑑(𝑥𝑚, 𝑥𝑟) = (∑ ‖𝑥𝑘
𝑚 − 𝑥𝑘

𝑟‖ℂ2

𝑝∞
𝑘=1 )

1

𝑝
<  ∞, for all 𝑚, 𝑟 ≥  𝑛o (𝜀).                               (1) 

Then, for any fixed k,  

ll 𝑥𝑘
𝑚 − 𝑥𝑘

𝑟 ll < ε for all m, r ≥ no (ε).                                                                          (2) 

Thus, for any fixed k, (𝑥𝑘
1, 𝑥𝑘

2, … , 𝑥𝑘
𝑚, …) is a bi-complex Cauchy sequence and so it converges to a 

point say 𝑥𝑘
∗  . Collecting the infinitely many limits (𝑥1

∗, 𝑥2
∗, ….), let us define a sequence 𝑥∗= (𝑥𝑘

∗) = 

(𝑥1
∗, 𝑥2

∗, ….).  

Then, we show that   𝑥∗= (𝑥𝑘
∗) ∈ ℓ𝑝 (ℂ2) and 𝑥𝑚 → 𝑥∗ as m →  ∞.  

By (2), we can write ‖𝑥𝑘
𝑚 − 𝑥𝑘

∗‖ℂ2
≤ ε for all 𝑚 ≥ 𝑛0(ε), which means that 𝑥𝑘

𝑚 → 𝑥𝑘
∗  𝑎𝑠   

𝑚 → ∞.  Also from (1), we have  

(∑‖𝑥𝑘
𝑚 − 𝑥𝑘

𝑟‖ℂ2

𝑝

𝑛

𝑘=1

)

1
𝑝

< ε  for all 𝑚, 𝑟 ≥ 𝑛0 (ε ).  

Letting r → ∞, we have   (∑ ||𝑥𝑘
𝑚 − 𝑥𝑘

∗𝑛
𝑘=1 ||ℂ2

𝑝
)

1

𝑝
< ε for all 𝑛 ∈  ℕ. 

Then by letting n → ∞, we have 

𝑑(𝑥𝑚, 𝑥∗) = (∑ ||𝑥𝑘
𝑚 − 𝑥𝑘

∗∞
𝑘=1 ||𝑝)

1

𝑝 ≤  ε  for all m ≥  𝑛0(ε).  

Thus the sequence  (𝑥𝑚)  ∈  𝑙𝑝 (ℂ2) converges to  𝑥∗ =  (𝑥𝑘
∗)  ∈  (ℂ2). 

Next, we show that 𝑥∗ = (𝑥𝑘
∗)  ∈  ℓ𝑝 (ℂ2). Since (𝑥𝑚) = (𝑥𝑘

𝑚)  ∈  ℓ𝑝(ℂ2), by complex Minkowski's 

inequality and convergence of the series  ∑ ||𝑥𝑘
∗ − 𝑥𝑘

𝑚∞
𝑘=1 ||ℂ2

𝑝
 we have  
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(∑ ‖𝑥𝑘
∗‖ℂ2

𝑝∞
𝑘=1 )

1

𝑝 
=  (∑ ‖𝑥𝑘

𝑚 + (𝑥𝑘
∗ − 𝑥𝑘

𝑚)‖ℂ2

𝑝∞
𝑘=1 )

1

𝑝 

  ≤ (∑ ‖𝑥𝑘
𝑚‖ℂ2

𝑝∞
𝑘=1 )

1

𝑝
  + (∑ ‖𝑥𝑘

∗ − 𝑥𝑘
𝑚‖ℂ2

𝑝∞
𝑘=1 )

1

𝑝
  < ∞. 

Thus x = (𝑥𝑘
∗)  ∈  𝑙𝑝 (ℂ2). Hence 𝑙𝑝(ℂ2) with 1 < p < ∞ is complete. 

Similarly, we can show that ℓ𝑝 (ℂ2) is complete for 0 < p ≤ 1 with the metric  

d (x, y) = ∑ ‖𝑥𝑘 − 𝑦𝑘‖ℂ2

𝑝∞
𝑘=1 , where x = (𝑥𝑘), y = (𝑦𝑘) ∈ ℓ𝑝 (ℂ2). 

Since ℓ𝑝 (ℂ2) is complete with the metric induced by the norm defined by 

 ‖𝑥‖ = {∑ ‖𝑥𝑘‖ℂ2

𝑝∞
𝑘=1 } for 0 < p ≤ 1. 

         = (∑ ‖𝑥𝑘‖ℂ2

𝑝∞
𝑘=1 )

1

𝑝
 for 1 < p < ∞ 

 Hence  ℓ𝑝 (ℂ2)is a Banach space.  

Theorem 3.8.  The space ℓ𝑝 (ℂ2) for 0 < p < ∞ is convex.  

Proof.  

Let x = (xn) and y = (yn) ∈  ℓ𝑝 (ℂ2)  and  𝜆 ∈ [0,1].  

Then the series ∑ ‖𝑥𝑛‖ℂ2

𝑝∞
𝑛=1  and ∑ ‖𝑦𝑛‖ℂ2

𝑝∞
𝑛=1  converge.  

For 1 < p < ∞, in view of lemma 2.1, we have 

 (∑ ‖𝜆 𝑥𝑛 + (1 − 𝜆)𝑦𝑛‖ℂ2

𝑝∞
𝑛=1 )

1

𝑝
≤ (∑  ‖𝜆 𝑥𝑛‖ℂ2

𝑝∞ 
𝑛=1 )

1

𝑝
 + (∑ ‖(1 − 𝜆 )𝑦𝑛‖ℂ2

𝑝∞
𝑛=1 )

1

𝑝
    

                                                      = 𝜆(∑ ‖ 𝑥𝑛‖ℂ2

𝑝∞
𝑛=1 )

1

𝑝
 + (1−𝜆)(∑ ‖𝑦𝑛‖ℂ2

𝑝∞
𝑛=1 )

1

𝑝
  < ∞ 

and therefore, 

∑ ||∞
𝑛=1 𝜆𝑥n + (1−𝜆) yn||

p
 < ∞. 

Hence, 𝜆𝑥 + (1−𝜆) y ∈  ℓ𝑝 (ℂ2). 

Also, for 0 < p ≤ 1, we have by lemma 2.2  

∑ || ∞
𝑛=1 𝜆𝑥n + (1−𝜆) yn ||ℂ2

𝑝
 ≤  ∑ (||𝜆∞

𝑛=1 𝑥n||ℂ2

𝑝
+ || (1−𝜆) yn ||ℂ2

𝑝
)  

                                            = 𝜆𝑝 ∑ ||∞
𝑛=1 𝑥n ||ℂ2

𝑝
+ (1 − 𝜆)𝑝 ∑ ‖𝑦𝑛‖ℂ2

𝑝∞
𝑛=1      <  ∞. 

This implies that 𝜆𝑥 + (1 − 𝜆)y ∈ ℓ𝑝 (ℂ2).  

Hence,  ℓ𝑝 (ℂ2) for 0 < p < ∞ is convex.  
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Theorem 3.9. The sequence space ℓ∞ (ℂ2)is convex.   

Proof.  

Let x = (xn), y = (yn)  ∈ ℓ∞(ℂ2) and 𝜆 ∈ [0,1].  

Then, sup {|| xn|| ℂ2
: n ∈ ℕ} <  ∞ and sup {|| yn || ℂ2

: n ∈ ℕ } < ∞. 

Now, sup {‖𝜆𝑥𝑛 + 1 − 𝜆)𝑦𝑛‖ℂ2
 : n ∈ ℕ}  ≤ sup {𝜆|| xn ||ℂ2  : n ∈ ℕ } + (1−𝜆) || yn||ℂ2

  : n ∈ ℕ } 

                                                        = 𝜆 sup {|| xn ||ℂ2
: n ∈ ℕ } + (1−𝜆) sup {|| yn ||ℂ2

  : n ∈ ℕ }  

                                                                    < ∞  

 Thus, 𝜆𝑥 + (1− 𝜆)y ∈ ℓ∞ (ℂ2). Hence, ℓ∞(ℂ2) is convex.   

Lemma 3.10. [6] Let p be a real number with 1 < 𝑝 < ∞ such that x ≠ y where x = (xn), 

 y = (yn) and 𝜆 ∈ (0,1). Then, we have || 𝜆𝑥 + (1−𝜆) 𝑦 ||p <  𝜆‖𝑥‖ℂ2

𝑝  + (1− 𝜆) ‖𝑦‖ℂ2

𝑝
. 

Theorem 3.11. The sequence space ℓ𝑝(ℂ2) for 1 < 𝑝 < ∞ is strictly convex.  

Proof. 

 Let x = (xn) and y = (yn) ∈ 𝑆𝑙𝑝
(ℂ2)  such that x ≠ y and λ ∈ (0,1). Then, || x || = 1 and || y || = 1.  

By lemma 3.10 we have  

||𝜆𝑥 + (1−𝜆) 𝑦 ||ℂ2

𝑝
  = ∑ ||∞

𝑛=1 𝜆𝑥𝑛+(1− 𝜆)yn||p  (ℂ2)   

                                   < ∑ [∞
𝑛=1 𝜆||𝑥n||p +(1− 𝜆)yn||p  (ℂ2) 

                                 = 𝜆 ∑ ‖𝑥𝑛‖ℂ2

𝑝∞
𝑛=1 + (1− 𝜆) ∑ ‖𝑦𝑛‖ℂ2

𝑝∞
𝑛=1  

                                 = 𝜆  ‖𝑥‖ℂ2

𝑝
 +(1− 𝜆) ‖𝑦‖ℂ2

𝑝  

                                =   λ.1 + (1−𝜆) .1 = 1 

This shows that 𝑙𝑝(ℂ2) for 1 < 𝑝 < ∞ is strictly convex.  

Example 1. The sequence space 𝑙1(ℂ2) is not strictly convex. 

Let 𝑥 = (𝑥𝑛) = (0, 𝑖1, 0, 0, … … )  and   𝑦 = (𝑦𝑛) = (0, 0, −𝑖2, 0, … … ) 

so that  ‖𝑥‖ = ‖𝑦‖ = 1 𝑎𝑛𝑑 𝜆 ∈ (0, 1). 

Now, ‖ 𝜆𝑥 + (1 − 𝜆)𝑦 ‖𝑙1(ℂ2)
 =  ∑ ‖ 𝜆𝑥𝑛 + (1 − 𝜆)𝑦𝑛‖(ℂ2)

∞
𝑛=1   

                                      = ∑ ‖(0, 𝜆𝑖1, (1 − 𝜆)(−𝑖2), 0, … . ) ‖∞
𝑛=1  

                          = ‖ 𝜆𝑖1‖ℂ2
+  ‖(1 − 𝜆)(−𝑖2)‖ℂ2

 

                          = 𝜆. 1 + (1 − 𝜆). 1    = 1, for all 𝜆 ∈ (0,1). 

Hence 𝑙1(ℂ2) is not strictly convex.  

Example 2. The sequence space 𝑙∞(ℂ2) is not strictly convex.  

Let 𝑥 = (𝑥𝑛) = (1,   𝑖1, 𝑖2, 0, 0, … ) and  𝑦 = (𝑦𝑛) = (−1,   𝑖1, 𝑖2, 0, 0, … ) 

Then, ‖𝑥‖ℂ2
=  ‖𝑦‖ℂ2

= 1.  
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Now, for  all 𝜆 ∈ (0,1), we have 

                ‖𝜆𝑥 + (1 − 𝜆) 𝑦‖ℂ2
= sup{‖𝜆𝑥𝑛  + (1 −  𝜆)𝑦𝑛‖ℂ2

: 𝑛 ∈  ℕ} 

    = sup { ‖2𝜆 − 1, 𝑖1, 𝑖2, 0, 0, … ) ‖ℂ2
: 𝑛 ∈ ℕ} 

    = sup {0, |2𝜆 − 1|, 1} = 1. 

Thus 𝑙∞(ℂ2) is not strictly convex.  

Theorem 3.12. The sequence space 𝑙𝑝(ℂ2) for 2 ≤ p < ∞ is uniformly convex. 

Proof.  

Let 𝑥 = (𝑥𝑛), 𝑦 =  𝑦𝑛 ∈  𝑙𝑝(ℂ2)  such that  

‖𝑥‖ ≤ 1, ||𝑦|| < 1 and ||𝑥 − 𝑦|| ≥ ε. 

Then, applying lemma 2.3 we have 

         ‖𝑥 + 𝑦‖𝑝 + ‖𝑥 − 𝑦‖𝑝 =  ∑ ‖𝑥𝑛 + 𝑦𝑛‖𝑝 +  ∑ ‖𝑥𝑛 − 𝑦𝑛‖𝑝 ∞
𝑛=1

∞
𝑛=1  

                                  = ∑ (||𝑥𝑛
∞
𝑛=1 +   𝑦𝑛||𝑝+||𝑥𝑛 − 𝑦𝑛||𝑝) 

                                   ≤   ∑ 2𝑝−1∞
𝑛=1 (||𝑥𝑛||𝑝 + ||𝑦𝑛||𝑝)   

                                   = 2𝑝−1[∑ 𝑥𝑛||𝑝 + ∑ ‖𝑦𝑛‖𝑝]∞
𝑛=1

∞
𝑛=1  

                               =  2𝑝−1[‖𝑥‖𝑝 + ‖𝑦‖𝑝] < 2𝑝−1(1 + 1) 

                                             = 2𝑝 

 This shows that ‖𝑥 + 𝑦‖𝑝 ≤ 2𝑝 − ‖𝑥 − 𝑦‖𝑝 ≤ 2𝑝 − ε𝑝. 

Now, ‖
𝑥+𝑦

2
‖ = [

1

2𝑝
‖𝑥 + 𝑦‖𝑝]

1

𝑝
 

                      ≤ [
1

2𝑝
(2𝑝 − 𝜀𝑝)]

1

𝑝 =[1 − (
𝜀

2
)𝑝]

1

𝑝
 

If we take 𝛿(ε) = 1 − [1 − (
𝜀

2
)

𝑝
]

1

𝑝
 , then ‖

𝑥+𝑦

2
‖ ≤ 1 −  𝛿. 

Hence 𝑙𝑝(ℂ2) for 2 ≤ 𝑝 < ∞ is uniformly convex.  

Example 3.  The sequence space 𝑙1(ℂ2) is not uniformly convex.  

Proof. 

 Let 𝑥 = (𝑥𝑛) = (𝑖1, 0, 0, 0, … … ), and 𝑦 = (𝑦𝑛) = (0, 0, 𝑖2, 0, … … ).Then 

‖𝑥‖ = ‖𝑦‖ = 1. 

Now,  ‖𝑥 − 𝑦‖ℂ2
= ∑ ‖𝑥𝑛 − 𝑦𝑛‖ℂ2

∞
𝑛=1  = ∑ ‖(𝑖1, 0, − 𝑖2, 0, … . )‖ℂ2

∞
𝑛=1    

       = ‖𝑖1‖ + ‖−𝑖2‖  = 1+1 = 2 ≥ ε 

But ‖
𝑥+𝑦

2
‖= ∑ ‖

𝑥𝑛+𝑦𝑛

2
‖

ℂ2

∞
𝑛=1    = ∑ ‖

1

2
(𝑖1, 0, 𝑖2, 0, … )‖∞

𝑛=1     

                   = ‖
𝑖1

2
‖

ℂ2

+  ‖
𝑖2

2
‖

ℂ2

= 
1

2
 + 

1

2
= 1. 

Thus, we cannot find 𝛿(ε) > 0 such that ‖
𝑥+𝑦

2
‖ ≤ 1 − 𝛿. 

Hence, 𝑙1(ℂ2) is not uniformly convex. 
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Example 4. The sequence space 𝑙∞(ℂ2) is not uniformly convex.  

Proof. 

 Let 𝑥 = (𝑥𝑛) = (1, 𝑖1, 𝑖2, 0, 0, … ), 𝑦 = (𝑦𝑛) = (−1, 𝑖1, −𝑖2, 0, 0, … ) 

Then, ‖𝑥‖ = ‖𝑦‖ = 1 

 ‖𝑥 − 𝑦‖ = sup {‖𝑥𝑛 − 𝑦𝑛‖ℂ2
: 𝑛 ∈ ℕ} 

       = sup {‖(2, 0, 2𝑖2, 0, 0, … ‖} = sup {0, 2}  

       = 2 ≥ ε 

 Now, ‖
𝑥+𝑦

2
‖ = sup {‖

𝑥𝑛+𝑦𝑛

2
‖

ℂ2

: 𝑛 ∈ ℕ} 

   = sup{‖
1

2
 (0, 2𝑖1, 0, 0, … . )‖} 

   = sup {‖(0, 𝑖1, 0, 0, … ‖} 

                                             = sup {0, 1} = 1 

Thus, we cannot find 𝛿(ε) > 0 such that ‖
𝑥+𝑦

2
‖ ≤ 1 − δ 

Hence 𝑙∞(ℂ2) is not uniformly convex.  

 

4. Conclusion 

In this paper, we have presented some sequence spaces of bi-complex numbers and their algebraic, 

topological, and geometric properties. The extension of these properties on generalized double 

sequences of bi-complex numbers will be the future research directions. 
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Abstract: Integral inequality is a fascinating research domain that helps to estimate the integral mean

of convex functions. The convexity theory plays a basic role in the development of various branches

of applied sciences. Convexity and inequality are connected which has a fundamental character in

many branches of pure and applied disciplines. The Hermite-Hadamard (H-H) type integral inequality

is one of the most important inequalities associated with the convex functions. The researchers are

being motivated to the extensions, enhancements and generalizations of H-H type inequality for different

types of convex functions. In this paper, we have obtained an extension of some integral inequalities of

Hermite-Hadamard type for m-convex functions with second order derivatives on the basis of the classical

convex functions.

Keywords: Convexity, m-convexity, integral inequality

1. Introduction

Convexity theory is essential in the theoretical aspects of mathematicians, economists, and physicists.

Mathematicians utilize this theory to solve difficulties that emerge in several subjects of study. Convex

analysis has played a pivotal role in the generalizations and extensions of inequalities theory over the

last few decades. The theories of convexity and inequality are closely connected. Integral inequalities

are important and valuable in information technology, integral operator theory, numerical integration,

optimization theory, statistics, probability, and stochastic processes because they are elegant and effective.

Many mathematicians and research academics have focused their efforts and contributions over the last

few decades on studying these types of inequalities. Thus, for convexity, there is vast and important

literature on inequalities. Convexity is a broad subject that also includes the theory of convex functions.

Convexity is a powerful property of functions, also known as a natural property of functions. Furthermore,

45
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its minimization property makes it unique, novel, and beneficial. Due to its minimization characteristic, it

possesses a significant status in optimization theory, calculus of variation, and probability theory. So, the

idea of convex functions has played a significant role in modern mathematics [2]. It has been noticed

that several books and research articles have been published in the past few years. The H-H inequality

substantially impacted the study of a convex function [1]. Numerous important inequalities have been

employed as powerful tools not only in pure mathematics but also in other areas of mathematics, for if,

the theory of means, approximation theory, numerical analysis, and so on. One of the most important

inequalities that has been attracted by many inequality experts in the last few decades is the famous

Hermite-Hadamard inequality. Although, it was firstly known in literature as a result of J. Hadamard

in 1893, but this result was actually due to C. Hermite in 1881, as pointed out by Mitrinovic and

Lacovic [3] in 1985. Due to this fact, most experts refer to it as Hermite-Hadamard (or sometimes,

Hadamard-Hermite) inequality which is defined as follows:

Let f : [a,b]⊂R→R be a convex function, where x,y∈ [a,b] with x < y. Then, the following inequalities

hold:

f
(

x+ y
2

)
≤ 1

y− x

∫ y

x
f (x)dx ≤ f (x)+ f (y)

2
(1)

The result in equation ( 1 ) is considered as a necessary and a sufficient condition for a function

f : [a,b]⊂ R→ R be a convex function. This famous inequality has raised attention of the researchers

of the domain of convexity and inequality theory and a variety of refinements and generalizations have

been found in it. This classical Hermite-Hadamard integral inequality estimates the integral mean value

of a continuous convex function f : [a,b] → R. The extensions of Hermite-Hadamard type integral

inequalities in recent years have taken a significant growth. Tiwari and Bhatta [6] have extended the

Hermite-Hadamard type integral inequality of classical convex functions to m-convex functions whose the

first order derivatives are m-convex functions and some results are proved in the framework of q−calculus.

The present paper incorporates four sections. The first section includes the concept of convex functions

and its applications in different streams along with the Hermite-Hadamard integral inequality. The second

section includes the definition of classical convex function as well as its extension to m-convex function.

It also incorporates the result of H-H type integral inequality whose second order derivatives are convex

functions. The third section highlights the main results of the research, and it concludes in the fourth

section by explaining the research domain to the future researchers.
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2. Preliminary Results

The concept of convex function in classical sense is defined as follows:

Definition 2.1. The function f : [a,b]⊂ R→ R is said to be convex if the following inequality

f (λx+(1−λ )y) ≤ λ f (x)+(1−λ ) f (y) (2)

holds for all x,y ∈ [a,b],λ ∈ [0,1]. We say that that f is concave if (− f ) is convex.

G. H. Toader [5] introduced the idea of m-convexity of the function, an intermediate between the usual

convexity and the star shaped property as follows:

Definition 2.2. The function f : [0,b]→ R is said to be m-convex function where m ∈ [0,1] for every

x,y ∈ [0,b] and λ ∈ [0,b], we have

f (λx+m(1−λ )y) ≤ λ f (x)+m(1−λ ) f (y).

Remark 2.3. For m = 1, we recapture the concept of convex functions on [0,b] and for m = 0, we get

the concept of star shaped functions on [0,b]. We recall that f : [0,b]→ R is star shaped if

f (λx) ≤ λ f (x)

for all λ ∈ [0,b] and x ∈ [0,b].

Odzemir et al. [4] proved the following result for the case of classical convex function.

Theorem 2.4. Let f : I ⊂ R→ R be a twice differentiable mapping on I0,x,y ∈ I with x < y and f ′′ be

integrable on [x,y], then the following equality holds:

f (x)+ f (y)
2

− 1
y− x

∫ y

x
f (s)ds =

(y− x)2

2

∫ 1

0
λ (1−λ ) f ′′(λx+(1−λ )y)dλ

3. Main Results

In this section, we extend the idea of H-H type integral inequality of second order differentiable classical

convex functions to m-convex functions as follows:

Lemma 3.1. Let f : I ⊂ R→ R be a twice differentiable mapping on I0 where x,y ∈ I with x < y, I0 is

an interior of I and m ∈ [0,1]. If f ′′ ∈ L([x,y]), then the following equality holds:
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f (x)+ f (my)
2

− 1
my− x

∫ my

x
f (u)du =

(my− x)2

2

∫ 1

0
λ (1−λ ) f ′′(λx+m(1−λ )y)dλ

Proof.

Let I1 =
∫ 1

0
λ (1−λ ) f ′′(λx+m(1−λ )y)dλ

=
∫ 1

0
(λ −λ

2) f ′′(λx+m(1−λ )y)dλ

Integrating by parts, we have

=

[
(λ −λ

2)
f ′(λx+m(1−λ )y)

x−my

]1

0
−

∫ 1

0
(1−2λ ) f ′

(λx+m(1−λ )y)
x−my

dλ

=0−
∫ 1

0
(1−2λ ) f ′

(λx+m(1−λ )y)
x−my

dλ

=
1

my− x

∫ 1

0
(1−2λ ) f ′(λx+m(1−λ )y)dλ

Again integrating by parts, we obtain

=
1

my− x

[
(1−2λ )

f (λx+m(1−λ )y)
x−my

|10 −
∫ 1

0
2
(λx+m(1−λ )y)

x−my
dλ

]
=

1
my− x

[
(−1) f (x)

x−my
− f (my)

x−my
+

2
x−my

∫ 1

0
f (λx+m(1−λ )y)dλ

]
=

1
my− x

[
f (x)+ f (my)

my− x
− 2

my− x

∫ 1

0
f (λx+m(1−λ )y)dλ

]
=

f (x)+ f (my)
(my− x)2 − 2

(my− x)2

∫ 1

0
f (λx+m(1−λ )y)dλ

Put u = λx+m(1−λ )y. When λ = 0, then u = my, when λ = 1, then u = x. Also, dλ =− du
my−x . On

substituting these values in the above relation, we get

∫ 1

0
λ (1−λ ) f ′′(λx+m(1−λ )y)dλ =

f (x)+ f (my)
(my− x)2 − 2

(my− x)2

∫ x

my
f (u)

(−du)
my− x∫ 1

0
λ (1−λ ) f ′′(λx+m(1−λ )y)dλ =

2
(my− x)2

[
f (x)+ f (my)

2
− 1

my− x

∫ my

x
f (u)du

]
f (x)+ f (my)

2
− 1

my− x

∫ my

x
f (u)du =

(my− x)2

2

∫ 1

0
λ (1−λ ) f ′′(λx+m(1−λ )y)dλ .

Remark 3.2. If m = 1, then this result reduces to theorem 2.4.

Theorem 3.3. Let f : I ⊂ R→ R be a twice differentiable mapping on I0 where x,y ∈ I with x < y, I0 is
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an interior of I and m ∈ [0,1]. If f ′′ ∈ L[x,y], then the following inequality holds:

∣∣∣∣ f (x)+ f (my)
2

− 1
my− x

∫ my

x
f (u)du

∣∣∣∣ ≤ (my− x)2

64
(
m| f ′′(y)|+ | f ′′(x)|

)
Proof. Using the result of 3.1 and taking modulus on both sides, we have

∣∣∣∣ f (x)+ f (my)
2

− 1
my− x

∫ my

x
f (u)du

∣∣∣∣= ∣∣∣∣(my− x)2

2

∫ 1

0
λ (1−λ ) f ′′(λa+m(1−λ )y)dλ

∣∣∣∣
≤ (my− x)2

2

∫ 1

0
|λ −λ

2|| f ′′(λx+m(1−λ )y)|dλ

≤ (my− x)2

2

[
| f ′′(x)|

∫ 1

0
λ |λ −λ

2|dλ +m| f ′′(y)|
∫ 1

0
(1−λ )|λ −λ

2|dλ

]

Here

∫ 1

0
λ |λ −λ

2|dλ =
∫ 1

2

0
λ (λ −λ

2)dλ +
∫ 1

1
2

λ (λ 2 −λ )dλ =
1
32

And,

∫ 1

0
(1−λ )|λ −λ

2|dλ =
∫ 1

2

0
(1−λ )(λ −λ

2)dλ +
∫ 1

1
2

(1−λ )(λ 2 −λ )dλ =
1
32

Substituting these values, we obtain

∣∣∣∣ f (x)+ f (my)
2

− 1
my− x

∫ my

x
f (u)du

∣∣∣∣ ≤ (my− x)2

64
(
m| f ′′(y)|+ | f ′′(x)|

)
The proof is complete.

4. Conclusion

The Hermite-Hadamard integral inequality yields the lower and upper bounds of integral mean of any

convex function. In this paper, we have extended the results of classical convex function into an m-convex

function whose second order derivatives are m-convex functions. The interested researchers can enhance

the H-H type integral inequality for other types of convex functions.
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1. Introduction

The Banach contraction principle [4] is a classical result that ranks among the most commonly used and
cited fixed point theorems. It states that if a self-mapping T on a complete metric space (X ,d) satisfies
the condition

d(T x,Ty)≤ ad(x,y)

for all x,y ∈ X with 0 ≤ a < 1, then T has a unique fixed point x∗ ∈ X . It is well established that the
Banach contraction mapping T is continuous over the entire domain X . Kannan [8] proved that there are
contractive mappings with fixed points that may not be continuous across the entire domain.

Theorem 1.1. [8] Let (X ,d) be a metric space that is complete, and let T : X → X be a self-map. If T
satisfies the Kannan contraction condition

d(T x,Ty)≤ b [d(x,T x)+d(y,Ty)] , 0 ≤ b < 1
2

for all x,y ∈ X then T admits a unique fixed point in X.

Kannan’s contraction mapping is known to be continuous at its fixed point. In [17], Rhoades questioned
whether a contractive condition could be formulated that guarantees the existence of a fixed point without
assuming the continuity of the mapping at that point. This unresolved problem has motivated several
attempts and contributions over time. Using the function m(x,y) = max{d(x,T x),d(y,Ty)}, Pant [16]
found an initial solution in the metric space (X ,d). Later, Bist and Pant [5] proposed another solution to
this open problem.
Erdal Karapinar, a distinguished mathematician, introduced the notion of “interpolative contraction” in
metric spaces in his work [9]. The interpolation approach has proven useful in exploring a wide range of
classical and modern contraction types (see [3], [5], [7], [10], [14] for further details). More recently, Tas
[19] addressed Rhoades’ discontinuity problem by presenting a novel solution involving the existence of a
fixed point for a self-map that is not continuous at that point. This was achieved by adapting the concepts
of interpolative Boyd-Wong contractions and interpolative Matkowski-type contractions as follows:
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Theorem 1.2. [19] Let (X ,d) be a completeametricaspace. Let T : X → X be a self-map such that for
all x,y ∈ X and ε > 0, there exists δ (ε)> 0 such that

ε ≤ n(x,y)< ε +δ (ε) =⇒ d(T x,Ty)< ε.

If T is k− continuous then T has a unique fixed point say z. Moreover, T is continuous at z if and only if

lim
x→z

n(x,z) = 0,

where

n(x,y) = [d(x,y)]β [d(x,T x)]α [d(y,Ty)]γ
[

d(x,Ty)+d(y,T x)
2

]1−α−β−γ

and α,β ,γ ∈ (0,1) with α +β + γ < 1.

Matthews [12] introduced partial metric spaces as a tool for investigating the denotational semantics
of data flow networks and extended the classical Banach contraction principle to this more general
setting of complete partial metric spaces. Subsequently, Karapinar, Alqahtani, and Aydi [11] explored a
Hardy-Rogers type interpolative contraction and established a fixed point theorem within the framework
of complete partial metric spaces.
In this work, we propose a revised form of the interpolative Boyd-Wong contraction and the Matkowski-
type contraction, building upon the findings of and extending them within the setting of partial metric
spaces.

2. Preliminaries

Consider a nonempty set X . The notations R, R+, and N stand for the set of real numbers, the set of
positive real numbers, and the set of natural numbers, respectively. In [12], Matthews introduced the
definition of a partial metric as follows:

Definition 2.1 ([12]). A partial metric on a nonempty set X is a function p : X ×X → [0,∞) that satisfies
the following conditions for all x,y,z ∈ X :

(P1) p(x,x) = p(y,y) = p(x,y) if and only if x = y;

(P2) 0 ≤ p(x,x)≤ p(x,y);

(P3) p(x,y) = p(y,x);

(P4) p(x,y)≤ p(x,z)+ p(z,y)− p(z,z).

A partial metric space is a pair (X , p) such that X is a nonempty set and p is a partial metric on X . A
partial metric becomes a metric if p(x,x) = 0 for every x ∈ X .

Definition 2.2 ([12]). Let (X , p) be a partial metric space, a point x0 ∈ X and ε > 0. The open ball for a
partial metric p is set of the form

Bε(x0) = {x ∈ X : p(x0,x)< p(x0,x0)+ ε}.
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In contrast to metric spaces, some open balls may be empty in partial metric spaces. For each partial
metric p on X , a topology τp is induced on X , where the family of open p-balls

{Bε(x) : x ∈ X ,ε > 0}

forms a basis. These open p-balls are defined by

Bε(x) = {y ∈ X : p(x,y)< p(x,x)+ ε}

for all x ∈ X and ε > 0. If p is a partial metric on X , then the function dp : X ×X → [0,∞) defined by

dp(x,y) = 2p(x,y)− p(x,x)− p(y,y)

is a metric on X .

Definition 2.3 ([12]). Let (X , p) be a partial metric space and {xn} be a sequence in X .

(i) {xn} converges to a point x ∈ X if p(x,x) = lim
n→∞

p(x,xn).

(ii) {xn} is called a Cauchy if and only if lim
n,m→∞

p(xn,xm) exists.

(ii) A partial metric space (X , p) is said to be complete if every Cauchy sequence {xn} in X converges,
with respect to τp, to a point x ∈ X , such that

p(x,x) = lim
n,m→∞

p(xn,xm) = lim
n→∞

p(xn,x).

Lemma 2.4 ([12]). Let (X , p) be partial metric space and {xn} be a sequence in X. Then

(i) {xn} is a Cauchy in (X , p) if and only if it is Cauchy in (X ,dp).

(ii) (X , p) is complete if and only if (X ,dp) is complete.

(iii) lim
n→∞

dp(xn,x) = 0 if and only if p(x,x) = lim
n,m→∞

p(xn,xm) = lim
n→∞

p(xn,x).

3. Main Results

In the following sequel, we denote

A(x,y) = [p(x,y)]β a[p(x,T x)]α [p(y,Ty)]γa
[

p(x,Ty)+ p(y,T x)
2

]1−α−β−γ

where α,β ,γ ∈ (0,1) with α +β + γ < 1.

Theorem 3.1. Let (X , p) be a complete partial metric space. Let T : X → X be a self-map.
For a given ε > 0, there exists δ (ε)> 0 such that

ε ≤ A(x,y)< ε +δ (ε) =⇒ p(T x,Ty)< ε

for all x,y ∈ X. Then the sequence {T nx} is a Cauchy sequence and lim
n→∞

p(T nx,z) = p(z,z) for some
z ∈ X.
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Proof. Suppose A(x,y)> 0. Then

p(T x,Ty)a < εa ≤ aA(x,y)a =⇒ p(T x,Ty)a < aA(x,y). (1)

Let x0 ∈ X . Define a sequence {xn} in X by

xn+1 = T xn = T nx0

and
qn = p(xn,xn+1)

for all n ∈ N∪{0}. Suppose xn ̸= xn+1 for each n. Then by inequality (1), we have

qn = p(xn,xn+1) =p(T xn−1,T xn)

< A(xn−1,xn)

=[p(xn−1,xn)]
β [p(xn−1,T xn−1)]

α [p(xn,T xn)]
γ

[
p(xn−1,T xn)+ p(xn,T xn−1)

2

]1−α−β−γ

= [p(xn−1,xn)]
β [p(xn−1,xn)]

α [p(xn,xn+1)]
γ

[
p(xn−1,xn+1)+ p(xn,xn)

2

]1−α−β−γ

≤ [p(xn−1,xn)]
β+α [p(xn,xn+1)]

γ

[
p(xn−1,xn)+ p(xn,xn+1)

2

]1−α−β−γ

= qα+β

n−1 qγ
n

[
qn−1 +qn

2

]1−α−β−γ

.

Therefore,

qn < qα+β

n−1 qγ
na

[
qn−1 +qn

2

]1−α−β−γ

. (2)

Again, suppose qn−1 < qn for some n ∈ N. Then we have

qn−1 + qn

2
< aqn.

From inequality (2) we get

qn < [qn−1]
α+β [qn]

γ [qn]
1−α−β−γ

=⇒ qn < [qn−1]
α+β [qn]

1−α−β

=⇒ qα+β
n < qα+β

n−1

=⇒ qn < qn−1

which is a contradiction of our assumption. Therefore, qn ≤ qn−1 for all n ∈N. We come to the conclusion
that the s {qn−1} is decreasing and contains real numbers that are not negative. Therefore, a non-negative
constant q exists such that lim

n→∞
qn−1 = q. Since qn ≤ qn−1, so

qn−1 +qn

2
≤ qn−1

for all n ≥ 1. Using the inequality (2) we have

qn <a[qn−1]
α+β a[qn]

γa[qn−1]
1−α−β−γ

=⇒ qn <aa[qn−1]
1−γ [qn]

γ

=⇒ qn <aqn−1

∴ lim
n→∞

qn = q <a lim
n→∞

qn−1 = q.
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which is contradiction. Hence, q = 0.
i.e.,

lim
n→∞

qn = lim
n→∞

p(xn,xn+1) = 0.

Now, we show that {xn} is a Cauchy sequence in (X , p). If possible suppose {xn} isanotaCauchy sequence.
As a result,a one can find a positive constant ε > 0 and two sub-sequences {xmk} anda {xnk} ofa {xn}
such that

mk > nk > k and ap(xmk ,xnk)≥ ε (3)

Choosing the smallest mk satisfying (3). So, p(xnk ,xmk−1)a < ε . Consider any k ∈ N. Then,

ε ≤ p(xmk ,xnk)a ≤ap(xmk ,xmk−1)+ap(xmk−1,xnk)− p(xmk−1, xmk−1)

≤ap(xmk ,xmk−1)+ p(xmk−1,xnk)

<aε + p(xmk ,xmk−1).

Therefore,
ε ≤ ap(xmk ,xnk)< ε + p(xmk ,xmk−1). (4)

Taking limit k → ∞ in (4)

ε ≤ a lim
k→∞

p(xmk ,xnk)<aε +a lim
k→∞

p(xmk ,xmk−1)

⇒ ε ≤ lim
k→∞

p(xmk ,xnk)<aε

⇒ a lim
k→∞

p(xmk ,xnk) =aε.

Using (P4) and above relation we have lim
k→∞

p(xmk+1 ,xnk+1) = ε . Again, we have

p(xnk+1,xmk+1) = ap(T xnk ,T xmk)

< aA(xnk ,xmk)

= a[p(xnk ,xmk)]
β [p(xnk ,T xnk)]

α [p(xmk ,T xmk)]
γ

[
p(xnk ,T xmk)+ p(xmk ,T xnk)

2

]1−α−β−γ

= a[p(xnk ,xmk)]
β [p(xnk ,xnk+1)]

α [p(xmk ,xmk+1)]
γ

[
p(xnk ,xmk+1)+ p(xmk ,xnk+1)

2

]1−α−β−γ

⇒ lim
n→∞

p(xnk+1,xmk+1)< a0

which contradicts the assumption. Therefore {xn} is a Cauchy sequence in the complete partial metric space (X , p).
Hence, lim

n→∞
p(T nx,z) = p(z,z) for some z ∈ X .

Definition 3.2. Let (X , p) be a partial metric space . A self-map T : X → X is called k−continuous,
k = 1,2,3, · · · , if lim

n→∞
p(T kxn,x) = p(T x,T x) whenever {xn} is a sequence in X such that

lim
n→∞

p(T k−1xn,x) = p(x,x).

It was established in [15] that for k > 1, the notions of continuity of T k and k-continuity of T are not
dependent on each other within metric spaces. This conclusion is also applicable within the framework of
partial metric spaces. Clearly, 1-continuity is just another way of stating continuity. Furthermore, there
exists a one-way chain of implications:

continuity ⇒ 2-continuity ⇒ 3-continuity ⇒ ··· ,

though the reverse implications do not generally hold.
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Theorem 3.3. Let (X , p) be a complete partial metric space. Let T : X → X be a self-map such that for
all x,y ∈ X and ε > 0, there exists δ (ε)> 0 such that

ε ≤ A(x,y)< ε +δ (ε) =⇒ p(T x,Ty)< ε. (5)

aIf T is k-continuous, then it admits a fixed point z. Moreover,aT is continuous at z if and only ifa

lim
x→z

A(x,z) = p(z,z).

Proof. Let x0 ∈ X , and construct a Picard sequence {xn} in X by setting

xn+1 = T xn = T nx0.

According to Theorem 3.1, the sequence {xn} is Cauchy. As (X , p) is a complete metric space, there
exists a point z ∈ X satisfying

lim
n→∞

p(xn,z) = p(z,z).

i.e.,
lim
n→∞

p(T nx,z) = p(z,z).

Since T is k−continuous then

lim
n→∞

p(T k−1xn,z) = p(z,z)⇒ lim
n→∞

p(T kxn,T z) = p(T z,T z).

Therefore,
p(z,z) = p(T z,T z).

So by (P1) T z = z. Consequently, z is a point that remains fixed under T .
Assume that T is continuous at the fixed point z. and lim

n→∞
p(xn,z) = p(z,z). Then

lim
n→∞

p(T xn,T z) = p(T z,T z) = p(z,z).

Hence

lim
x→z

A(x,z) = lim
x→z

[
[p(x,z)]β [p(x,T x)]α [p(z,T z)]γ

(
p(x,T z)+ p(z,T x)

2

)1−α−β−γ
]

=[p(z,z)]β [p(z,T z)]α [p(z,T z)]γ
(

p(z,T z)+ p(z,T z)
2

)1−α−β−γ

=p(z,z).

Conversely, suppose lim
x→z

A(x,z) = p(z,z). Let lim
n→∞

p(xn,z) = p(z,z). Then

“ lim
x→z

A(x,z) = p(z,z)

⇒ lim
x→z

[
[p(x,z)]β [p(x,T x)]α [p(z,T z)]γ

(
p(x,T z)+ p(z,T x)

2

)1−α−β−γ
]
= p(z,z)

⇒ [p(z,z)]β lim
x→z

[p(x,T x)]α [p(z,z)]γ
(

p(z,z)+ p(z,z)
2

)1−α−β−γ

= p(z,z)

⇒ [p(z,z)]1−α lim
x→z

[p(x,T x)]α = p(z,z)

⇒ lim
x→z

[p(x,T x)]α = [p(z,z)]α

⇒ lim
x→z

[p(x,T x)] = [p(z,z)]

⇒ lim
x→z

[p(T x,T z)] = p(T z,T z).

Hence T is continuous.
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Definition 3.4. [1] Let Ψ be the class of all functions φ : [0,∞) → [0,∞) that satisfy the following
requirements:

(i) φ is non-decreasing; that is, for any α1 < α2, we have φ(α1)≤ φ(α2);

(ii) φ is continuous;

(iii) For every α > 0, the series ∑
∞
n=1 φ n(α) converges.

Corollary 3.5. Let (X , p) be a complete partial metric space, and let T : X → X be a self-map such that
for all x,y ∈ X, the following conditions are satisfied:

(i) ∀ ε > 0, ∃ δ (ε)> 0 : ε ≤ A(x,y)< ε +δ (ε)⇒ p(T x,Ty)< ε .

(ii) p(T x,Ty)≤ φ(A(x,y)), where φ ∈ Ψ.

If T is k-continuous, then T possesses a fixed point z. Furthermore, T is continuous at z iff

lim
x→z

A(x,z) = p(z,z).

3.1. Fixed- Disc Results

Definition 3.6. Let (X , p) be a partial metric space, and let T : X → X be a self-mapping. The set

Cx0,r = {x ∈ X : p(x,x0) = r+ p(x0,x0)}

is referred to as a circle centered at x0 with radius r. If every point x in Cx0,r satisfies T x = x, then Cx0,r is
known as fixed circle of the mapping T .

Definition 3.7. Let (X , p) be a partial metric space, and let T : X → X be a self-mapping. The set

Dx0,r = a{x ∈ X : p(x,x0)≤ r+ p(x0,x0)}

a is termed a disk centered at x0 with radius r. If T x = x holds for every x ∈ Dx0,r, then Dx0,r is called a
fixed disk under the mapping T .

Theorem 3.8. Let (X , p) be a complete partial metric space, and let T : X → X be a self-mapping. Define
the number r by

r = inf{p(x,T x) : x /∈ FT}. (6)

Suppose there exists a point x0 ∈ X such that for every x ∈ X \FT ,

p(x,T x)< A(x,x0) (7)

and
0 < p(x0,T x)≤ r+ p(x0,x0), (8)

Then the following conclusions hold:

(i) x0 is a fixed point of T .

(ii) The mapping T fixes the disc Dx0,r.

(iii) The mapping T fixes the circle Cx0,r.
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Proof. (i) Let x0 ∈ X \FT . Afterward,

p(x0,T x0)< A(x0,x0) =[p(x0,x0)]
β [p(x0,T x0)]

α [p(x0,T x0)]
γ

(
p(x0,T x0)+ p(x0,T x0)

2

)1−α−β−γ

=[p(x0,x0)]
β [p(x0,T x0)]

α [p(x0,T x0)]
γ [p(x0,T x0)]

1−α−β−γ

=[p(x0,x0)]
β [p(x0,T x0)]

1−β

=⇒ [p(x0,T x0)]
β <[p(x0,x0)]

β

=⇒ p(x0,T x0)<p(x0,x0)

which contradicts (P2). Hence x0 ∈ FT .

(ii) Suppose x ∈ Dx0,r and x ∈ X \FT . Then

p(x,x0)≤ r+ p(x0,x0).

Using part (i), we have

p(x,T x)< A(x,x0) =[p(x,x0)]
β [p(x,T x)]α [p(x0,T x0)]

γ

(
p(x,T x0)+ p(x0,T x)

2

)1−α−β−γ

=[p(x,x0)]
β [p(x,T x)]α [p(x0,x0)]

γ

(
p(x,x0)+ p(x0,T x)

2

)1−α−β−γ

≤[r+ p(x0,x0)]
β [p(x,T x)]α [r+ p(x0,x0)]

γ [r+ p(x0,x0)]
1−α−β−γ

=[r+ p(x0,x0)]
1−α [p(x,T x)]α

≤[p(x,T x)]

awhich is contradiction.aSo x = T x. Hence T fixes the disc.
(iii) Similar to (ii).

Theorem 3.9. Let (X , p) be a complete partial metric space, and let T : X → X be a self-mapping. Define
the number r by

r = a inf{p(x,T x) : x /∈ FT},a (9)

where FT denotesathe set of fixed points ofaT . Assume that there exists a point x0 ∈ X such that, for every
x ∈ X \FT , the following conditions are met:

p(x,T x)< φ(A(x,x0)), (10)

0 < p(x0,T x)≤ r+ p(x0,x0). (11)

Under these conditions, the following conclusions can be drawn:

(i) x0 is a fixed point of the mapping T ;

(ii) The disc Dx0,r is invariant under T ;

(iii) The circle Cx0,r is also invariant under T .

Proof. Similar technique of Theorem 3.8.
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4. Conclusions

In conclusion, this work offers a new perspective on Rhoade’s discontinuity problem by introducing a
self-mapping with a fixed point that is discontinuous at theafixed point within a partial metric space.
We have derived a few geometric properties of FT under interpolative-type contraction, along with key
findings related to fixed-disc and fixed-circle results. These contributions enhance our understanding of
fixed point theory in spaces where discontinuities are present.
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