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Abstract: This paper proposes a novel technique for solving Rhodes’ discontinuity problem by exploiting
the features of a self-mapping that has a fixed point but is not continuous at that point within a partial
metric space. Moreover, we investigate some geometric properties of FT under interpolative-type contrac-
tions and establish a few results related to fixed-discs and fixed-circles.
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1. Introduction

The Banach contraction principle [4] is a classical result that ranks among the most commonly used and
cited fixed point theorems. It states that if a self-mapping T on a complete metric space (X ,d) satisfies
the condition

d(T x,Ty)≤ ad(x,y)

for all x,y ∈ X with 0 ≤ a < 1, then T has a unique fixed point x∗ ∈ X . It is well established that the
Banach contraction mapping T is continuous over the entire domain X . Kannan [8] proved that there are
contractive mappings with fixed points that may not be continuous across the entire domain.

Theorem 1.1. [8] Let (X ,d) be a metric space that is complete, and let T : X → X be a self-map. If T
satisfies the Kannan contraction condition

d(T x,Ty)≤ b [d(x,T x)+d(y,Ty)] , 0 ≤ b < 1
2

for all x,y ∈ X then T admits a unique fixed point in X.

Kannan’s contraction mapping is known to be continuous at its fixed point. In [17], Rhoades questioned
whether a contractive condition could be formulated that guarantees the existence of a fixed point without
assuming the continuity of the mapping at that point. This unresolved problem has motivated several
attempts and contributions over time. Using the function m(x,y) = max{d(x,T x),d(y,Ty)}, Pant [16]
found an initial solution in the metric space (X ,d). Later, Bist and Pant [5] proposed another solution to
this open problem.
Erdal Karapinar, a distinguished mathematician, introduced the notion of “interpolative contraction” in
metric spaces in his work [9]. The interpolation approach has proven useful in exploring a wide range of
classical and modern contraction types (see [3], [5], [7], [10], [14] for further details). More recently, Tas
[19] addressed Rhoades’ discontinuity problem by presenting a novel solution involving the existence of a
fixed point for a self-map that is not continuous at that point. This was achieved by adapting the concepts
of interpolative Boyd-Wong contractions and interpolative Matkowski-type contractions as follows:
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Theorem 1.2. [19] Let (X ,d) be a completeametricaspace. Let T : X → X be a self-map such that for
all x,y ∈ X and ε > 0, there exists δ (ε)> 0 such that

ε ≤ n(x,y)< ε +δ (ε) =⇒ d(T x,Ty)< ε.

If T is k− continuous then T has a unique fixed point say z. Moreover, T is continuous at z if and only if

lim
x→z

n(x,z) = 0,

where

n(x,y) = [d(x,y)]β [d(x,T x)]α [d(y,Ty)]γ
[

d(x,Ty)+d(y,T x)
2

]1−α−β−γ

and α,β ,γ ∈ (0,1) with α +β + γ < 1.

Matthews [12] introduced partial metric spaces as a tool for investigating the denotational semantics
of data flow networks and extended the classical Banach contraction principle to this more general
setting of complete partial metric spaces. Subsequently, Karapinar, Alqahtani, and Aydi [11] explored a
Hardy-Rogers type interpolative contraction and established a fixed point theorem within the framework
of complete partial metric spaces.
In this work, we propose a revised form of the interpolative Boyd-Wong contraction and the Matkowski-
type contraction, building upon the findings of and extending them within the setting of partial metric
spaces.

2. Preliminaries

Consider a nonempty set X . The notations R, R+, and N stand for the set of real numbers, the set of
positive real numbers, and the set of natural numbers, respectively. In [12], Matthews introduced the
definition of a partial metric as follows:

Definition 2.1 ([12]). A partial metric on a nonempty set X is a function p : X ×X → [0,∞) that satisfies
the following conditions for all x,y,z ∈ X :

(P1) p(x,x) = p(y,y) = p(x,y) if and only if x = y;

(P2) 0 ≤ p(x,x)≤ p(x,y);

(P3) p(x,y) = p(y,x);

(P4) p(x,y)≤ p(x,z)+ p(z,y)− p(z,z).

A partial metric space is a pair (X , p) such that X is a nonempty set and p is a partial metric on X . A
partial metric becomes a metric if p(x,x) = 0 for every x ∈ X .

Definition 2.2 ([12]). Let (X , p) be a partial metric space, a point x0 ∈ X and ε > 0. The open ball for a
partial metric p is set of the form

Bε(x0) = {x ∈ X : p(x0,x)< p(x0,x0)+ ε}.
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In contrast to metric spaces, some open balls may be empty in partial metric spaces. For each partial
metric p on X , a topology τp is induced on X , where the family of open p-balls

{Bε(x) : x ∈ X ,ε > 0}

forms a basis. These open p-balls are defined by

Bε(x) = {y ∈ X : p(x,y)< p(x,x)+ ε}

for all x ∈ X and ε > 0. If p is a partial metric on X , then the function dp : X ×X → [0,∞) defined by

dp(x,y) = 2p(x,y)− p(x,x)− p(y,y)

is a metric on X .

Definition 2.3 ([12]). Let (X , p) be a partial metric space and {xn} be a sequence in X .

(i) {xn} converges to a point x ∈ X if p(x,x) = lim
n→∞

p(x,xn).

(ii) {xn} is called a Cauchy if and only if lim
n,m→∞

p(xn,xm) exists.

(ii) A partial metric space (X , p) is said to be complete if every Cauchy sequence {xn} in X converges,
with respect to τp, to a point x ∈ X , such that

p(x,x) = lim
n,m→∞

p(xn,xm) = lim
n→∞

p(xn,x).

Lemma 2.4 ([12]). Let (X , p) be partial metric space and {xn} be a sequence in X. Then

(i) {xn} is a Cauchy in (X , p) if and only if it is Cauchy in (X ,dp).

(ii) (X , p) is complete if and only if (X ,dp) is complete.

(iii) lim
n→∞

dp(xn,x) = 0 if and only if p(x,x) = lim
n,m→∞

p(xn,xm) = lim
n→∞

p(xn,x).

3. Main Results

In the following sequel, we denote

A(x,y) = [p(x,y)]β a[p(x,T x)]α [p(y,Ty)]γa
[

p(x,Ty)+ p(y,T x)
2

]1−α−β−γ

where α,β ,γ ∈ (0,1) with α +β + γ < 1.

Theorem 3.1. Let (X , p) be a complete partial metric space. Let T : X → X be a self-map.
For a given ε > 0, there exists δ (ε)> 0 such that

ε ≤ A(x,y)< ε +δ (ε) =⇒ p(T x,Ty)< ε

for all x,y ∈ X. Then the sequence {T nx} is a Cauchy sequence and lim
n→∞

p(T nx,z) = p(z,z) for some
z ∈ X.
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Proof. Suppose A(x,y)> 0. Then

p(T x,Ty)a < εa ≤ aA(x,y)a =⇒ p(T x,Ty)a < aA(x,y). (1)

Let x0 ∈ X . Define a sequence {xn} in X by

xn+1 = T xn = T nx0

and
qn = p(xn,xn+1)

for all n ∈ N∪{0}. Suppose xn ̸= xn+1 for each n. Then by inequality (1), we have

qn = p(xn,xn+1) =p(T xn−1,T xn)

< A(xn−1,xn)

=[p(xn−1,xn)]
β [p(xn−1,T xn−1)]

α [p(xn,T xn)]
γ

[
p(xn−1,T xn)+ p(xn,T xn−1)

2

]1−α−β−γ

= [p(xn−1,xn)]
β [p(xn−1,xn)]

α [p(xn,xn+1)]
γ

[
p(xn−1,xn+1)+ p(xn,xn)

2

]1−α−β−γ

≤ [p(xn−1,xn)]
β+α [p(xn,xn+1)]

γ

[
p(xn−1,xn)+ p(xn,xn+1)

2

]1−α−β−γ

= qα+β

n−1 qγ
n

[
qn−1 +qn

2

]1−α−β−γ

.

Therefore,

qn < qα+β

n−1 qγ
na

[
qn−1 +qn

2

]1−α−β−γ

. (2)

Again, suppose qn−1 < qn for some n ∈ N. Then we have

qn−1 + qn

2
< aqn.

From inequality (2) we get

qn < [qn−1]
α+β [qn]

γ [qn]
1−α−β−γ

=⇒ qn < [qn−1]
α+β [qn]

1−α−β

=⇒ qα+β
n < qα+β

n−1

=⇒ qn < qn−1

which is a contradiction of our assumption. Therefore, qn ≤ qn−1 for all n ∈N. We come to the conclusion
that the s {qn−1} is decreasing and contains real numbers that are not negative. Therefore, a non-negative
constant q exists such that lim

n→∞
qn−1 = q. Since qn ≤ qn−1, so

qn−1 +qn

2
≤ qn−1

for all n ≥ 1. Using the inequality (2) we have

qn <a[qn−1]
α+β a[qn]

γa[qn−1]
1−α−β−γ

=⇒ qn <aa[qn−1]
1−γ [qn]

γ

=⇒ qn <aqn−1

∴ lim
n→∞

qn = q <a lim
n→∞

qn−1 = q.
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which is contradiction. Hence, q = 0.
i.e.,

lim
n→∞

qn = lim
n→∞

p(xn,xn+1) = 0.

Now, we show that {xn} is a Cauchy sequence in (X , p). If possible suppose {xn} isanotaCauchy sequence.
As a result,a one can find a positive constant ε > 0 and two sub-sequences {xmk} anda {xnk} ofa {xn}
such that

mk > nk > k and ap(xmk ,xnk)≥ ε (3)

Choosing the smallest mk satisfying (3). So, p(xnk ,xmk−1)a < ε . Consider any k ∈ N. Then,

ε ≤ p(xmk ,xnk)a ≤ap(xmk ,xmk−1)+ap(xmk−1,xnk)− p(xmk−1, xmk−1)

≤ap(xmk ,xmk−1)+ p(xmk−1,xnk)

<aε + p(xmk ,xmk−1).

Therefore,
ε ≤ ap(xmk ,xnk)< ε + p(xmk ,xmk−1). (4)

Taking limit k → ∞ in (4)

ε ≤ a lim
k→∞

p(xmk ,xnk)<aε +a lim
k→∞

p(xmk ,xmk−1)

⇒ ε ≤ lim
k→∞

p(xmk ,xnk)<aε

⇒ a lim
k→∞

p(xmk ,xnk) =aε.

Using (P4) and above relation we have lim
k→∞

p(xmk+1 ,xnk+1) = ε . Again, we have

p(xnk+1,xmk+1) = ap(T xnk ,T xmk)

< aA(xnk ,xmk)

= a[p(xnk ,xmk)]
β [p(xnk ,T xnk)]

α [p(xmk ,T xmk)]
γ

[
p(xnk ,T xmk)+ p(xmk ,T xnk)

2

]1−α−β−γ

= a[p(xnk ,xmk)]
β [p(xnk ,xnk+1)]

α [p(xmk ,xmk+1)]
γ

[
p(xnk ,xmk+1)+ p(xmk ,xnk+1)

2

]1−α−β−γ

⇒ lim
n→∞

p(xnk+1,xmk+1)< a0

which contradicts the assumption. Therefore {xn} is a Cauchy sequence in the complete partial metric space (X , p).
Hence, lim

n→∞
p(T nx,z) = p(z,z) for some z ∈ X .

Definition 3.2. Let (X , p) be a partial metric space . A self-map T : X → X is called k−continuous,
k = 1,2,3, · · · , if lim

n→∞
p(T kxn,x) = p(T x,T x) whenever {xn} is a sequence in X such that

lim
n→∞

p(T k−1xn,x) = p(x,x).

It was established in [15] that for k > 1, the notions of continuity of T k and k-continuity of T are not
dependent on each other within metric spaces. This conclusion is also applicable within the framework of
partial metric spaces. Clearly, 1-continuity is just another way of stating continuity. Furthermore, there
exists a one-way chain of implications:

continuity ⇒ 2-continuity ⇒ 3-continuity ⇒ ··· ,

though the reverse implications do not generally hold.
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Theorem 3.3. Let (X , p) be a complete partial metric space. Let T : X → X be a self-map such that for
all x,y ∈ X and ε > 0, there exists δ (ε)> 0 such that

ε ≤ A(x,y)< ε +δ (ε) =⇒ p(T x,Ty)< ε. (5)

aIf T is k-continuous, then it admits a fixed point z. Moreover,aT is continuous at z if and only ifa

lim
x→z

A(x,z) = p(z,z).

Proof. Let x0 ∈ X , and construct a Picard sequence {xn} in X by setting

xn+1 = T xn = T nx0.

According to Theorem 3.1, the sequence {xn} is Cauchy. As (X , p) is a complete metric space, there
exists a point z ∈ X satisfying

lim
n→∞

p(xn,z) = p(z,z).

i.e.,
lim
n→∞

p(T nx,z) = p(z,z).

Since T is k−continuous then

lim
n→∞

p(T k−1xn,z) = p(z,z)⇒ lim
n→∞

p(T kxn,T z) = p(T z,T z).

Therefore,
p(z,z) = p(T z,T z).

So by (P1) T z = z. Consequently, z is a point that remains fixed under T .
Assume that T is continuous at the fixed point z. and lim

n→∞
p(xn,z) = p(z,z). Then

lim
n→∞

p(T xn,T z) = p(T z,T z) = p(z,z).

Hence

lim
x→z

A(x,z) = lim
x→z

[
[p(x,z)]β [p(x,T x)]α [p(z,T z)]γ

(
p(x,T z)+ p(z,T x)

2

)1−α−β−γ
]

=[p(z,z)]β [p(z,T z)]α [p(z,T z)]γ
(

p(z,T z)+ p(z,T z)
2

)1−α−β−γ

=p(z,z).

Conversely, suppose lim
x→z

A(x,z) = p(z,z). Let lim
n→∞

p(xn,z) = p(z,z). Then

“ lim
x→z

A(x,z) = p(z,z)

⇒ lim
x→z

[
[p(x,z)]β [p(x,T x)]α [p(z,T z)]γ

(
p(x,T z)+ p(z,T x)

2

)1−α−β−γ
]
= p(z,z)

⇒ [p(z,z)]β lim
x→z

[p(x,T x)]α [p(z,z)]γ
(

p(z,z)+ p(z,z)
2

)1−α−β−γ

= p(z,z)

⇒ [p(z,z)]1−α lim
x→z

[p(x,T x)]α = p(z,z)

⇒ lim
x→z

[p(x,T x)]α = [p(z,z)]α

⇒ lim
x→z

[p(x,T x)] = [p(z,z)]

⇒ lim
x→z

[p(T x,T z)] = p(T z,T z).

Hence T is continuous.
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Definition 3.4. [1] Let Ψ be the class of all functions φ : [0,∞) → [0,∞) that satisfy the following
requirements:

(i) φ is non-decreasing; that is, for any α1 < α2, we have φ(α1)≤ φ(α2);

(ii) φ is continuous;

(iii) For every α > 0, the series ∑
∞
n=1 φ n(α) converges.

Corollary 3.5. Let (X , p) be a complete partial metric space, and let T : X → X be a self-map such that
for all x,y ∈ X, the following conditions are satisfied:

(i) ∀ ε > 0, ∃ δ (ε)> 0 : ε ≤ A(x,y)< ε +δ (ε)⇒ p(T x,Ty)< ε .

(ii) p(T x,Ty)≤ φ(A(x,y)), where φ ∈ Ψ.

If T is k-continuous, then T possesses a fixed point z. Furthermore, T is continuous at z iff

lim
x→z

A(x,z) = p(z,z).

3.1. Fixed- Disc Results

Definition 3.6. Let (X , p) be a partial metric space, and let T : X → X be a self-mapping. The set

Cx0,r = {x ∈ X : p(x,x0) = r+ p(x0,x0)}

is referred to as a circle centered at x0 with radius r. If every point x in Cx0,r satisfies T x = x, then Cx0,r is
known as fixed circle of the mapping T .

Definition 3.7. Let (X , p) be a partial metric space, and let T : X → X be a self-mapping. The set

Dx0,r = a{x ∈ X : p(x,x0)≤ r+ p(x0,x0)}

a is termed a disk centered at x0 with radius r. If T x = x holds for every x ∈ Dx0,r, then Dx0,r is called a
fixed disk under the mapping T .

Theorem 3.8. Let (X , p) be a complete partial metric space, and let T : X → X be a self-mapping. Define
the number r by

r = inf{p(x,T x) : x /∈ FT}. (6)

Suppose there exists a point x0 ∈ X such that for every x ∈ X \FT ,

p(x,T x)< A(x,x0) (7)

and
0 < p(x0,T x)≤ r+ p(x0,x0), (8)

Then the following conclusions hold:

(i) x0 is a fixed point of T .

(ii) The mapping T fixes the disc Dx0,r.

(iii) The mapping T fixes the circle Cx0,r.
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Proof. (i) Let x0 ∈ X \FT . Afterward,

p(x0,T x0)< A(x0,x0) =[p(x0,x0)]
β [p(x0,T x0)]

α [p(x0,T x0)]
γ

(
p(x0,T x0)+ p(x0,T x0)

2

)1−α−β−γ

=[p(x0,x0)]
β [p(x0,T x0)]

α [p(x0,T x0)]
γ [p(x0,T x0)]

1−α−β−γ

=[p(x0,x0)]
β [p(x0,T x0)]

1−β

=⇒ [p(x0,T x0)]
β <[p(x0,x0)]

β

=⇒ p(x0,T x0)<p(x0,x0)

which contradicts (P2). Hence x0 ∈ FT .

(ii) Suppose x ∈ Dx0,r and x ∈ X \FT . Then

p(x,x0)≤ r+ p(x0,x0).

Using part (i), we have

p(x,T x)< A(x,x0) =[p(x,x0)]
β [p(x,T x)]α [p(x0,T x0)]

γ

(
p(x,T x0)+ p(x0,T x)

2

)1−α−β−γ

=[p(x,x0)]
β [p(x,T x)]α [p(x0,x0)]

γ

(
p(x,x0)+ p(x0,T x)

2

)1−α−β−γ

≤[r+ p(x0,x0)]
β [p(x,T x)]α [r+ p(x0,x0)]

γ [r+ p(x0,x0)]
1−α−β−γ

=[r+ p(x0,x0)]
1−α [p(x,T x)]α

≤[p(x,T x)]

awhich is contradiction.aSo x = T x. Hence T fixes the disc.
(iii) Similar to (ii).

Theorem 3.9. Let (X , p) be a complete partial metric space, and let T : X → X be a self-mapping. Define
the number r by

r = a inf{p(x,T x) : x /∈ FT},a (9)

where FT denotesathe set of fixed points ofaT . Assume that there exists a point x0 ∈ X such that, for every
x ∈ X \FT , the following conditions are met:

p(x,T x)< φ(A(x,x0)), (10)

0 < p(x0,T x)≤ r+ p(x0,x0). (11)

Under these conditions, the following conclusions can be drawn:

(i) x0 is a fixed point of the mapping T ;

(ii) The disc Dx0,r is invariant under T ;

(iii) The circle Cx0,r is also invariant under T .

Proof. Similar technique of Theorem 3.8.

58



Nepal Journal of Mathematical Sciences (NJMS), Vol. 6, No. 1, 2025 (February): 51–60

4. Conclusions

In conclusion, this work offers a new perspective on Rhoade’s discontinuity problem by introducing a
self-mapping with a fixed point that is discontinuous at theafixed point within a partial metric space.
We have derived a few geometric properties of FT under interpolative-type contraction, along with key
findings related to fixed-disc and fixed-circle results. These contributions enhance our understanding of
fixed point theory in spaces where discontinuities are present.
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the Branciari distance. Mathematics, 7(1): 1–7.

[4] Banach, S. (1922). Sur les opérations dans les ensembles abstraits et leur application aux équations
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