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Abstract: This study presents the Extended Modified Generalized Exponential (EMGE) distribution, 

a novel four-parameter model designed to improve flexibility in modeling diverse hazard rate functions, 

including bathtub-shaped curves. The EMGE model is formulated by introducing an extra shape 

parameter into the Modified Generalized Exponential (MGE) model, improving its capacity to 

represent different failure rate patterns over time. We investigate the suggested distribution's hazard, 

survival, probability density, and reversed hazard functions, among other statistical characteristics. 

The EMGE model's parameters are estimated using three distinct techniques: Cramer-Von-Mises 

Estimation (CVME), Least Squares Estimation (LSE), and Maximum Likelihood Estimation (MLE), 

ensuring accurate and reliable parameter estimation. The performance of the model is tested on real-

world data from COVID-19 patient mortality rates, showing a strong fit to the data. Comparative 

analysis with other established distributions, such as the Odd Lomax Exponential (OLE) and Modified 

Weibull (MW), highlights the superiority of the EMGE model in terms of fit and information criteria 

values. Our results demonstrate the potential of the EMGE distribution for improved modeling in 

reliability analysis and survival data. 

 

Keywords: Exponential distribution, Hazard rate function, Generalized exponential distribution, 

Maximum likelihood function. 

1. Introduction 

Probability models play a crucial role in reliability analysis across diverse fields such as biological 

sciences, applied statistics, and engineering. However, traditional probability models often struggle to 

adequately fit reliability data, prompting researchers to modify these models for better applicability. 

These modifications involve introducing additional parameters into the baseline distribution, creating 

new probability models that provide a closer fit to the data compared to conventional approaches. The 

incorporation of extra parameters enhances the flexibility of these models, enabling them to 

accommodate a broader range of data patterns and capture complex underlying relationships more 

effectively. Such improvements are particularly valuable in reliability analysis, where accurate 

modeling is essential for making predictions, estimating failure rates, and assessing system 

performance. 

These enhanced models have practical applications in various domains, including survival analysis, risk 
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assessment, and quality control. For instance, in biological sciences, they are used to model organism 

lifespans or the time until disease onset, while in engineering, they help predict the reliability of 

components under different operating conditions. Achieving a better fit to real-world data reduces errors 

and provides more reliable insights for informed decision-making. Researchers often validate the 

models through simulation studies and real-world data applications, ensuring their theoretical soundness 

and computational efficiency. These advancements significantly contribute to addressing complex 

challenges in reliability analysis and advancing statistical methodologies. 

 

Generalized Exponential Distribution (GED) proposed by Gupta & Kundu [9], introduces an additional 

parameter to the baseline model, enhancing its ability to represent real-world data. This added parameter 

improves flexibility, enabling the GED to handle varying hazard rates, rather than the constant hazard 

rate assumed by the standard exponential distribution. Chaudhary & Kumar [5] Half Cauchy modified 

Exponential distribution modifying exponential model. Although effective for increasing or decreasing 

hazard rate functions depending on the shape parameter, the GED cannot model complex patterns like 

unimodal or bathtub-shaped hazard functions, leading to further advancements in probability modeling. 

Barreto-Souza et al. [2] developed a new statistical model referred to as the beta generalized exponential 

distribution. Mahmoudi & Jafari [12] recommended Generalized exponential–power series 

distributions, capable of representing hazard rate functions that are increasing, decreasing, or bathtub-

shaped. 

The diversity of these models is further enhanced by the Exponentiated Weibull Inverted Exponential 

Model by Chaudhary et al. [7], and the Half Logistic Exponential Extension Model by Chaudhary & 

Kumar, [4] as well as the Inverse Exponentiated Odd Lomax Exponential Distribution by Chaudhary et 

al. [6]. 

These extended modifications of the exponential distribution have been developed to enhance flexibility 

in modeling various types of data, particularly in reliability analysis, survival studies, and other 

statistical applications. Each modification introduces additional parameters or structural changes to 

better capture different hazard rate behaviors, including increasing, decreasing, bathtub-shaped, and 

unimodal patterns.   

Hazard rate functions (HRFs) in lifetime models often exhibit a bathtub-shaped curve, a trait commonly 

observed in numerous real-world data sets. To address diverse patterns in survival and reliability 

analysis, various adaptations of the Weibull distribution have been developed to improve its flexibility 

and applicability. In literature, we find modifications of the original Weibull distribution to better 

capture complex behaviors in data. 

The following is an expression for the two-parameter Weibull distribution: 

                             ( , , ) exp[ ( , )]F y y    

        

(1) 

The earlier mentioned model does not possess a failure rate function (HRF) with a bathtub shape. To 

overcome this drawback, it has been adapted into various versions that demonstrate a bathtub-shaped 

hazard rate. One such modification involves utilizing the exponentiated Weibull distribution, as 

proposed by Mudholkar & Srivastava [14].  

Moreover, Lai et al. [10] demonstrate how adding certain constraints to the beta-integrated distribution 

facilitates the design of novel lifespan distributions. These constraints further enable the derivation of 

the following novel lifespan distributions. 
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( ) exp[ .exp( )]bF y ay y

        

(2) 

The Modified Generalized Exponential distribution recommended by Telee & Kumar [19] is an 

improved probabilistic model that builds upon the Generalized Exponential distribution. This 

enhancement was made by introducing an additional shape parameter, increasing the model’s flexibility 

and applicability in statistical analysis. The original Generalized Exponential distribution was first 

developed by Gupta & Kundu [8]. 

The cumulative distribution function (CDF) for the Generalized Exponential distribution is given as 

follows: 

( , , ) (1 ) ; 0, 0, 0x

GEDF x e x          

     

(3) 

The Cumulative Distribution Function (or CDF) of the Modified Generalized Exponential (MGE) 

model given by Telee & Kumar [19], is as follows: 

 ( ; , , ) 1 exp ; 0, 0, 0, 0xG x x e x


             
  

        
  (4) 

Probability model introduced in this study, addresses the limitations of existing models by incorporating 

an additional shape parameter. This modification enhances flexibility in modeling diverse hazard rate 

functions, including bathtub-shaped curves. Unlike previous distributions such as the Weibull 

Extension and Modified Weibull, the EMGE model provides a better fit for real-world reliability and 

survival data, as demonstrated in our comparative analysis and empirical application to COVID-19 

mortality rates 

 
Study also introduces a novel probability distribution characterized by its cumulative distribution 

function (CDF) and probability density function (PDF), derived through a unique mathematical 

framework. The proposed model extends traditional distributions by introducing an innovative 

exponentiation mechanism that allows for greater flexibility in modeling skewed and heavy-tailed data.  

This work builds upon existing probability models, particularly the Generalized Exponential and 

Modified Weibull distributions, by introducing a new shape parameter. The EMGE distribution unifies 

and extends existing distributions, making it applicable to a broader range of real-world datasets, 

including those with non-monotonic failure rates. 

2. Extended Modified Generalized Exponential (EMGE)Distribution 

 
The Extended Modified Generalized Exponential Distribution is created by adding an additional shape 

parameter to the Modified Generalized Exponential Distribution's cumulative distribution function (or 

CDF), as created by Telee & Kumar [19] in equation (4). The proposed Extended Modified Generalized 

Exponential (EMGE) model is characterized by its distribution and density functions, which are defined 

as follows: 

( ; , , , ) 1 1 exp ; , , , , 0
xe

F x x
x







       

  
     

    

                     (5) 

 
1

1( ; , , , ) exp 1 exp ; , , , , 0
x x xe e e

f x x x
x x x


  

  

 
          


  


       
         

            

  (6) 
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2.1 Survival Function
 
  

 The reliability function associated with the proposed model is defined in equation (7). 

( ; , , , ) 1 exp ; , , , , 0
xe

S x x
x







       

  
    

    

                    (7) 

2.2 Hazard Rate Function  

Equation (8) provides a mathematical expression for the failure rate function, which represents 

the evolving failure probability over time. 

 
1

1( ) exp 1 exp
x x xe e e

h x x
x x x

  

  

 
  


  


       

        
            

                                      (8) 

2.3 The Reversed hazard function (RHR) 

Equation (9) represents the reversed hazard rate function. 

 
1

1

1( ) exp 1 exp 1 1 exp
x x x xe e e e

RHR x x
x x x x

 
   

   

  
  




   


                            
                       

       (9)  

2.4 Cumulative hazard function (CHF) 

The CHF for the recommended model is shown in equation (10). 

        

                                                                       (10) 

 

      

2.5 The Quantile function  

Equation (11) specifies the quantile function for the EMGE, based on the assumption that u is 

uniformly distributed over the interval [0,1]. 

                        
1/1 ln[1 (1 ) ]

ln
x u

Q u
 

 

   
   

  

                                                                       (11) 

2.6 Skewness and Kurtosis 

The following formula can be used to get the quartile-based coefficient of skewness. 

          
3 1 2

3 1

2 



k

Q Q Q
S

Q Q
                                                                        (12) 

Moors [13] states that the following formula may be used to define the kurtosis coefficient 

based on octiles: 

( ) log[ ( )] log 1 exp
xe

CHF x S x
x
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Figure 1 displays the hazard rate function (HRF) and probability density function (PDF) of the 

suggested model at constant lambda = 3 & theta = 0.5. The PDF demonstrates a unimodal 

distribution with positive skewness, indicating that most values cluster near the center. In 

contrast, the HRF has an inverted bathtub shape and an increasing pattern, suggesting a variety 

of risk patterns over time. 

 

Figure 1: Density function (left) and hazard function (right) for lambda = 3 & theta = 0.5 

 

3. Estimation Methods 

 

MLE, LSE, and CVM methods are three well-known techniques used to estimate the 

parameters of the suggested EMGE model. 

Maximum Likelihood Estimation (MLE) 

 A common statistical technique for estimating distribution parameters is Maximum Likelihood 

Estimation (MLE), which maximizes the likelihood function. In the case of the EMGE model, 

the likelihood function is formulated using its PDF, and the parameters are estimated by 

maximizing this function with respect to the unknown parameters. 

Log likelihood function for EMGE is given as 

   
1 1

1

1 1 1 1
1 1

log( ) log log 1 log 1 exp
i i ix x x

n n n n

i
i i i i

i i i

e e e
l n x

x x x

  

  

 
      

   


   
 

       
             

            

(14) 

Partial derivatives can be obtained by differentiating equation (14) and solving derivatives, 

parameters can be estimated. Solution of these nonlinear equations are quite rigorous 

analytically, so the likelihood function is maximized using the Newton-Raphson algorithm, 

which aids in the development of the observed information matrix. Consequently, the variance-

covariance matrix obtained is given by equation (15) 



A.K.Chaudhary & L.B. Sah Telee  / Extended Modified Generalized Exponential Distribution: Properties …. 

32 

 

“                                                                                                                                             

 
 ˆ

11 12 13 14

1

21 22 23 24

|

31 32 33 34

41 42 43 44

ˆ ˆ ˆˆ ˆ ˆ ˆ( ) ( , ) ( , ) ( , )

ˆ ˆ ˆ ˆ ˆ ˆˆ( , ) ( ) ( , ) ( , )

ˆ ˆ ˆ ˆ ˆ ˆˆ( , ) ( , ) ( ) ( , )

ˆ ˆ ˆ ˆ ˆ ˆˆ( , ) ( , ) ( , ) ( )

V V V V

V V V V
H

V V V V

V V V V

      

      

      

      





 
 
  

     
   

 
  ”                                                                                                             

              (15) 

To construct approximately 100(1-δ) % confidence intervals for estimating α, β, λ and θ, the 

following method can be utilized, leveraging the asymptotic normality property of Maximum 

Likelihood Estimates (MLE).  

                                                                                                      “
/2 11

ˆ ˆ( )Z V  , / 2 22
ˆ ˆ( )Z V  ,   / 2 33

ˆ ˆ( )Z V  and
” / 2 44

ˆ ˆ( )Z V                     (16) 

In this context, 
/2Z  refers to the upper critical value of the standard normal distribution. 

Least Squares Estimation (LSE) 

 The total of the squared differences between the observed data points and the cumulative 

distribution values that the model predicts is minimized using the Least Squares Estimation 

(LSE) approach. This technique is particularly useful when dealing with data where the 

assumption of normality may not hold. 

Cramér–von Mises (CVM) Criterion 

 The difference between the observed and theoretical distribution functions is reduced by 

applying the CVM approach. It offers an additional reliable technique for parameter estimation 

and is based on the weighted squared discrepancies between the theoretical and empirical 

cumulative distribution functions. These estimation techniques provide a comprehensive 

approach to fitting the EMGE model to data, ensuring that the parameters can be estimated 

with high precision and suitability for various applications in statistical modeling. By utilizing 

these methods, we aim to provide efficient and reliable estimates for the parameters of the 

EMGE distribution, enhancing its applicability in diverse fields such as reliability analysis, 

survival analysis, and other domains where flexible and accurate modeling of data is crucial. 

4. Application to Real Dataset 

According to Bantan et al. [1], the suggested model was tested on a real-world dataset that comprised 

the COVID-19 pandemic mortality rates in Mexico from March 4, 2020, to July 20, 2020, for 106 

patients. The rates were divided by five to make them easier to analyze. The following is how the dataset 

is displayed: 

1.7652, 1.2210, 1.8782, 2.9942, 2.0766, 1.4534, 2.6440, 3.2996, 2.3330, 1.2030, 2.1710, 1.2244, 

1.3312, 0.6880, 1.1708, 2.1370, 2.0070, 1.0484, 0.8668, 1.0286, 1.5260, 2.9208, 1.5806, 1.2740, 

0.7074, 1.2654, 0.9460, 0.6430, 1.8568, 2.5756, 1.7626, 2.0086, 1.4520, 1.1970, 1.2824, 0.6790, 

0.8848, 1.9870, 1.5680, 1.9100, 0.6998, 0.7502, 1.3936, 0.6572, 2.0316, 1.6216, 1.3394, 1.4302, 

1.3120, 0.4154, 0.7556, 0.5976, 0.6672, 1.3628, 1.5708, 1.6650, 1.7120, 0.6456, 1.4972, 1.3250, 

1.2280, 0.9818, 0.9322, 1.0784, 2.4084, 1.7392, 0.3630, 0.6654,1.0812, 1.2364, 0.2082, 0.3600, 

0.9898, 0.8178, 0.6718, 0.4140, 0.6596, 1.0634, 1.0884, 0.9114, 0.8584, 0.5000, 1.3070, 0.9296, 

0.9394, 1.0918, 0.8240, 0.7884, 0.6438, 0.2804, 0.4876, 0.6514, 0.7264, 0.6466, 0.6054, 0.4704, 

0.2410, 0.6436, 0.5852, 0.5202, 0.4130, 0.6058, 0.4116, 0.4652, 0.5052, 0.3846 
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The boxplot and TTT plot for the examined dataset are shown in Figure 2. A boxplot with a positive 

skew shows that the data is not distributed normally. Likewise, the concave shape of the TTT curve 

signifies an increasing failure rate. 

 
Figure2: Boxplot (Left panel) and TTT plot (Right panel) of the data 

The dataset's descriptive statistics, shown in Table 1, show that it is positively skewed and 

deviates from normalcy.  

Table 1: The data's descriptive statistics 

“Min Q1 Md X̅ Q3 Sd Skewness Kurtosis Max” 

“0.2082 0.66  1.06 1.165  1.52 0.65 0.973 3.67 3.2996” 

The MLE, LSE, and CVME methods are used to estimate the model's parameters using the R 

software's optim() function (R Core Team[16]).The calculated parameters and the associated 

standard errors (SE) are shown in Table 2.  

Table 2: Estimated Parameters using MLE, LSE and CVME along with respective S.E. 

Methods Alpha Beta Lambda Theta 

MLE 7.1294 0.2362 3.0860 0.5491 

LSE 0.6660  3.3078  1.4800  1.9500 

CVME 0.2182  0.0002  0.0002  4.9790 

Furthermore, for each of the three estimating methods, the Log-Likelihood values and several 

information criteria, including BIC, AIC, CAIC, and HQIC, were computed in table 3. 
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Table 3: The BIC, HQIC, AIC, CAIC, and log likelihood (LL) 

Model LL AIC BIC CAIC HQIC 

MLE -90.70515 189.4103 200.0641 189.8063 193.7283 

LSE -94.75668  197.5134  208.1671 197.9094 201.8314 

CVM -96.37799 200.756 211.4097 201.1520 205.074 

The goodness-of-fit test results are summarized in Table 4, which provides the statistics for 

Anderson-Darling (A²), Cramér-von Mises (W), and Kolmogorov-Smirnov (KS), along with 

their respective p-values for different estimation approaches. Additionally, Table 4 compares 

the performance of various estimation techniques by evaluating how well they fit the observed 

data. 

Table 4:  Statistics for “KS, W, and A2 together with associated p-values” 

Methods “KS(p-value) W(p-value) A2(p-value)” 

“MLE  0.0817(0.4790) 0.1051(0.5613) 0.7129(0.5477) 

LSE 0.0483(0.9652) 0.0347(0.9589) 0.2302(0.9798) 

CVME 0.0486(0.9637) 0.0327(0.9669) 0.2049(0.9890)”  

 

Plots of PDF and CDF are frequently used to evaluate how well a given model fits data. 

Additionally, generating Q-Q and P-P plots provides deeper insights into the model's 

performance. The P-P plot highlights areas where the model may not fit well, while the Q-Q 

plot emphasizes the alignment in the tails of the distribution. Figure 3 demonstrates the EMGE 

model's strong fit to the data. The EMGE model's goodness of fit is assessed in a thorough 

manner by integrating Q-Q and P-P plots with PDF and CDF plots. 

 

 
Figure 3: The EMGE model's P-P (left) and Q-Q (right) graphs. 
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The empirical cumulative distribution function (ECDF), density plot, and histogram are 

compared with the fitted CDF in Figure 4. 

 
Figure 4: Ecdf against fitted cdf (right) and histogram versus pdf plot (left). 

For model comparison, five previously published probability models were evaluated. Telee and Kumar 

[18] created the Lindley Generalized Inverted Exponential (LGIE) model, Lai et al. [11] developed the 

Modified Weibull (MW) model, Chaudhary and Kumar [3] developed the Logistic Inverse Exponential 

(LIE) distribution, Tang et al. [17] described the Weibull Extension (WE) model, and Ogunsanya et al. 

[15] introduced the Odd Lomax Exponential (OLE) distribution. 

Table 5 provides the estimated parameter values and their corresponding standard errors for the 

proposed model in comparison with other models. These estimates are essential for evaluating and 

benchmarking the performance of the models. Furthermore, Table 6 showcases important statistical 

metrics, shedding light on the precision and reliability of these parameter estimates. Assessing the 

robustness and effectiveness of the proposed model in capturing the underlying relationships in the data 

in comparison to other models is made easy by this comprehensive analysis. 

 

Table 5: “Values of estimated parameters for EMGE & their SE, along with competing models” 

Model Alpha Beta Theta Lambda” 

EMGE 7.1293 0.2361 0.5491 3.0860 

OLE 0.1479 0.0119 - 0.1059 

LGIE 7.7120 - 0.6487 1.4727 

WE 20.2560 1.9589 - 10.3291 

MW 0.5718 1.8937 - 0.0225 

LIE 2.0429 - - 0.6717 

 

The effectiveness of the proposed model is assessed using various criteria, including the Bayesian 

Information Criterion (BIC), Hannan-Quinn Information Criterion (HQIC), Corrected Akaike 

Information Criterion (CAIC), and Akaike Information Criterion (AIC).A summary of the results 

obtained is provided in Table 6. 
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Table 6: The HQIC, AIC, CAIC, BIC, and log likelihood (LL) 

Model LL AIC BIC CAIC HQIC 

EMGE -90.71 189.41 200.06 189.81 193.73 

“OLE -92.49 190.98 198.97 191.21 194.22 

LGIE -93.152 192.30 200.29 192.54 195.54 

WE -93.79 193.58 201.57 193.81 196.82 

MW -93.86 193.71 201.70 193.95 196.95 

LIE -96.39 196.78 202.10 196.89 198.94” 

Simulation Study 

Here, we have performed simulation analysis for the EMGE model. It helped in understanding its 

estimation properties, evaluating the performance of statistical methods, and determining its 

applicability to different types of data. It provides a foundation for making informed decisions about 

the model's effectiveness and its potential improvements for practical use in various domains. Below is 

a table summarizing the bias and mean squared error (MSE) for different combinations of sample size 

(n) and number of simulations (k) at α = 1.2, β = 1.0, λ = 2.0 and θ = 1.2: 

Table 7: Bias and MSE for α = 1.2, β = 1.0, λ = 2.0 and θ = 1.2. 

Sample Size (n) Simulations (k) Bias MSE 

50 500 0.0012 0.0044 

50 1000 0.0061 0.0042 

50 1500 0.0082 0.0042 

100 500 0.0050 0.0023 

100 1000 0.0071 0.0022 

100 1500 0.0066 0.0023 

150 500 0.0039 0.0014 

150 1000 0.0052 0.0015 

150 1500 0.0047 0.0015 

200 500 0.0045 0.0011 

200 1000 0.0064 0.0012 

200 1500 0.0048 0.0011 

250 500 0.0064 0.0009 

250 1000 0.0064 0.0009 

250 1500 0.0059 0.0009 

300 500 0.0057 0.0007 

300 1000 0.0072 0.0008 

300 1500 0.0048 0.0008 

350 500 0.0071 0.0007 

350 1000 0.0066 0.0007 

350 1500 0.0065 0.0007 

400 500 0.0061 0.0006 

400 1000 0.0061 0.0006 

400 1500 0.0060 0.0006 

The simulation study demonstrates that larger sample sizes (n) lead to more reliable and precise 

estimates, as reflected in the decreasing bias and MS. MSE consistently decreases with increasing n and 

k reinforcing the understanding that larger sample sizes and a higher number of simulations lead to 

better estimations of the true parameter values. 
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5. Conclusion 

This research proposes the Extended Modified Generalized Exponential (EMGE) distribution as a 

valuable framework for reliability assessment and survival analysis. The EMGE model incorporates 

intricate patterns in hazard rates, such as those with bathtub-shaped curves, by adding a shape parameter 

to the Modified Generalized Exponential distribution. The comparative analysis with alternative models 

confirms the EMGE’s superior performance in terms of fit and statistical criteria.  

The derived CDF and PDF exhibit improved adaptability in representing diverse datasets, which is 

crucial for applications in reliability analysis, survival modeling, or econometrics. The mathematical 

derivation is rigorously validated, ensuring consistency with fundamental probability properties. Also, 

the model provides a better fit compared to existing distributions, as demonstrated through empirical or 

simulation-based comparisons. Furthermore, this model's ability to handle diverse failure rate functions 

makes it a valuable addition to the toolkit for reliability analysis, offering more accurate insights into 

system behavior and improving decision-making processes in various fields. Future work can explore 

further applications of the EMGE distribution in different domains, as well as potential extensions to 

address even more complex data patterns. Also, proposed distribution introduces additional parameters 

and a unique exponentiation mechanism, which provides more flexibility compared to traditional 

distributions. 
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