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The largest Ford circle 𝐶𝐶(𝑎𝑎� + 𝑎𝑎�, 𝑏𝑏� + 𝑏𝑏�), is connected to the mediant [4], which connects the Largest 
Ford circle between tangent Ford circles. Also, the Farey sequence 𝐹𝐹�and the set of Ford circles 𝐶𝐶� have a 
one-to-one correspondence. The circles with radius �

���
 that are tangent to the x-axis at the fraction �

�
∈ 𝐹𝐹� 

are defined as Ford circles of order 𝑛𝑛 and denoted𝐶𝐶�. So, the corresponding Ford circles are tangent if the 
Farey fractions �

�
 and ��

��
 are adjacent.  

 

3.Conclusions 
 

There are many fascinating patterns in mathematics, and much more Mathematics involves Farey 
sequences. The Farey sequence can be found in a variety of mathematical structures, including Ford 
circles, and the Stern-Brocot tree. Additionally, they can be used to approximate irrational numbers 
rationally. Ford circles are infinitely many, with one for each rational number. We aim to demonstrate 
both the mathematical aspect of the Farey sequence and its application to the Ford Circle, rational 
approximation, and the Stern-Brocot tree. Specially, the use of the Farey sequence in the rational 
approximation of real numbers by the Hurwitz Theorem, and the Ford circle to approximate rational 
numbers. 
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1. Introduction 
 In functional analysis and related areas of mathematics, a sequence space is a special case of 

function space if the domain is restricted to the set of natural numbers ℕ. It is a vector space 
whose elements are infinite sequences of real or complex numbers. Equivalently, the set  of 
all functions from the set of natural numbers ℕ to the field K of real or complex numbers can 
be turned into a vector space. A sequence space is defined as a linear subspace of ω. Let ,c0 
and c be the linear spaces of bounded, null and  convergent  sequences with complex terms 

respectively and the norm is given by ||x|| = 
sup
k  |xk|, where k ℕ. 

 Before proceeding to the main results, we recall some definitions and notations that are used in 
this paper. 

Definition 1.1: An Orlicz function is a function M : [0, )  [0, ) which is convex, continuous and 
non-decreasing with M(0) = 0, M(x) > 0 for x > 0 and M(x)  as x.(Krasnosel'skiî and 
Rutickiî, [11]) 

Definition 1.2:An Orlicz function M is said to satisfy 2-condition for all values of x if there exists a 
constant L > 0 such that M(2x) LM(x) for all x 0. It is equivalent to the condition  

             M(Kt) Q KM(t), t and K > 1.  

           The function M(t) = tp, 1 < p < and t  0 is an Orlicz function which does not satisfy the 2-
condition but the function M(t) =  |t|p, 1 < p < and t  0  is an Orlicz function which satisfies 
the 2-condition since M(2t) =  2p |t|p = 2pM(t). (Krasnosel'skiî and Rutickiî, [11]) 

 

Definition 1.3: Lindenstrauss and Tzafriri [12] used the idea of Orlicz function to construct the  
scalar-valued sequence space  M  of scalars  (xk) such that  
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forms a Banach space which is called an Orlicz sequence space. 
Orlicz sequence space M plays an important role in functional analysis and   is closely related to the 
space p which is an Orlicz sequence space with M (x) = xp : 1 p <. 
For more details about Orlicz function and its subsequent use, we refer a few: Bhardwaj and Bala [2], 
Dutta et al. [3],  Ghimire and Pahari[6] , Kamthan and Gupta [8], Krasnosel'skiî and Rutickiî [11], 
Lindenstrauss and Tzafriri [12] , Maddox [13],   Pahari [17], Parashar and Choudhary [18],  and many 
others. 
 

Definition 1.4:  A   paranormed  space (X, G) is a linear space X  with zero element together with a 
function G : X +  (called  a paranorm on X)  which satisfies the following properties: 
 PN1:  G () = 0; 
 PN2:  G (x) = G(–x)  for all xX; 
 PN3:  G (x + y )G(x) + G(y )  for all x, yX; and 
 PN4:  Scalar multiplication is continuous.       
   Note that the continuity of scalar multiplication is equivalent to   
(i)   if  G (xn) → 0  and  nas     n → ∞, then G(nxn)  0 as  n → ∞ and   
(ii)  if n 0 as nand  x be any element in X, then G (n x)  0, (see, Wilansky[25] ).  
A paranorm is called total if    G (x) = 0 implies x = . 
 The concept of paranorm is closely related to linear metric space, (see, Wilansky [25]) and its 
studies on sequence spaces were initiated by Maddox [13] and many others. In particular, various 
types of  paranormed sequence spaces were  further investigated by several workers Bhardwaj and 
Bala [2], Parashar and Choudhary [18] and many others. 
 

Next, we recall the definition of difference sequence spaces. 
Definition 1.5: Kizmaz [9] defined the difference sequence spaces by  

co () = {x = (xi): x co},  
c () = {x = (xi): x  c} 
l () = {x = (xi): x  l} 

where, x = (xi) = (xi – xi+1) and showed that these spaces are Banach spaces with the norm given by 
||x| = |x1| + ||x|| . 

A sequence x = (xi)is called -convergent if the limxi is finite and hence exists.  
Every convergent sequence is -convergent but not conversely. For, consider the sequence xk = k + 7 
for all natural numbers i. Then, (x)i = (xi – xi+1)= – 1 for each i ℕ.  Thus, x = (xi) is divergent but it 
is -convergent.  
Definition 1.6:For sequence (xk) S and for all scalars (k) of scalars with k 1 for all k ℕ,  

         (xxk) S,then the sequence space S is called solid ( normal). 

A sequence space S is called a sequence algebra if (xk) . (yk) = (xkyk) S whenever (xk), (yk) S. 

Definition 1.7: Let X be a vector space with dim (X) > 1. A mapping || . , . || :X × X ℝ  satisfying. 

 (2N1) ||x, y|| 0  and  ||x, y|| = 0 x, y are linearly dependent 
 (2N2) ||x, y|| = ||y, x|| 

 (2N3) ||x, y|| = || ||x, y|| for any real number . 

 (2N4) ||x + y, z|| = ||x, z|| + ||y, z|| for all x, y,z X, 
 is called a 2-norm. The pair (X, || . , . || ) is called a 2-normed space.  
The notion of 2–normed space was initiated by Gahler [5]in 1960's as an interesting linear 
generalization of a normed linear space. 
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The 2-norm is used to measure the area of parallelogram spanned by two vectors. Geometrically, a 2-
norm function generalizes the concept of area function of parallelogram. For example, consider  X  = 

2, being equipped with || x–, y–|| = | x1 y2 – x2 y1|, where  x– = (x1, x2) and y–= (y1 , y2). 

Then (X, ||. , .||) forms  a 2–normed space and  || x– , y–||  represents the area of the parallelogram 

spanned by the  associated vectors  x–and  y–.  
Subsequently the interesting linear generalization of a normed linear was studied by Freese and Cho 

[4], White and Cho [24]   and many others. Recently a lot of activities have been started by 
many researchers to study this concept   in    different    directions which characterized 2-
normed and generalized 2-normed spaces for instances: Açikgöz [1] and Savas [21] and others. 

Definition 1.8: A sequence (xn) in a 2-normed space (X, || . , . ||) is called Cauchy if 
lim

m‚ n ||xm – xn, z || = 0   for all z X  and convergent if there is x X such that 

lim
n ||xn – x, z|| = 0 for all z X. 

         A complete 2-normed space is called a 2-Banach space. 
Definition 1.9: Let A be a subset of ℕ. The natural density (A) is defined by 

(A) = 
lim

n
1
n |{k A : k n}|,   provided that the limit exists. 

 A sequence x = (xn)  is said to be statistically convergent to a number  , if for all > 0, 
the natural density of the set {n ℕ : |xn– | } = 0. 

Definition 1.10: Let X be a non-empty set then a class I of subsets of X is said to be an ideal if  
 (i) A I and BA implies that BI (Hereditary property) 
 (ii) A, BI implies that ABI (Additive property) 
         If I of X further satisfies {x} I for each xX, then it is called admissible ideal. 

Definition 1.11: A sequence x = (xn)  is said to be ideal convergence (I-convergence) to a 
number  ℝ if for all > 0 the set {nℕ : |xn – | |} I. 

 The notion of ideal convergence was first introduced by Kostyrko et al. [10] as a 
generalization of both usual and statistical convergence which was introduced by Fast and 
Steinhaus in 1951. For more details about the  sequence spaces defined by ideal convergence, 
one may refer to Hazarika et al. [7], Mursaleen and Alotaibi[14], Mursaleen and Mohiuddine 
[15], Mursaleen and Sharma[16], Sahiner et al.[19], Salat et al.[20], Savas([21],[22]), Tripathy 
and Hazarika[23], and many others. 

2. Main Results 
 Let (X, || . , . ||) be a 2-normed space and M be an Orlicz function. Let  = (n) be a non- 

decreasing sequence of positive numbers tending to infinity with n + 1 n + 1 and 1 = 0 and I 
be an admissible ideal of ℕ. Let  be the space of all sequences defined over (X, || . , . ||).  

           Let a = (ak) be a bounded sequence of positive real numbers and  In = [n + 1 – n, n]. 
          By extending the work done by Savas [21], we now introduce and study the following classes 

of difference sequences  

1. W I0 (|| . , . ||, M, , a,) = {x : > 0    
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                                                                                         for some > 0, LX and zX}. 

 3. W (|| . , . ||, M, , a,) = {x : K > 0 such that  
sup

n ℕ   
1
n

   
kIn

    






M







‖ ‖xk

 ‚ z  
ak

K  

                                                                               for some > 0 and for all zX. 

4. WI
 (|| . , . ||, M, , a,) = {xW : K > 0 s.t. 









nℕ : 
sup

n ℕ   
1
n

  
kIn

   






M







‖ ‖xk

 ‚ z  
ak

K  I  

                                                                                                      for some > 0 and for all zX} 
Throughout this article, we shall use the following inequalities 

 If 0 ak   sup ak = H, D = max (1, 2H – 1) then |k + k|akD {|k|ak + |k|ak} 

 for all k, k . Also, ||ak max (1, |a|H) for all  . 
In this work, we shall investigate some topological properties of the classes defined above. 
 

Theorem 2.1: The class WI
0 (|| . , . ||, M, , a,), W I (|| . , . ||, M, , a, )  and 

                       W I
 (|| . , . ||, M ,, a, ) are linear spaces.  

Proof:  
Let x, y  WI

0 (|| . , . ||, M, , a,) and ,  ℝ. Then, for some 1, 2> 0 

  








n ℕ : 
1
n

 
kIn 

  






M







‖ ‖xk

1
‚ z  

ak

 I and








nℕ : 
1
n

 
kIn

  






M







‖ ‖yk

2
‚ z  

ak

 I 

 Since M is an Orlicz function and || . , . || is a 2-norm, we have 

          
1
n

  
k In

    






M 







‖ ‖xk + yk

(|| 1 + ||2)
‚ z   

ak

 

D .
1
n


k In

   




||

(||1 + |1| 2)
 M 





‖ ‖xk

1
‚ z  

ak

  + D . 
1
n


k In

   




||

(||1 + ||2)
 M 





‖ ‖yk

2
‚ z  

ak

 

DL .
1
n

  
kIn

    






M 







‖ ‖xk

1
‚ z  

ak

 + DL . 
1
n

  
kIn

    






M 







‖ ‖yk

2
‚ z  

ak

 

 where,  L = max 



1‚ 



||

||1 + ||2

H

‚ 



||

||1 + ||2

H

 

 Then, we can write 

    






n ℕ : 

1
n

 
kIn

  






M 







‖ ‖xk + yk

||1 + ||2
‚ z   










nℕ : DL . 
1
n

 
kIn 

  




M 





‖ ‖xk

1
‚ z  

ak

 2 








nℕ : DL . 
1
n

 
kIn

  




M 





‖ ‖yk

2
‚ z

ak

 2  

 Clearly the two sets on the right hand side belong to I and hence the left side too. This shows 

that the space W 
I
0 (|| . , . ||, M, , a, ) is a linear space. 

 In the same way, one can show that W I (|| . , . ||, M, , a,) and W I
 (|| . , . ||, M, , a,) are 

linear spaces. 
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Theorem 2.2: The space W (|| . , . ||, M, , a, ) is a paranormed space with respect to the paranorm

 gn(x) = inf {an/H; > 0 such that 








sup

n  
1
n

  
k In

  






M ‖ ‖xk

 ‚ z  
ak  

1
H
 1,  z X} 

Proof: 
 Obviously gn() = 0 and gn(– x) = x easily follow, so  PN1 and PN2    are  obvious. 
To proceed the further proof, for PN3, let x = (xk) and y = (yk) in W (|| . , . ||, M, , a,). Let 

  A(x) = 








> 0 : 
sup
n  

1
n

   
k In

  






M 







‖ ‖xk

 ‚ z  
ak

 1‚  z X  

  A(y) = 








>  0 : 
sup
n  

1
n

 
k In

  






M 







‖ ‖yk

 ‚ z  
ak

 1‚  z X  

 Let 1 A(x) and 2 A(y). Also let  = 1 + 2 then we can write 

  
sup
n  

1
n


k In

 M






‖ ‖(xk + yk)

 ‚ z 
1

1 + 2

sup
n

1
n

 
k In

 M






‖ ‖(xk)

1
‚ z +

2

1 + 2

sup
n

1
n


k In

 M






‖ ‖(yk)

2
‚ z  

 Thus, 
sup
n 



1

n
 
k In

 M






‖ ‖(xk + yk)

1 + 2
‚ z

ak

 1 

 and gn (x + y) inf {(1 + 2)an/H : 1A(x), 2A(y)}  

   inf {1
an/H : 1A(x)} + inf {2

an/H : 2A(y)}  
                                      = gn(x) + gn(y) 
Next we  prove PN4 i.e., the scalar multiplication is continuous.Let m where , m  and let 

gn(xm – x)  0 as mWe have to show that  gn (mxm – x)  0 as m. 

 Let  A(xm) = 








m> 0 : 
sup
n  

1
n

 
k In

   










M 








‖ ‖x

m
k

m
‚ z

ak

 1‚  z X  

  A(xm – x) = 









1
m > 0 : 

sup
n  

1
n

 
k In

   






M 







‖ ‖(xk

m – xk)
m

1 ‚ z
ak

 1‚  z X  

 If mA, (xm) and 
1
mA(xm– x) then 

 M









‖ ‖(mxk

m – xk)

m |m – | + 
1
m ||

‚  z M







‖ ‖(mx

k
m – x

m
k )

m |m – | + 
1
m ||

 + ‖ ‖(mx
m
k  – xk)

m |m – | + 
1
m||

‚ z  


|m – | m

m |m – | + 
1
m ||

M




‖ ‖xk

m

m
‚  z  + 

|| 
1
m

m |m – | + 
1
m ||

M





‖ ‖(xk

m – xk)


1
m

‚  z  

 This follows that   

  











M 









‖ ‖(mxk

m – xk)

m |m – | + 
1
m ||

 ‚ z
ak

 1 
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                                                                                         for some > 0, LX and zX}. 

 3. W (|| . , . ||, M, , a,) = {x : K > 0 such that  
sup

n ℕ   
1
n

   
kIn

    






M







‖ ‖xk

 ‚ z  
ak

K  

                                                                               for some > 0 and for all zX. 

4. WI
 (|| . , . ||, M, , a,) = {xW : K > 0 s.t. 









nℕ : 
sup

n ℕ   
1
n

  
kIn

   






M







‖ ‖xk

 ‚ z  
ak

K  I  

                                                                                                      for some > 0 and for all zX} 
Throughout this article, we shall use the following inequalities 

 If 0 ak   sup ak = H, D = max (1, 2H – 1) then |k + k|akD {|k|ak + |k|ak} 

 for all k, k . Also, ||ak max (1, |a|H) for all  . 
In this work, we shall investigate some topological properties of the classes defined above. 
 

Theorem 2.1: The class WI
0 (|| . , . ||, M, , a,), W I (|| . , . ||, M, , a, )  and 

                       W I
 (|| . , . ||, M ,, a, ) are linear spaces.  

Proof:  
Let x, y  WI

0 (|| . , . ||, M, , a,) and ,  ℝ. Then, for some 1, 2> 0 

  








n ℕ : 
1
n

 
kIn 

  






M







‖ ‖xk

1
‚ z  

ak

 I and








nℕ : 
1
n

 
kIn

  






M







‖ ‖yk

2
‚ z  

ak

 I 

 Since M is an Orlicz function and || . , . || is a 2-norm, we have 

          
1
n

  
k In

    






M 







‖ ‖xk + yk

(|| 1 + ||2)
‚ z   

ak

 

D .
1
n


k In

   




||

(||1 + |1| 2)
 M 





‖ ‖xk

1
‚ z  

ak

  + D . 
1
n


k In

   




||

(||1 + ||2)
 M 





‖ ‖yk

2
‚ z  

ak

 

DL .
1
n

  
kIn

    






M 







‖ ‖xk

1
‚ z  

ak

 + DL . 
1
n

  
kIn

    






M 







‖ ‖yk

2
‚ z  

ak

 

 where,  L = max 



1‚ 



||

||1 + ||2

H

‚ 



||

||1 + ||2

H

 

 Then, we can write 

    






n ℕ : 

1
n

 
kIn

  






M 







‖ ‖xk + yk

||1 + ||2
‚ z   










nℕ : DL . 
1
n

 
kIn 

  




M 





‖ ‖xk

1
‚ z  

ak

 2 








nℕ : DL . 
1
n

 
kIn

  




M 





‖ ‖yk

2
‚ z

ak

 2  

 Clearly the two sets on the right hand side belong to I and hence the left side too. This shows 

that the space W 
I
0 (|| . , . ||, M, , a, ) is a linear space. 

 In the same way, one can show that W I (|| . , . ||, M, , a,) and W I
 (|| . , . ||, M, , a,) are 

linear spaces. 
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Theorem 2.2: The space W (|| . , . ||, M, , a, ) is a paranormed space with respect to the paranorm

 gn(x) = inf {an/H; > 0 such that 








sup

n  
1
n

  
k In

  






M ‖ ‖xk

 ‚ z  
ak  

1
H
 1,  z X} 

Proof: 
 Obviously gn() = 0 and gn(– x) = x easily follow, so  PN1 and PN2    are  obvious. 
To proceed the further proof, for PN3, let x = (xk) and y = (yk) in W (|| . , . ||, M, , a,). Let 

  A(x) = 








> 0 : 
sup
n  

1
n

   
k In

  






M 







‖ ‖xk

 ‚ z  
ak

 1‚  z X  

  A(y) = 








>  0 : 
sup
n  

1
n

 
k In

  






M 







‖ ‖yk

 ‚ z  
ak

 1‚  z X  

 Let 1 A(x) and 2 A(y). Also let  = 1 + 2 then we can write 

  
sup
n  

1
n


k In

 M






‖ ‖(xk + yk)

 ‚ z 
1

1 + 2

sup
n

1
n

 
k In

 M






‖ ‖(xk)

1
‚ z +

2

1 + 2

sup
n

1
n


k In

 M






‖ ‖(yk)

2
‚ z  

 Thus, 
sup
n 



1

n
 
k In

 M






‖ ‖(xk + yk)

1 + 2
‚ z

ak

 1 

 and gn (x + y) inf {(1 + 2)an/H : 1A(x), 2A(y)}  

   inf {1
an/H : 1A(x)} + inf {2

an/H : 2A(y)}  
                                      = gn(x) + gn(y) 
Next we  prove PN4 i.e., the scalar multiplication is continuous.Let m where , m  and let 

gn(xm – x)  0 as mWe have to show that  gn (mxm – x)  0 as m. 

 Let  A(xm) = 








m> 0 : 
sup
n  

1
n

 
k In

   










M 








‖ ‖x

m
k

m
‚ z

ak

 1‚  z X  

  A(xm – x) = 









1
m > 0 : 

sup
n  

1
n

 
k In

   






M 







‖ ‖(xk

m – xk)
m

1 ‚ z
ak

 1‚  z X  

 If mA, (xm) and 
1
mA(xm– x) then 

 M









‖ ‖(mxk

m – xk)

m |m – | + 
1
m ||

‚  z M







‖ ‖(mx

k
m – x

m
k )

m |m – | + 
1
m ||

 + ‖ ‖(mx
m
k  – xk)

m |m – | + 
1
m||

‚ z  


|m – | m

m |m – | + 
1
m ||

M




‖ ‖xk

m

m
‚  z  + 

|| 
1
m

m |m – | + 
1
m ||

M





‖ ‖(xk

m – xk)


1
m

‚  z  

 This follows that   

  











M 









‖ ‖(mxk

m – xk)

m |m – | + 
1
m ||

 ‚ z
ak

 1 



82

Jhavi Lal Ghimire and  Narayan Prasad Pahari / On Some Difference Sequence Spaces Defined by … 
 

 82   
 

 Consequently, we have 

gn(mxm – x) inf {(m|m – | + 
1
m ||}an/H : m A (xm), 

1
m A(xm – x)} 

   (|m – |)Pn/H inf {m
an/H : m A(xm)} + (||)an/H inf {(

1
m)an/H : 

1
mA(xm – x)} 

    max |m – |an/Hgn(xm) + max ||an/Hgn(xm – x)  0 as m. 
 Hence, the scalar multiplication is continuous. 
  

Theorem 3: Let M, M1, M2 be Orlicz functions.  Then we have 

(i) WI
0 (|| . , . ||, M, , a,) WI

0 (|| . , . ||, Mo M1, a,) provided that (ak) is such that H0 = inf ak > 0. 

(ii) WI
0 (|| . , . ||, M1, , a,) WI

0 (|| . , . ||, M2, , a,) WI
0 (|| . , . ||, M1 + M2, , a,) 

(iii) WI
0 (|| . , . ||, M1,, a,)  W I (|| . , . ||, M1,, a,)   W I

 (|| . , . ||, M ,, a, )   

Proof: 

 Let > 0 be given. Let us choose 0> 0 such that  max {H
0, H0

0 } < . 

     Using continuity of M, we can choose 0 < < 1 such that 0 < t <  implies that M(t) < 0.    
     Let xk W0 (|| . , . ||, M1, , a,). Then from definition, 

  A() = 








nℕ: 
1
n

  
kIn

   




M1 



‖ ‖Dk

 ‚ z  
ak

H I 

 Hence, if n A() then 

  
1
n

  
k In

   






M1






‖ ‖xk

 ‚ z  
ak

< H   
kIn

    






M1






‖ ‖xk

 ‚ z  
ak

< n H 

                                               






M1






‖ ‖xk

 ‚ z  
ak

<H, kIn 

                                                       M1





‖ ‖xk

 ‚ z <, kIn. 

 Using continuity of M, we have 

  M






M1






‖ ‖xk

 ‚ z  < m(< 0, kIn 

 This implies that 

  
k In

    






M 







M1






‖ ‖xk

 ‚ z  
ak

< n max {H
0, H0

0 } < . 

 Thus, 
1
n

  
k In

    






M 







M1






‖ ‖xk

 ‚ z  
ak

< . 

 This shows that 

  








n ℕ : 
1
n

  
kIn 

 






M 







M1






‖ ‖xk

 ‚ z  
ak

  A () 

 and hence belong to I. This completes the proof. 
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   (ii) Let (xk) WI
0 (|| . , . ||, M1, , a,) WI

0 (|| . , . ||, M2, , a,). We can write 

1
n

  






M1 + M2 






‖ ‖xk

 ‚ z  
ak

D .
1
n

 






M1 






‖ ‖xk

 ‚ z  
ak

+ D . 
1
n

  






M2 






‖ ‖xk

 ‚ z  
ak

 

 This consequently gives that 

WI
0 (|| . , . ||, M1, , a,) WI

0 (|| . , . ||, M2, , a,) WI
0 (|| . , . ||, M1 + M2, , a,). 

(iii)  The inclusion WI
0 (|| . , . ||, M1, , a,) W I (|| . , . ||, M1, , a,)      is obvious. 

One can easily show that  W I(|| . , . ||, M1, , a,)      W I
 (|| . , . ||, M, , a,) 

This completes the proof. 
 

Theorem 4:  The sequence spaces WI
0 (|| . , . ||, M, , a,) and W I

 (|| . , . ||, M, , a,) are solid. 

Proof: 

        We proof WI
0 (|| . , . ||, M, , a,) is solid. Let (xk) WI

0(|| . , . ||, M, , a,) and (k) be a sequence 

        of scalars having the property that    |k|  1 for all k ℕ and F = 
max

k  {1, |k|H}. Then  

 








n ℕ : 
1
n

  
k In 

   






M







‖ ‖kxk

 ‚ z  
ak

  








n ℕ : 
F
n

   
k In

  






M







‖ ‖xk

 ‚ z  
ak

 I ;  

 Hence, (k xk) WI
0 (|| . , . ||, M, , a,). Thus the space WI

0 (|| . , . ||, M, , a,) is solid. 
 

Theorem: 5 The spaces WI
0 (|| . , . ||, M, , a,) and W I (|| . , . ||, M, , a,) are sequence algebra. 

Proof:  

Let (xk), (yk) WI
0 (|| . , . ||, M, , a,). Then, for some 1, 2> 0, we have 

 








n ℕ : 
1
n

 
kIn 

  






M







‖ ‖xk

1
‚ z  

ak

 I  and 








nℕ : 
1
n

 
kIn

  






M







‖ ‖xk

2
‚ z  

ak

 I. 

Choose  = 1+ 2 .  Then, we can easily show that 

 








nℕ : 
1
n

 
kIn

  






M







‖ ‖xkyk

 ‚ z  
ak

 I. 

It follows that xk yk WI
0 (|| . , . ||, M, , a,). This shows that WI

0 (|| . , . ||, M, , a,) is a sequence 
algebra. For the space W I (|| . , . ||, M, , a,), we can prove similarly. 
 

Conclusion  
In this paper, we have examined and explore some of the results that characterize the linear 
topological structures in 2- normed difference sequence space by endowing it with a suitable natural 
paranorm. In fact, these results can be used for further generalization to investigate other properties of 
sequences whose values in   2- normed space. 
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 Consequently, we have 

gn(mxm – x) inf {(m|m – | + 
1
m ||}an/H : m A (xm), 

1
m A(xm – x)} 

   (|m – |)Pn/H inf {m
an/H : m A(xm)} + (||)an/H inf {(

1
m)an/H : 

1
mA(xm – x)} 

    max |m – |an/Hgn(xm) + max ||an/Hgn(xm – x)  0 as m. 
 Hence, the scalar multiplication is continuous. 
  

Theorem 3: Let M, M1, M2 be Orlicz functions.  Then we have 

(i) WI
0 (|| . , . ||, M, , a,) WI

0 (|| . , . ||, Mo M1, a,) provided that (ak) is such that H0 = inf ak > 0. 

(ii) WI
0 (|| . , . ||, M1, , a,) WI

0 (|| . , . ||, M2, , a,) WI
0 (|| . , . ||, M1 + M2, , a,) 

(iii) WI
0 (|| . , . ||, M1,, a,)  W I (|| . , . ||, M1,, a,)   W I

 (|| . , . ||, M ,, a, )   

Proof: 

 Let > 0 be given. Let us choose 0> 0 such that  max {H
0, H0

0 } < . 

     Using continuity of M, we can choose 0 < < 1 such that 0 < t <  implies that M(t) < 0.    
     Let xk W0 (|| . , . ||, M1, , a,). Then from definition, 

  A() = 








nℕ: 
1
n

  
kIn

   




M1 



‖ ‖Dk

 ‚ z  
ak

H I 

 Hence, if n A() then 

  
1
n

  
k In

   






M1






‖ ‖xk

 ‚ z  
ak

< H   
kIn

    






M1






‖ ‖xk

 ‚ z  
ak

< n H 

                                               






M1






‖ ‖xk

 ‚ z  
ak

<H, kIn 

                                                       M1





‖ ‖xk

 ‚ z <, kIn. 

 Using continuity of M, we have 

  M






M1






‖ ‖xk

 ‚ z  < m(< 0, kIn 

 This implies that 

  
k In

    






M 







M1






‖ ‖xk

 ‚ z  
ak

< n max {H
0, H0

0 } < . 

 Thus, 
1
n

  
k In

    






M 







M1






‖ ‖xk

 ‚ z  
ak

< . 

 This shows that 

  








n ℕ : 
1
n

  
kIn 

 






M 







M1






‖ ‖xk

 ‚ z  
ak

  A () 

 and hence belong to I. This completes the proof. 
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   (ii) Let (xk) WI
0 (|| . , . ||, M1, , a,) WI

0 (|| . , . ||, M2, , a,). We can write 

1
n

  






M1 + M2 






‖ ‖xk

 ‚ z  
ak

D .
1
n

 






M1 






‖ ‖xk

 ‚ z  
ak

+ D . 
1
n

  






M2 






‖ ‖xk

 ‚ z  
ak

 

 This consequently gives that 

WI
0 (|| . , . ||, M1, , a,) WI

0 (|| . , . ||, M2, , a,) WI
0 (|| . , . ||, M1 + M2, , a,). 

(iii)  The inclusion WI
0 (|| . , . ||, M1, , a,) W I (|| . , . ||, M1, , a,)      is obvious. 

One can easily show that  W I(|| . , . ||, M1, , a,)      W I
 (|| . , . ||, M, , a,) 

This completes the proof. 
 

Theorem 4:  The sequence spaces WI
0 (|| . , . ||, M, , a,) and W I

 (|| . , . ||, M, , a,) are solid. 

Proof: 

        We proof WI
0 (|| . , . ||, M, , a,) is solid. Let (xk) WI

0(|| . , . ||, M, , a,) and (k) be a sequence 

        of scalars having the property that    |k|  1 for all k ℕ and F = 
max

k  {1, |k|H}. Then  

 








n ℕ : 
1
n

  
k In 

   






M







‖ ‖kxk

 ‚ z  
ak

  








n ℕ : 
F
n

   
k In

  






M







‖ ‖xk

 ‚ z  
ak

 I ;  

 Hence, (k xk) WI
0 (|| . , . ||, M, , a,). Thus the space WI

0 (|| . , . ||, M, , a,) is solid. 
 

Theorem: 5 The spaces WI
0 (|| . , . ||, M, , a,) and W I (|| . , . ||, M, , a,) are sequence algebra. 

Proof:  

Let (xk), (yk) WI
0 (|| . , . ||, M, , a,). Then, for some 1, 2> 0, we have 

 








n ℕ : 
1
n

 
kIn 

  






M







‖ ‖xk

1
‚ z  

ak

 I  and 








nℕ : 
1
n

 
kIn

  






M







‖ ‖xk

2
‚ z  

ak

 I. 

Choose  = 1+ 2 .  Then, we can easily show that 

 








nℕ : 
1
n

 
kIn

  






M







‖ ‖xkyk

 ‚ z  
ak

 I. 

It follows that xk yk WI
0 (|| . , . ||, M, , a,). This shows that WI

0 (|| . , . ||, M, , a,) is a sequence 
algebra. For the space W I (|| . , . ||, M, , a,), we can prove similarly. 
 

Conclusion  
In this paper, we have examined and explore some of the results that characterize the linear 
topological structures in 2- normed difference sequence space by endowing it with a suitable natural 
paranorm. In fact, these results can be used for further generalization to investigate other properties of 
sequences whose values in   2- normed space. 
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