
Lal Babu Sah Telee  and Vijay Kumar  / MMooddiiffiieedd    GGeenneerraalliizzeedd    EExxppoonneennttiiaall    DDiissttrriibbuuttiioonn  
 

32 
 

function shows that inverted bathtub or reverse j-shaped depending on the values of parameters of the 
model. A real set data and different model validation criteria show that the proposed model fits data better 
than the other models taken in consideration. 
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Abstract: The assets and liabilities of a general insurance underwriter constitutes two main variables 
usually adopted when evaluating the solvency requirements of a general insurance firm under which 
technical provisions form an unprecedented part of insurance liabilities. The technical provision of a 
general insurance business comprises provisions for unearned premiums and provisions for claims. The 
technical provisions specified under solvency II requirements asserts that the classical actuarial 
techniques for evaluating the best estimate for provisions in general business insurance obligations 
contains the run off triangles. The objective of this study are to (i) estimate the chain ladder reserve  
(ii) estimate the cape-cod reserve and (iii) compare the chain ladder with the cape-cod mathematical 
techniques with the disposition of estimating losses and technical provisions. These techniques evaluated 
through some run-off triangles can be adopted to estimate technical provisions for the outstanding 
claims. Computational evidence from our results over the periods considered revealed that despite the 
fact that the cape-cod technique is a mathematical variant of the chain ladder technique which seems less 
dependent on the variations of a single observation, the chain ladder reserve is numerically less than the 
corresponding cape-cod reserve and hence 18534.42 19123.84RESERVE RESERVECL CC    
 

Key words: Technical provisions, Chain ladder, Cape Cod, Solvency, Run-off triangles 

1. Introduction to Actuarial Loss Reserving 

Let  ;: yf y f R R   such that  f y defines a continuous claim density function representing 

the value of a claim momentarily at time y . The value  ,LV s t defining the total loss incurred within 

some time interval s y t   is numerically modelled as    ,
t

L
s

V s t f y dy   

However in actuarial practice, the functional form  f y seems quite difficult to model since all 
observable technical provisions represent observations on differing aggregate amounts and moreover 
these observable claim values could fall within intervals short of ultimate developments. Development in 
loss reserving usually describes the numerical difference between observable values of a defined actuarial 
variables at consecutive valuation dates which could be applied to loss reserve computations hence the 
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modeling of actuarial claim function is required. In order to model the claim function, it becomes 
pertinent to introduce a continuous development function   :g   R R with the following 
conditions. 

 
 

1
0 0

g for S
g for
 
 

  
  



 

Where the claim development is assumed to continue over the period S  
Consequently, the aggregate claim within the time interval developed through the time  is obtained as 

     ,
t

L
s

V s t g y f y dy   and assuming that  f y  is a real constant  , then 

   ,
t

L
s

V s t g y dy     where the aggregate loss model assumes a requisite functional form such 

that the functions  g y and  f y  are well defined and well behaved to fit the observable calendar 
period aggregate claim data. In (Weindorfer, 2012; Adams, 2018; Suwardi & Purwono, 2020), an 
underwriting firm is expected to put in place a sufficient buffer funds to cover expected future costs of 
claims on the insured schemes that are still in force. Following (Ramos de Carvalho & de Franca 
Carvalho, 2019), this buffer fund defines the claims reserve called the technical provisions which is 
actuarially estimated as a sum of the best estimate reserve and safety loading. In (Rahmawati, Darti & 
Marjono, 2019; Karmila, Nurrohmah & Sari, 2020), we observe that the technical provisions is essentially 
required to enable an underwriter satisfy her contractual obligations to the insured so as to create a 
requisite cover against emergence of sudden losses and to generate an unconstrained evolution of profit 
dynamics. In (Wuthrich & Merz, 2015; Dina, 2019), the best estimate reserve defines the expected 
discounted value of the outstanding claims payments while another actuarial variable alternatively 
referred to as the risk margin is a quantity that protects the underwriter against implicit uncertainties.  
 

Following (Wuthrich & Merz, 2015; Sakthivel, 2016; Dina, 2019), the EU regulatory framework on 
solvency II  defines this risk margin as a value such that the amount of the technical provisions is the 
amount another entity would require in order to analyse the run-off of the liabilities of the insurer. Dina 
(2019) compared the classical chain ladder with the Munich chain ladder and discovered that claim the 
reserve projections under Munich chain ladder based on paid methodology underestimates the outstanding 
loss liability while the classical chain ladder based on incurred method overestimates the claim reserves. 
Following (Gisler & Wuthrich, 2008; Adams, 2018), the chain ladder method represents a numerical 
technique in estimating provisions for the outstanding claim payments. Actuaries usually adopt this 
technique to extrapolate the expected future claims from the claims already reported or paid. In chain 
ladder technique, it is presumed that the time series of claims is stable in time hence a run-off triangle is 
needed for the input data. We observe in (Ting, 2016; Teja, Barua, Mudigonda & Kandala, 2018; Balona 
& Richman, 2020; Georgieva, 2021; Raeva & Pavlov, 2021), that the run off triangle collects cumulative 
data on the incurred claims in respect of accident year and development year as a result of possible delay 
between claim occurrence and claim settlement. The chain-ladder predictor of the ultimate claim is 
computed by multiplying the current claims value of an accident year by a product of development 
factors. The chain-ladder predictors of the ultimate claims are directly proportional to the current claims 
value and hence if the current claims amount tends zero or increases without bounds then, the chain-
ladder prediction leads to inadequate results. This is typically the case for long-tailed lines of business in 
current accident years. Furthermore, the chain-ladder technique is quite responsive to variations in 
individual claim numbers. The chain-ladder technique is wholly dependent on the claims data though it 
ignores the information on earned premiums.  
 

The development pattern for the Bornhuetter Ferguson (BF) technique is usually obtained through the 
development pattern resulting from the chain-ladder method. The (BF) presumes that unreported claims 
would develop by reason of expected claims as a combination of chain ladder and the expected loss ratio 
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techniques. However (Mack, Quarg & Braun, 2006; Merz & Wuthrich, 2008) evaluate the application of 
the chain-ladder development pattern and concluded that the chain-ladder technique assumes a 
multiplicative relationship between the past and future loss value. Nonetheless (Merz & Wuthrich, 2008) 
concluded that BF method is an additive relationship. In the cape-cod method, the reserve of an accident 
year defines the product of an estimate of the expected ultimate claim and the estimated still-to-come 
factor of the corresponding accident year. For the estimation of the still-to-come factor, it is presumed that 
there is a development pattern which is the same for all accident years. The development pattern is a 
fraction of claims that develops up to a particular development year in relation to the ultimate claim value. 
The cape-cod method was modeled so as to address some of the deficiencies of the chain ladder 
technique. The cape-cod technique seems more impervious to any form of inadequacies irrespective of 
unexpected claim condition and hence it is not really influenced by errors in the assumptions about the 
distribution of claim sample errors. 
 

2. Materials and Methods 

Chain Ladder Estimation 
 

Let    , , 0,1,2,3,...i r i r m
S


 be a collection of random variables.  In (Schmidt & Wunsche, 1998), the random 

variables , 0i rS   which is assumed to be strictly positive represents the aggregate claim size over all 

claims occurring in occurrence year i  and which are expected to be settled prior to the end of calendar 
year i r . Furthermore in (Schmidt, 2006), the enumeration of the development years describes the 
delays in respect of the occurrence years. Following (Kaas, Goovaerts, Dhaene & Denuit, 2001), the 
number of diagonals with 1i r a    confirm the payments progression which have been made in 
occurrence year a . However, it is assumed that claims are settled prior to the end of development year m
. The random variables ,i mS  therefore defines the ultimate aggregate claims. The ultimate aggregate 

claims ,i mS  conforms to the aggregate claims of occurrence year i .  

In (Schmidt & Wunsche, 1998), the observed aggregate claims could be represented by the run-off 
triangle. The information on the area of the triangle below the main run off triangle is undeterminable 
because it deals with future development parameters about different group of claims.  
                                 Table 1: Run off Triangle 

Occurrence year Development   
year 

        

 0  1 … r  . m i
 

. 1m   m  

0  0,0S  0,1S  … 
0,rS  . S0,m-i

 . 
0, 1mS   S0,m

 

1 1,0S  1,1S  … 
1,rS  . S1,m-i

 . 
1, 1mS    

.          
i  

,0iS  ,1iS  … 
,i rS  … Si,m-i

    

.          
m r  

,0m rS   Sm-r,1
  Sm-r,r

      

.          
1m   1,0mS   Sm-1,1

        

m  
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modeling of actuarial claim function is required. In order to model the claim function, it becomes 
pertinent to introduce a continuous development function   :g   R R with the following 
conditions. 

 
 

1
0 0

g for S
g for
 
 

  
  



 

Where the claim development is assumed to continue over the period S  
Consequently, the aggregate claim within the time interval developed through the time  is obtained as 

     ,
t

L
s

V s t g y f y dy   and assuming that  f y  is a real constant  , then 

   ,
t

L
s

V s t g y dy     where the aggregate loss model assumes a requisite functional form such 

that the functions  g y and  f y  are well defined and well behaved to fit the observable calendar 
period aggregate claim data. In (Weindorfer, 2012; Adams, 2018; Suwardi & Purwono, 2020), an 
underwriting firm is expected to put in place a sufficient buffer funds to cover expected future costs of 
claims on the insured schemes that are still in force. Following (Ramos de Carvalho & de Franca 
Carvalho, 2019), this buffer fund defines the claims reserve called the technical provisions which is 
actuarially estimated as a sum of the best estimate reserve and safety loading. In (Rahmawati, Darti & 
Marjono, 2019; Karmila, Nurrohmah & Sari, 2020), we observe that the technical provisions is essentially 
required to enable an underwriter satisfy her contractual obligations to the insured so as to create a 
requisite cover against emergence of sudden losses and to generate an unconstrained evolution of profit 
dynamics. In (Wuthrich & Merz, 2015; Dina, 2019), the best estimate reserve defines the expected 
discounted value of the outstanding claims payments while another actuarial variable alternatively 
referred to as the risk margin is a quantity that protects the underwriter against implicit uncertainties.  
 

Following (Wuthrich & Merz, 2015; Sakthivel, 2016; Dina, 2019), the EU regulatory framework on 
solvency II  defines this risk margin as a value such that the amount of the technical provisions is the 
amount another entity would require in order to analyse the run-off of the liabilities of the insurer. Dina 
(2019) compared the classical chain ladder with the Munich chain ladder and discovered that claim the 
reserve projections under Munich chain ladder based on paid methodology underestimates the outstanding 
loss liability while the classical chain ladder based on incurred method overestimates the claim reserves. 
Following (Gisler & Wuthrich, 2008; Adams, 2018), the chain ladder method represents a numerical 
technique in estimating provisions for the outstanding claim payments. Actuaries usually adopt this 
technique to extrapolate the expected future claims from the claims already reported or paid. In chain 
ladder technique, it is presumed that the time series of claims is stable in time hence a run-off triangle is 
needed for the input data. We observe in (Ting, 2016; Teja, Barua, Mudigonda & Kandala, 2018; Balona 
& Richman, 2020; Georgieva, 2021; Raeva & Pavlov, 2021), that the run off triangle collects cumulative 
data on the incurred claims in respect of accident year and development year as a result of possible delay 
between claim occurrence and claim settlement. The chain-ladder predictor of the ultimate claim is 
computed by multiplying the current claims value of an accident year by a product of development 
factors. The chain-ladder predictors of the ultimate claims are directly proportional to the current claims 
value and hence if the current claims amount tends zero or increases without bounds then, the chain-
ladder prediction leads to inadequate results. This is typically the case for long-tailed lines of business in 
current accident years. Furthermore, the chain-ladder technique is quite responsive to variations in 
individual claim numbers. The chain-ladder technique is wholly dependent on the claims data though it 
ignores the information on earned premiums.  
 

The development pattern for the Bornhuetter Ferguson (BF) technique is usually obtained through the 
development pattern resulting from the chain-ladder method. The (BF) presumes that unreported claims 
would develop by reason of expected claims as a combination of chain ladder and the expected loss ratio 
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techniques. However (Mack, Quarg & Braun, 2006; Merz & Wuthrich, 2008) evaluate the application of 
the chain-ladder development pattern and concluded that the chain-ladder technique assumes a 
multiplicative relationship between the past and future loss value. Nonetheless (Merz & Wuthrich, 2008) 
concluded that BF method is an additive relationship. In the cape-cod method, the reserve of an accident 
year defines the product of an estimate of the expected ultimate claim and the estimated still-to-come 
factor of the corresponding accident year. For the estimation of the still-to-come factor, it is presumed that 
there is a development pattern which is the same for all accident years. The development pattern is a 
fraction of claims that develops up to a particular development year in relation to the ultimate claim value. 
The cape-cod method was modeled so as to address some of the deficiencies of the chain ladder 
technique. The cape-cod technique seems more impervious to any form of inadequacies irrespective of 
unexpected claim condition and hence it is not really influenced by errors in the assumptions about the 
distribution of claim sample errors. 
 

2. Materials and Methods 
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Let    , , 0,1,2,3,...i r i r m
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 be a collection of random variables.  In (Schmidt & Wunsche, 1998), the random 

variables , 0i rS   which is assumed to be strictly positive represents the aggregate claim size over all 

claims occurring in occurrence year i  and which are expected to be settled prior to the end of calendar 
year i r . Furthermore in (Schmidt, 2006), the enumeration of the development years describes the 
delays in respect of the occurrence years. Following (Kaas, Goovaerts, Dhaene & Denuit, 2001), the 
number of diagonals with 1i r a    confirm the payments progression which have been made in 
occurrence year a . However, it is assumed that claims are settled prior to the end of development year m
. The random variables ,i mS  therefore defines the ultimate aggregate claims. The ultimate aggregate 

claims ,i mS  conforms to the aggregate claims of occurrence year i .  

In (Schmidt & Wunsche, 1998), the observed aggregate claims could be represented by the run-off 
triangle. The information on the area of the triangle below the main run off triangle is undeterminable 
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A cumulative claim ,i rS  is observed whenever i r m  but non-observable i r m  . Furthermore ,i rS
is present when i r m   and ,i rS will be ultimate where r m . The objective of loss reserving is to 
estimate  

(i) the future cumulative losses ,i rS             
(ii) the future losses , , , 1 i r i r i rS S     

 (iii) the calendar year reserves ,

m

j q j
j q m

 
 
   

(iv) the total reserve ,
1 1

m m

j l
j l m j


   

 
 
 

  where 1i r m    and 1,...2q m m   

The chain ladder technique heavily depends on the observed cumulative losses in the run off triangle and 
involving no prior estimators. However, it fundamentally assumes that each accident year has the same 
pattern of claim development and that there is a development pattern for factors.  

 For  0,1,2,...,i m  and  1,2,...,r m , the development factor is defined as follows ,

, 1

i r

i r

S
S




 . 

Where  1,2,...,r m , the chain ladder development factor is estimated as follows 
,

0

, 1
0

m r

i r
i

m r

i r
i

S

S















 (1) 

Following (Schmidt & Schnaus, 1996) for the development year r , the chain ladder factor


seems to be 
the most appropriate estimation of the observed development factors when the approximation error is 
given. The weight occurring in the presentation of the chain ladder factor is a weighted average. The 
chain ladder factors are weighted average and it is adopted in estimating the development factors. The 
ultimate aggregate claims is expected to meet the following conditions.  

, , ,1

m

i m i m i i rr m i
S S    

    
 

 and for  1, 2,...,i m ,  

the chain ladder estimator becomes 

, , 1

m

i m i m i rr m i
S S 
 

   

    
 

                     (2) 

Consequently, the collection    , , 0,1,2,3,...i r i r m



 of incremental claims is obtained as follows 

,0
,

, , 1

0
1

i
i r

i r i r

S if r
S S if r





   

        (3) 

3. Data Analysis 

The data used in our computation is obtained from Al-Atar (2017) and covers the periods 2009 to 2016. 

 3.1 Credibility Premium 

      1     Credibility premium Individual premium Collective premium  

where  is the credibility factor and 0 1  . The three key variables stated in premium equation are 
(i) credibility factor    
(ii) individual premium jx  and  
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(iii) collective premium   would be needed to compute credibility premium for 5 different auto insurance 
policies.  
We used the previous information about volume of accidents for 4  past years. For each policy, we first 
compute individual premium which equivalent to the average claim for 4  years using 

 
4

1

1
4

j ij
i

x x


                                                                                 (4)
 

 

where x  is the individual premium i  in the year and j  is the policy 

                           Table 2 : Past Claims for five different policies 

Year i  

Policy j  

1 2 3 4 5 
2013 0 6 6 6 3 
2014 0 2 3 4 0 
2015 0 2 0 3 0 
2016 0 2 3 3 1 

4

1

1
4

j ij
i

x x


   
0 3 3 4 1 

 
2

1

1
1

k

ij ij
i

x x
k 


   

0 4 6.667 2.333 2 
Source: own computations 

The collective premium is computed using the equations: 

 
1 1 1 1

1 1 1 1 440 12 12 16 4 2.2
5 4 20

L K L K

ij ij
j i j i

x x
K L L K


   

                  
     (5) 

where K  is the  number of years, L  is the number of schemes and  is the collective premium 
K

K V








  
 

           (6) 

Following Straub (1997),  


 is the credibility parameter V


is the variance or noise from year to year 
while  is the variance from risk policy. The values of the variances should be estimated in order to 
compute the credibility parameter. It is apparent from the credibility equations for credibility factors and 
credibility premium that as the variance of the each premium becomes bigger, the denominator of 
credibility factor also becomes bigger which means smaller credibility factor and therefore lower weights 

assigned to each premium. Therefore V


 measures the noise in each policy. Nonetheless, the larger the 
variance among the schemes, the smaller the denominator of credibility factor and the larger the 
credibility parameter and consequently smaller weight is assigned to collective premium.   defines the 

variance among policies. First V


 is computed to demonstrate that the estimation is not mathematically 

complex. Therefore, the average of the variances will be computed to obtain V


  hence  

   
2

1 1

1 1 1 10 4 6.667 2.333 2 15 3
1 5 5

L K

ijij
i j

V x x
L K



 

         
     (7) 

Now  
2

1

1
1

L

j
j

Vx
L K

 




  
          (8) 
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A cumulative claim ,i rS  is observed whenever i r m  but non-observable i r m  . Furthermore ,i rS
is present when i r m   and ,i rS will be ultimate where r m . The objective of loss reserving is to 
estimate  

(i) the future cumulative losses ,i rS             
(ii) the future losses , , , 1 i r i r i rS S     

 (iii) the calendar year reserves ,

m

j q j
j q m

 
 
   

(iv) the total reserve ,
1 1

m m

j l
j l m j


   

 
 
 

  where 1i r m    and 1,...2q m m   

The chain ladder technique heavily depends on the observed cumulative losses in the run off triangle and 
involving no prior estimators. However, it fundamentally assumes that each accident year has the same 
pattern of claim development and that there is a development pattern for factors.  

 For  0,1,2,...,i m  and  1,2,...,r m , the development factor is defined as follows ,

, 1

i r

i r

S
S




 . 

Where  1,2,...,r m , the chain ladder development factor is estimated as follows 
,

0

, 1
0

m r

i r
i

m r

i r
i

S

S















 (1) 

Following (Schmidt & Schnaus, 1996) for the development year r , the chain ladder factor


seems to be 
the most appropriate estimation of the observed development factors when the approximation error is 
given. The weight occurring in the presentation of the chain ladder factor is a weighted average. The 
chain ladder factors are weighted average and it is adopted in estimating the development factors. The 
ultimate aggregate claims is expected to meet the following conditions.  

, , ,1

m

i m i m i i rr m i
S S    

    
 

 and for  1, 2,...,i m ,  

the chain ladder estimator becomes 

, , 1

m

i m i m i rr m i
S S 
 

   

    
 

                     (2) 

Consequently, the collection    , , 0,1,2,3,...i r i r m



 of incremental claims is obtained as follows 

,0
,

, , 1

0
1

i
i r

i r i r

S if r
S S if r





   

        (3) 

3. Data Analysis 

The data used in our computation is obtained from Al-Atar (2017) and covers the periods 2009 to 2016. 

 3.1 Credibility Premium 

      1     Credibility premium Individual premium Collective premium  

where  is the credibility factor and 0 1  . The three key variables stated in premium equation are 
(i) credibility factor    
(ii) individual premium jx  and  
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(iii) collective premium   would be needed to compute credibility premium for 5 different auto insurance 
policies.  
We used the previous information about volume of accidents for 4  past years. For each policy, we first 
compute individual premium which equivalent to the average claim for 4  years using 

 
4

1

1
4

j ij
i

x x


                                                                                 (4)
 

 

where x  is the individual premium i  in the year and j  is the policy 

                           Table 2 : Past Claims for five different policies 

Year i  

Policy j  

1 2 3 4 5 
2013 0 6 6 6 3 
2014 0 2 3 4 0 
2015 0 2 0 3 0 
2016 0 2 3 3 1 

4

1

1
4

j ij
i

x x


   
0 3 3 4 1 

 
2

1

1
1

k

ij ij
i

x x
k 


   

0 4 6.667 2.333 2 
Source: own computations 

The collective premium is computed using the equations: 

 
1 1 1 1

1 1 1 1 440 12 12 16 4 2.2
5 4 20

L K L K

ij ij
j i j i

x x
K L L K


   

                  
     (5) 

where K  is the  number of years, L  is the number of schemes and  is the collective premium 
K

K V








  
 

           (6) 

Following Straub (1997),  


 is the credibility parameter V


is the variance or noise from year to year 
while  is the variance from risk policy. The values of the variances should be estimated in order to 
compute the credibility parameter. It is apparent from the credibility equations for credibility factors and 
credibility premium that as the variance of the each premium becomes bigger, the denominator of 
credibility factor also becomes bigger which means smaller credibility factor and therefore lower weights 

assigned to each premium. Therefore V


 measures the noise in each policy. Nonetheless, the larger the 
variance among the schemes, the smaller the denominator of credibility factor and the larger the 
credibility parameter and consequently smaller weight is assigned to collective premium.   defines the 

variance among policies. First V


 is computed to demonstrate that the estimation is not mathematically 

complex. Therefore, the average of the variances will be computed to obtain V


  hence  

   
2

1 1

1 1 1 10 4 6.667 2.333 2 15 3
1 5 5

L K

ijij
i j

V x x
L K



 

         
     (7) 

Now  
2

1

1
1

L

j
j

Vx
L K

 




  
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            2 2 2 2 21 30 2.2 3 2.2 3 2.2 4 2.2 1 2.2
5 1 4

                
 

   1 4.84 0.64 0.64 3.24 1.44 0.75 2.7 0.75 1.95
4

           

To estimate the credibility factor, we use 

 
1.95 4 7.8 0.7222

1.95 4 3 10.8
K

K V









   

   
 

      (9) 

0.7222


             (9a) 

Therefore credibility factor is obtained as 0.7222


  . This proves that bigger weight has been assigned 
to individual experience than to the overall experience. Following (Straub, 1997), the credibility factor is 
numerically estimated for each policy through the following formula 

1ij jU x  
        

 
         (10) 

                    Table 3 : Credibility Premium 
 

Policy j  jx  ijU


 

scheme 1  0  . 0 1 . 0.6112jU


    0 722 0 7222    

scheme 2 3  . 3 1 . 2.7778jU


    0 722 0 7222  

scheme 3 3  . 3 1 . 2.7778jU


    0 722 0 7222  

scheme 4 4  . 4 1 . 3.50 000jU


    722 0 7222  

scheme 5 1  . 1 1 . 1.30 333jU


    722 0 7222  
Source: own computations 
 

Chain Ladder Method 
The cumulative claims are denoted by ,i jS  where i is the accident year and j the development year 

                          Table 4 : Cumulative Run-off Triangle 

Development year j  0  1 2  3  …. y  

Accident year i        
2013 

2013,0S  2013,1S  2013,2S  2013,3S   
2013, yS  

2014 
2014,0S  2014,1S  2014,2S  2014,3S    

2015 
2015,0S  2015,1S  2015,2S     

2016 
2016,0S  2016,1S      

 
,0yS       

year j  defines the year when all claims are paid. Suppose the claims in each year is defined as ijX , then 

the total claim is   

2013,0 2013,1 2013,2 2013,3 2013,... yX X X X X      
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    The table 4  above shows the cumulative claims. However, the run-off triangle with incremental claims 
could also be used. The unknown portion of the triangle is obtained by using development factors. 

Development factor is defined as: 
 

 
1

1

1
y i j

ij
i

j y i j

ij
i

S

S


 



 








         (11) 

Following (Oliveri & Pitacco, 2010), development factor describes the cumulative aggregate for any 

accident year i . The increment of the claims are fully covered till year y , 1j


  
for every development year. Final development factor is estimated as follows: 

 1 2 3 1...j j j j j yG     


                 (12) 

The final loses are computed as follows  1 2 3 1...jiy ij ij j j j j yS S G S     


            (13) 

                              Table 5 : Incremental Run-off Triangle 
 

                               Development Year j  

A
cc

id
en

t Y
ea

r 
i   

0 1 2 3 4 5 6 7 
2009 1232 946 520 722 316 165 48 14 
2010 1469 1201 708 845 461 235 56 
2011 1652 1416 959 954 605 287 
2012 1831 1634 1124 1087 725 
2013 2074 1919 1330 1240 
2014 2434 2263 1661 
2015 2810 2108 
2016 3072 

    Source: Al-Atar (2017) 
The claims in incremental run-off triangle above are summed up to obtain the cumulative run-off triangle. 

                                 Table 6 : Cumulative Run-Off Triangle 
 

 Development Year j  

A
cc

id
en

t Y
ea

r 
 

0 1 2 3 4 5 6 7 
2009 1232 2178 2698 3420 3736 3901 3949 3963 
 2010 1469 2670 3378 4223 4684 4919 4975   
2011 1652 3068 4027 4981 5586 5873     
2012 1831 3465 4589 5676 6401       
2013 2074 3993 5323 6563         
2014 2434 4697 6358           
2015 2810 4918             
2016 3072               

             Source: own computations 
 

The development factors are computed below to forecast the unknown part of the triangle 
6

1
0

0 6

0
0

2178 2670 3068 3465 3993 4697 4918 1.85
1232 1469 1652 1831 2074 2434 2810

i
i

i
i

S

S







     
  

     




   (14) 
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Chain Ladder Method 
The cumulative claims are denoted by ,i jS  where i is the accident year and j the development year 

                          Table 4 : Cumulative Run-off Triangle 

Development year j  0  1 2  3  …. y  

Accident year i        
2013 

2013,0S  2013,1S  2013,2S  2013,3S   
2013, yS  

2014 
2014,0S  2014,1S  2014,2S  2014,3S    

2015 
2015,0S  2015,1S  2015,2S     

2016 
2016,0S  2016,1S      
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year j  defines the year when all claims are paid. Suppose the claims in each year is defined as ijX , then 

the total claim is   
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    The table 4  above shows the cumulative claims. However, the run-off triangle with incremental claims 
could also be used. The unknown portion of the triangle is obtained by using development factors. 

Development factor is defined as: 
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Following (Oliveri & Pitacco, 2010), development factor describes the cumulative aggregate for any 

accident year i . The increment of the claims are fully covered till year y , 1j
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for every development year. Final development factor is estimated as follows: 
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5

2
0

1 6

1
0

2698 3378 4027 4589 5323 6358 1.31
2178 2670 3068 3465 3993 4697

i
i

i
i

S

S
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




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  
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


    (15) 

4

3
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2 4

2
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2698 3378 4027 4589 5323
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


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3 3

3
0
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3420 4223 4981 5676
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i

i
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S
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

  
  
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


      (17) 
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5
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4 2
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0

3901 4919 5873 1.05
3736 4684 5586
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


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


       (18) 

1

6
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5 1

5
0

3949 4975 1.01
3901 4919

i
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i
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S

S








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




        (19) 

1
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0

6 1

6
0

3963 1.00
3949

i
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i
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S

S






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


         (20) 

However, the final development factors jG


 are estimated as follows 

0 0 1 2 3 4 5 1.85 1.31 1.24 1.16 1.05 1.01 3.70G      
      

                (21) 

1 1 2 3 4 5 6 1.31 1.24 1.16 1.05 1.01 1.00 2.00G      
      

                (22) 

2 2 3 4 5 6 1.24 1.16 1.05 1.01 1.00 1.53G     
     

               (23) 

3 3 4 5 6 1.16 1.05 1.01 1.00 1.23G    
    

                           (24) 

4 4 5 6 1.05 1.01 1.00 1.06G   
   

              (25) 

5 5 6 1.01 1.00 1.01G  
  

             (26) 

6 6 1.00G 
 

            (27) 
                                              Table 7 : Development Factors 
 

Development Year j  0 1 2 3 4 5 6 

j


 1.85 1.31 1.24 1.16 1.05 1.01 1.00 

jG


 
3.70 2.00 1.53 1.23 1.06 1.01 1.00 

      Source: own computations 
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The final loses 6iS  and reserves iR  for years 2009 to 2016 are computed below. The final reserves 
describe the changes occurring between the final loss and the last known claim so that the sum of the 
computed final reserves equates to the total chain ladder reserve.  
 

                                                     Table 8 : Estimation of Final Loses 
 

 
                                      FINAL LOSES  

 
616 15 4975 1.00 4975S S G



          , 526 24 5873 1.01 5931.73S S G


      
 

436 33 6401 1.06 6785.06S S G


     , 346 42 6563 1.23 8072.49S S G


      

256 51 6358 1.53 97272.74S S G


     , 166 60 4918 2.00 9836.00S S G


      

076 70 3072 3.70 11366.40S S G


      
  

             Total  
Source: own computations 
 
                          Table 9 : Estimation of Final Reserve 
 

               Reserves  
 

1 16 15 4975 4975 0R S S                            , 2 26 24 5931.73 5873 58.73R S S      

 
3 36 33 6785.06 6401 384.06R S S            , 4 46 42 8072. 9149 656 509.43R S S       

5 56 51 9727. 4374 635 369.78R S S     ,    , 6 66 60 9836.00 044918. 918.000R S S      

7 77 70 11366.4 080 3072. 294.400R S S      
  

               Total  
Source: own computations 

Therefore the total chain ladder reserve is 

           
7

1 2 3 4 5 6 7
1

reserve i
n

CL R R R R R R R R


         (28) 

          0 58.73 384.06 1509.49 3369.74 8294.40 18,534.42reserveCL            
and equals the value of the total expected future claims for accidents that occurred between 2009 and 
2016. From the foregoing, the chain ladder method seems computationally easy but suffers the 
following set-backs  

(i) Following (Straub, 1997) jG


 are the estimated parameter which could result in serious bias  

(ii) It is responsive to the stimulus of variation of a single number iy iS    values  

(iii)  The technique is superfluous where 0 0yX  or  0iy iS     

(iv)  It does not seem to give room to use information on the earned premium  
(v) If the current claims amount approach zero or increases without bounds then, the Chain-Ladder 

prediction leads to inadequate results 
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However, the final development factors jG


 are estimated as follows 

0 0 1 2 3 4 5 1.85 1.31 1.24 1.16 1.05 1.01 3.70G      
      

                (21) 

1 1 2 3 4 5 6 1.31 1.24 1.16 1.05 1.01 1.00 2.00G      
      

                (22) 

2 2 3 4 5 6 1.24 1.16 1.05 1.01 1.00 1.53G     
     

               (23) 

3 3 4 5 6 1.16 1.05 1.01 1.00 1.23G    
    

                           (24) 

4 4 5 6 1.05 1.01 1.00 1.06G   
   

              (25) 

5 5 6 1.01 1.00 1.01G  
  

             (26) 

6 6 1.00G 
 

            (27) 
                                              Table 7 : Development Factors 
 

Development Year j  0 1 2 3 4 5 6 

j


 1.85 1.31 1.24 1.16 1.05 1.01 1.00 

jG


 
3.70 2.00 1.53 1.23 1.06 1.01 1.00 

      Source: own computations 
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The final loses 6iS  and reserves iR  for years 2009 to 2016 are computed below. The final reserves 
describe the changes occurring between the final loss and the last known claim so that the sum of the 
computed final reserves equates to the total chain ladder reserve.  
 

                                                     Table 8 : Estimation of Final Loses 
 

 
                                      FINAL LOSES  
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436 33 6401 1.06 6785.06S S G

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

      

256 51 6358 1.53 97272.74S S G


     , 166 60 4918 2.00 9836.00S S G


      

076 70 3072 3.70 11366.40S S G


      
  

             Total  
Source: own computations 
 
                          Table 9 : Estimation of Final Reserve 
 

               Reserves  
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3 36 33 6785.06 6401 384.06R S S            , 4 46 42 8072. 9149 656 509.43R S S       

5 56 51 9727. 4374 635 369.78R S S     ,    , 6 66 60 9836.00 044918. 918.000R S S      

7 77 70 11366.4 080 3072. 294.400R S S      
  

               Total  
Source: own computations 

Therefore the total chain ladder reserve is 

           
7

1 2 3 4 5 6 7
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

         (28) 

          0 58.73 384.06 1509.49 3369.74 8294.40 18,534.42reserveCL            
and equals the value of the total expected future claims for accidents that occurred between 2009 and 
2016. From the foregoing, the chain ladder method seems computationally easy but suffers the 
following set-backs  

(i) Following (Straub, 1997) jG


 are the estimated parameter which could result in serious bias  

(ii) It is responsive to the stimulus of variation of a single number iy iS    values  

(iii)  The technique is superfluous where 0 0yX  or  0iy iS     

(iv)  It does not seem to give room to use information on the earned premium  
(v) If the current claims amount approach zero or increases without bounds then, the Chain-Ladder 

prediction leads to inadequate results 
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Cape Cod Method 
The cape-cod method is developed to deal with the deficiencies of the chain ladder method by 
embedding the lag factors and requisite information on earned premium. The mathematical principle 
behind the theory of cape-cod technique is to compare defined losses with used-up premiums. The 
reserve  iR  for year i  is obtained as follows 

  CFLPR kii  1
ˆ1                                                                                                          (30) 

Where iR  is the reserve in year i , iP  is the paid premium in year i , 1KL  is the lag parameters and 

CF is the correction factor. Technically speaking, the lag parameters measures how much of the 
expected final loss of a given accident year is obtained by the end of the development year j . 
Mathematically, the lag factor is estimated as follows 

1ˆ ˆ1jj j

j

L G L
G



    (31) 

The correction factor serves as the ratio of the experienced claims to the used premiums for the 
experienced development years. The cape-cod technically allows us to compute claims and premiums 
for many accident years making it more computationally robust in comparison to the chain ladder 
method. The correction factor for cape-cod method is: 

, 1
1

1
1

ˆ

y

i y
i

y

f i
i

S
CF

L P












      

accident year i , then the reserve formula is defined as follows 

  , 1
1 , ,

1 1

1ˆ1 1 1ˆ ˆ
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y ii i k i y i i y i
y i k

S
R P L S G S

L P L
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                                          (33)                   
 

It will be apparent that where only one accident year i  is adopted, then the cape-cod reserve 
computations will equate to the chain ladder reserve computation. Consequently, following (Straub, 
1997), the cape-cod technique defines a mathematical variant of the chain ladder technique which 
seems less dependent on the variations of a single observation. It is pertinent to observe that in cape-
cod technique, the cumulative run-off triangle remains the same as in the previous discussions, 
however the information on the paid premium iP  may differ.  
 

                             Table 10 : Cumulative Run-Off Triangle Including Paid Premiums 
 

  Development Year j  

 

Accident 
Years Premiums 0 1 2 3 4 5 6 

7 
 

2009 4572 1232 2178 2698 3420 3736 3901 3949 
3963 
 

2010 5397 1469 2670 3378 4223 4684 4919 4975   
2011 6192 1652 3068 4027 4981 5586 5873     
2012 6872 1831 3465 4589 5676 6401       
2013 7534 2074 3993 5323 6563         
2014 9219 2434 4677 6358           
2015 10328 2810 4918             
2016 12358 3072               

         Source: own computations 
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The lag factors are estimated adopting the final development factors from the chain ladder method. 
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                           Table 11: Lag Factors 
 

Policy j  0 1 2 3 4 5 6 

jL


 
0.27 0.50 0.65 0.81 0.94 0.99 1.00 

          Source: own computations 
The lag parameters are subsequently used to estimate the correction factor, 
The correction factor (CF) is defined as follows 
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         
   

4975 5873 6401 6563 6358 4918 3072
1.00 5397 0.99 6192 0.94 6872 0.81 7534 0.65 9217

0.50 10328 0.27 12358

CF      


        

   

  (43) 

0.99CF              (44) 
The cape-cod (CC) reserves are estimated as a product of the correction factor and the residual premium 
with available future losses: 

11 yreserve iCC P L CF



     
 

                    (45) 

                         Table 12 : Cape Cod Reserves 
 

i  
11 yL




  
 

 iP  
11 yi iR P L CF




     
 

  

1 0.00 5397 0.0000 
2 0.02 6192 61.3008 
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embedding the lag factors and requisite information on earned premium. The mathematical principle 
behind the theory of cape-cod technique is to compare defined losses with used-up premiums. The 
reserve  iR  for year i  is obtained as follows 
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Where iR  is the reserve in year i , iP  is the paid premium in year i , 1KL  is the lag parameters and 

CF is the correction factor. Technically speaking, the lag parameters measures how much of the 
expected final loss of a given accident year is obtained by the end of the development year j . 
Mathematically, the lag factor is estimated as follows 
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The correction factor serves as the ratio of the experienced claims to the used premiums for the 
experienced development years. The cape-cod technically allows us to compute claims and premiums 
for many accident years making it more computationally robust in comparison to the chain ladder 
method. The correction factor for cape-cod method is: 
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It will be apparent that where only one accident year i  is adopted, then the cape-cod reserve 
computations will equate to the chain ladder reserve computation. Consequently, following (Straub, 
1997), the cape-cod technique defines a mathematical variant of the chain ladder technique which 
seems less dependent on the variations of a single observation. It is pertinent to observe that in cape-
cod technique, the cumulative run-off triangle remains the same as in the previous discussions, 
however the information on the paid premium iP  may differ.  
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  Development Year j  

 

Accident 
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The lag factors are estimated adopting the final development factors from the chain ladder method. 
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The cape-cod (CC) reserves are estimated as a product of the correction factor and the residual premium 
with available future losses: 
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3 0.06 6872 408.1968 
4 0.19 7534 1417.1454 
5 0.35 9217 3193.6905 
6 0.48 10328 5112.36 
7 0.73 12358 8931.1266 
 Total   19,123.8201 

Source: own computations 
 

Discussion of Result 
 

Having computed the individual premium and collective premium, it is then sufficient to appraise the 
credibility parameter̂ . In order to obtain the credibility parameter, it is instructive that we investigate 
the values of the variances V̂   and  . As observed from the equations for credibility factors and 
credibility premium, the bigger the variance of the individual premium, the higher is denominator of 
credibility factor meaning lower is the credibility factor and consequently smaller weight is mapped to 
individual premium. Consequently the parameter V̂  measures the noise in individual policy. However, 
the bigger the variance among the schemes, the lower is denominator of credibility parameter and the 
bigger is the credibility factor and hence a lower weight is mapped to the collective premium hence   
measures the noise among the schemes.  
In table 2 , we obtained the collective premium. In the same table, the computed credibility factor is 
0.7222 showing a bigger weight being mapped to the individual experience rather than to the all-
encompassing experience.  
In table 3 , it is apparent that scheme holders 2 , 3  and 4  would be bound to pay bigger premiums in 
comparison to their average claim while policyholders 1 and 5  will be bound to pay smaller premiums 
compared to their average claim. Underwriters can embark on extensive claims and premium data analytics 
so as to examine the insured’s behaviour. Based on the premium paid and the average claims, an 
underwriter could possibly classify two different sets of insured as aggressive and defensive scheme 
holders.  
Table 10  on cape-cod presents the run-off triangle containing cumulative data over the incurred claims in 
respect of accident year and development year. 
Table 5 , describes the source data while table 6  is the cumulative run-off triangle of the source data.  
From Table 7 , it is apparent that the initial development factors  IND  are  

 1.85,1.31,1.24,1.16,1.05,1.01,1.00IND        (46) 

while the final values of the computed development factors  FIND are obtained as follows 

 3.70, 2.00,1.53,1.23,1.06,1.01,1.00FIND        (47) 
These development factors are adopted to forecast the unknown area of the run-off triangle. Note that the 
initial development factor is used to compute the final development factor. 
Table 8 shows the numerical estimate of the final losses and actuarial reserve. From table9 , the chain-
ladder reserve value is 18,534.42 and represents the total value of the expected future claims for those 
accidents that evolved between the periods 2009 2016 . 
In order to apply the cape cod technique efficiently in table 12 , it is sufficient that we first compute an 
estimate of the lag factors in table 11. Usually, the lag factor is the reciprocal of the final development 
factor. Furthermore, in other to evaluate our reserve, it becomes necessary that we compute the correction 
factor using table 10 . The computed correction factor is 0.99 . In the final analysis, the total cape-cod 
reserve is 19,123.84  as shown in table 12 .  
This has confirmed that the chain-ladder is a subset of cape-cod method. It is immediately apparent that 
the computational comparison from the evaluation of cape-cod and chain-ladder reveals that  

18,534.42 19,123.84RESERVE RESERVECL CC         (48) 
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4.Conclusion 
 

Insurance provisions are part of legal requirements for general insurance business since they represent a 
higher fraction of underwriting liabilities. General insurers require a robust capital buffer because they are 
constantly exposed to high level uncertainty of claims. In view of the uncertainty and economic 
dimensions that reliability of reserves connotes, the valuation directly impacts on the fiscal strength of 
general business insurance firms and hence have a pervasive impact on their solvency capital 
requirements, consequently it is necessary to adopt the data analytics and decide which reserve technique 
will be preferred. From the analysis, it is apparent that the two actuarial methods of computing claims 
provisions were applied on the omnibus portfolio over the run-off triangles and then adopted to compute 
the claims reserve. The actuarial theory of development parameter and lag function characteristics in the 
run-off triangle are the basic tools to estimate accurate claims reserve. In practice, the classical 
equivalence principle that the present value of expected premiums must equate to the present value of the 
expected claims could be actuarially invalid in general insurance and as a result, the classical ruin theory 
assumes that pure risk premium without the requisite loading term will not be actuarially sufficient since 
at the long run, ruin may be unavoidably orchestrated even though the underwriter could have a sufficient 
initial reserve base. Underwriters adopt different premium mechanisms usually the expected and the 
variance premium hypothesis. However, premiums in general insurance business are also computed 
through premium principles but the classical ruin theory assumes that a requisite fixed loading  should 
be added in order to militate against ruinous conditions.  
 

Underwriters, in general, business insurance attempt to classify insurance risks into homogeneous groups 
and advise identical premium on group members. Since uncertainties vary in form, underwriters advise 
and impose premium that is a function of collective and individual premium. Based on the previous 
experience, insurance firms could estimate the premium value as a weighted average function between the 
two premiums but if the variance of a typical scheme holder is bigger compared to the variance of the 
whole group, then a bigger weight will be mapped to the collective premium and vice versa.  
 

The reliability of evaluating reserves directly impacts on the financial health of an insurance firm and 
therefore this study has demonstrated claims reserving estimation techniques in general insurance 
business based on classical Chain-Ladder methods that are normally employed in actuarial practice for the 
evaluation of outstanding claims reserves in non-life insurance business. Specifically, the development 
factors in Cape-Cod were computed based on the Lag parameters and correction factors. The clear 
advantage of these techniques lies in the expedience of their application in loss reserving. The results from 
this study under the two chain claims reserving application show varied differences between the classical 
Chain-Ladder and Cape-Cod in respect of the claims reserve level. 
Future research work could be carried out using stochastic technique where relevant data is available.  
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3 0.06 6872 408.1968 
4 0.19 7534 1417.1454 
5 0.35 9217 3193.6905 
6 0.48 10328 5112.36 
7 0.73 12358 8931.1266 
 Total   19,123.8201 

Source: own computations 
 

Discussion of Result 
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the computational comparison from the evaluation of cape-cod and chain-ladder reveals that  

18,534.42 19,123.84RESERVE RESERVECL CC         (48) 
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run-off triangle are the basic tools to estimate accurate claims reserve. In practice, the classical 
equivalence principle that the present value of expected premiums must equate to the present value of the 
expected claims could be actuarially invalid in general insurance and as a result, the classical ruin theory 
assumes that pure risk premium without the requisite loading term will not be actuarially sufficient since 
at the long run, ruin may be unavoidably orchestrated even though the underwriter could have a sufficient 
initial reserve base. Underwriters adopt different premium mechanisms usually the expected and the 
variance premium hypothesis. However, premiums in general insurance business are also computed 
through premium principles but the classical ruin theory assumes that a requisite fixed loading  should 
be added in order to militate against ruinous conditions.  
 

Underwriters, in general, business insurance attempt to classify insurance risks into homogeneous groups 
and advise identical premium on group members. Since uncertainties vary in form, underwriters advise 
and impose premium that is a function of collective and individual premium. Based on the previous 
experience, insurance firms could estimate the premium value as a weighted average function between the 
two premiums but if the variance of a typical scheme holder is bigger compared to the variance of the 
whole group, then a bigger weight will be mapped to the collective premium and vice versa.  
 

The reliability of evaluating reserves directly impacts on the financial health of an insurance firm and 
therefore this study has demonstrated claims reserving estimation techniques in general insurance 
business based on classical Chain-Ladder methods that are normally employed in actuarial practice for the 
evaluation of outstanding claims reserves in non-life insurance business. Specifically, the development 
factors in Cape-Cod were computed based on the Lag parameters and correction factors. The clear 
advantage of these techniques lies in the expedience of their application in loss reserving. The results from 
this study under the two chain claims reserving application show varied differences between the classical 
Chain-Ladder and Cape-Cod in respect of the claims reserve level. 
Future research work could be carried out using stochastic technique where relevant data is available.  
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Abstract:  In this study, a freshly fitted forecast model is put up against a standard procedure for comparison. 
But first, the essay makes a distinction between the confusing notion of a prediction model's accuracy measure 
and a comparison of forecast models in terms of gauging their relative and absolute accuracy measures in 
various scenarios. A forecast model's accuracy measure by itself does not give a complete picture of how 
much better a newly fitted model is than other benchmark models built from the same dataset. 
 

This article illustrates the comparison of a multiple regression model as a novel fit with the naive forecasting 
methodology, a well-known benchmark in the forecasting area, using cross-validation techniques. The 
performance of the forecast models was assessed using two generally used accuracy measures, Mean Absolute 
Error (MAE) and Mean Absolute Percentage Error (MAPE). It was discovered that the multiple regression 
model performs better than the naive technique in both MAE and MAPE. This meant the multiple regression 
model was a worthy fit.  
 

In summary, it is crucial to compare a newly developed forecast model with benchmark models to evaluate its 
performance accurately. This process allows for the identification of the most suitable forecasting method for 
a specific context and promotes the development of improved techniques for comparing forecast models in the 
future. 
 
1.Introduction  
 
Forecasting is a technique that utilizes historical data to estimate future trends (Tuovila, 2022). Different 
forecast models are developed through various approaches for the same purpose and data set (Chambers, 
Mulick, & Smith, 1971). The selection of a forecasting method depends on various factors, such as the context 
of the forecast, availability of historical data, degree of accuracy desired, and time period to forecast 
(Chambers et al., 1971).Forecast accuracy measures are essential for evaluating the performance of a 
forecasting model. There are various methods to measure the accuracy of a forecast, including  
 

Mean Forecast Error (MFE) =
Σ(A - F)

 n  ,                                     (Armstrong & Collopy, 1992), 

Mean Absolute Error (MAE) = 
1
 n  Σ|A-F|  ,                                 (Willmott & Matsuura, 2005), 

Mean Absolute Percentage Error (MAPE) =  
1
 n  Σ 



A-F

A  ×100, (Armstrong & Collopy, 1992), and  

Root Mean Square Error (RMSE) = 
1
 n  Σ(A-F)2,                           (Montgomery et al., 2012), 

 


