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5. Conclusion: 

This paper aims to establish the Laplace transformation of some hypergeometric functions. The 
nature of convergence of Laplace Transform and Hypergeometric function is observed in 3.1.The Laplace 
transform of Hypergeometric series of Kummer’s confluent function 1F1, Generalized Hypergeometric 
Function 2F2 and 3F3, Kummer’s Hypergeometric function 1F1 and 2F1 in 3.2.It has also shown the 
relationship between Laplace transform and Hypergeometric function. The application of first shifting 
theorem of Laplace transform to Hypergeometric Function 2F1 and the Laplace transform of att n sin  are 
well illustrated in section 4. The list of formulae presented here are applicable in Mathematics, 
Engineering, Biology and Applied Physics. 
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Abstract: In this article, a new distribution having three called Modified Generalized Exponential 
Distribution is proposed. Important statistical properties of the proposed model like survival function, 
hazard rate function, the probability density function (PDF), the cumulative distribution function (CDF), 
quantile function, skewness, and kurtosis are discussed here.  Least Square Estimation (LSE), Cramer-
Von Mises (CVM) and Maximum Likelihood estimators (MLE) methods are used for estimation of 
parameters using R programming software. A data set is discussed and performed the goodness-of-fit to 
assess the applications of the proposed distribution. Various methods of model comparison and model 
validation are also used. The proposed model Modified Generalized Exponential Distribution is more 
applicable as compared to some existing probability model. 
   
Keywords: Exponential distribution, Estimation, Hazard function, Cramer-von Mises,  
                   Maximum likelihood. 
 

1. Introduction 

Probability models are very useful in reliability analysis of different fields of biological science, applied 
statistics as well as engineering. During the modeling of the data, probability models available so far may 
not produce better fit in modeling reliability data. Due to this reason, researchers have been adjusting 
traditional probability models and describing the acceptance of those models in practice. This can be done 
by adding one or more extra parameters to the baseline distribution. Addition of extra parameters 
generates new probability models. These modified models usually provide a better fit to the data than the 
traditional models. 

In the last decades, exponential model is frequently used as baseline model to create new probability 
models. In literature, we can find a lot of modifications of the exponential distributions. Some of the 
modified distributions are generalized exponential (GE) [Gupta & Kundu, 2007], generalized inverted 
exponential distribution [Abouammoh & Alshingiti, 2009], gamma EE [Ristic & Balakrishnan, 2012] and 
exponential extension (EE) model [Kumar, 2010] etc. 
These lifetime models may have bathtub-shaped Hazard rate function (hrf).In real life we can find many 
data that have bathtub-shaped hrf. In literature we can also find many modifications of Weibull 
distribution. The two parameter Weibull distribution is given as 

                                        ( , , ) exp[ ( , )]F y y                                                (1) 
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Above distribution does not have bathtub hrf. This distribution is modified to generate several 
distributions that possess bathtub hrf. One of the modifications of Weibull distribution is exponentiated 
Weibull distribution [Mudholkar & Srivastava (1993)]. Taking appropriate limits on beta integrated 
distribution [Lai et al.  (2016)] to get new lifetime distributions as 

                             ( ) exp[ .exp( )]bF y ay y                                                        (2) 

Here, generalized exponential distribution is modified to introduce new probability model called modified 
generalized exponential distribution. The CDF of generalized exponential distribution is given as, 

 ( , , ) 1 xF x e
                                    (3) 

The CDF and PDF of the Modified Generalized exponential (MGE) model can be given as, 

 ( ; , , ) 1 exp ; 0, 0, 0, 0xF x x e x
               

 

      1
( ; , , ) 1 exp 1 expx xf x x x x e x e

        


         
2. Model Analysis 
Modified Generalized Exponential (MGE) distribution: 
Cumulative distribution function of Modified Generalized Exponential distribution is defined by 

                 
 ( ; , , ) 1 exp ; 0, 0, 0, 0xF x x e x

                                
(4) 

And the PDF of Modified Generalized Exponential distribution can be as 

             
      1

( ; , , ) 1 exp 1 expx xf x x x x e x e
        


                       (5) 
Survival function:  
The Survival function of MGE model is  

      
 ( ; , , ) 1 1 exp ; 0xR x x e x

          
                              (6) 

Hazard rate function: 
Hazard rate function of MGE distribution with parameters  , ,    is 

             
 

11
(1 ) 1 1 1

x x xx xe xe xeh x x e e e e
       


  

                             
(7) 

Reverse hazard function of MGE: 

 Reverse hazard function of MGE model can be expressed as 

1
( ) (1 ) 1 1 ;   0,

x x xx xe xe xe
revh x x e e e e x

       
 

                                   
(8) 

The various shapes of pdf and hazard rate function of MGE  , ,   at various values of constants are 

displayed in Figure 1. 
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Figure 1: Graphs of PDF in left panel and HRF in right panel for fixed λ. 

Cumulative hazard function: 
The cumulative hazard rate function of the MGE (α, β, λ) is defined as 

      log 1 ( )

        

x
H x h y dy F x



     

  log 1 1 ;   0,  , , 0
xxee x

   
            

                   (9) 

Quantile function: 
Let X be a non-negative random variable with CDF as  XF x then quantile function can be defined by 

             (1/ )log 1 0 ; 0 1.xx e p p        

                  
 (1/ )log( ) log( ) log log 1 0 ; 0 1.x x p p           

 

Random Deviate Generation: 
Random deviate generation for the MGE  , ,   is displayed in expression (10) as, 

  (1/ )log 1 0 ; 0 1.xx e u u           (10) 

where u has the uniform U(0, 1) distribution. 

Skewness and Kurtosis:  
The Bowley’s coefficient of skewness based on quartiles is, 

 
     
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Above distribution does not have bathtub hrf. This distribution is modified to generate several 
distributions that possess bathtub hrf. One of the modifications of Weibull distribution is exponentiated 
Weibull distribution [Mudholkar & Srivastava (1993)]. Taking appropriate limits on beta integrated 
distribution [Lai et al.  (2016)] to get new lifetime distributions as 
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Here, generalized exponential distribution is modified to introduce new probability model called modified 
generalized exponential distribution. The CDF of generalized exponential distribution is given as, 
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And the PDF of Modified Generalized Exponential distribution can be as 

             
      1

( ; , , ) 1 exp 1 expx xf x x x x e x e
        

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Survival function:  
The Survival function of MGE model is  
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Hazard rate function: 
Hazard rate function of MGE distribution with parameters  , ,    is 

             
 
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(1 ) 1 1 1

x x xx xe xe xeh x x e e e e
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Reverse hazard function of MGE: 

 Reverse hazard function of MGE model can be expressed as 
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( ) (1 ) 1 1 ;   0,

x x xx xe xe xe
revh x x e e e e x

       
 
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The various shapes of pdf and hazard rate function of MGE  , ,   at various values of constants are 

displayed in Figure 1. 
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Figure 1: Graphs of PDF in left panel and HRF in right panel for fixed λ. 

Cumulative hazard function: 
The cumulative hazard rate function of the MGE (α, β, λ) is defined as 

      log 1 ( )
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Quantile function: 
Let X be a non-negative random variable with CDF as  XF x then quantile function can be defined by 
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Random Deviate Generation: 
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Coefficient of kurtosis is, 

 
       

   
0.875 0.625 0.125 0.375

0.75 0.25
Q Q Q Q

K Moors
Q Q

  
 


 

3. Parameter Estimation 

3.1. Maximum Likelihood Estimation  

There are different methods of parameter estimation available in statistics. For estimation of parameters, 
we used three most applicable and useful methods of estimation. Firstly we have used maximum 
likelihood estimation method. Let n denotes the number of items, then summation up to n in density 
function of MGE to get the log- likelihood function of random sample drawn from MGE distribution is 
given in (5.3.1). That is, taking log and then summation up to n in density function of proposed model. 
Resulting log-likelihood function is given in expression (11) 

 
1 1 1

, , | log log log(1 )
n n n

xii i i
i i i

x n n x x x e       
  

         

         +  
1

( 1) log 1 exp
n

xii
i

x e 


                                                                                  (11) 

As α, β, and λ are the unknown parameters of the distribution, so for estimation, getting differentiation 
with respect to these unknown parameters and resulting expressions are mentioned below as, 

1
1

n xix ei

i

n e


 




  
     


 

 2 2

1 1 1 1
1

1

n n n n xix x x ei i i ii i i
ii i i i

x
x x e x e e

x
    

 


   

   
           
   

 

 
1 1

1
n n xix x x ei i ii i

i i

n x e x e e
  

 


 

  
       

 
 

Equating 0
  
  

  
  
    and solving simultaneously for α, β, and λ, we estimated ML estimators 

of the parameters MGE  , ,    model.  

Generally, this is not possible for solving non-linear equations above so with the aid of suitable computer 
package we can estimate them easily.  

Suppose  , ,     is the parameter vector of MGE  , ,    with respective MLE of   as

 ˆ ˆˆ( , , )    . The asymptotic normality is given as,      1
3 0,N I

    
 

 .where, 

 

2 2 2

2

2 2 2

2

2 2 2

2

l l lE E E

l l lI E E E

l l lE E E

   

   

    

        
                    
 

        
                       

                              
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Since   is unknown so it is worthless that the MLE has an asymptotic variance    1
I


 . Using the 

estimated value of parameters one can approximate the asymptotic variance. And observed fisher 

information matrix ( )O  can be used as an estimate of  I   in form of hessian matrix H as, 



 

 
 

2 2 2

2

2 2 2

|2

2 2 2

2
| ˆ ˆˆ , , ,

ˆ ˆˆ ˆˆ

( ) ˆ ˆ ˆˆˆ

ˆ ˆ ˆ ˆˆ

l l l

l l lO H

l l l

  

   

   

    

 

   
 

    
 

        
    
 
   
 
     

 

We can use Newton-Raphson technique for optimizing the likelihood can produce the observed 
information matrix. The variance covariance matrix is, 

 
 

1

|

ˆ ˆˆ ˆ ˆvar ( ) cov( , ) cov( , )
ˆ ˆ ˆ ˆˆcov( , ) var( ) cov( , )
ˆ ˆ ˆ ˆˆcov ( , ) cov( , ) var ( )

H

    

    

    


  
  

      
     
 

   (12) 

Using asymptotic normality for MLEs, 100(1-b) % approximated CI of , , and    of MGE  , ,    
can be constructed as, 
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ˆ ˆ ˆ ˆˆ ˆvar( ), var( ), and var( )b b bZ Z Z        ,  

where /2bZ be upper percentile for Standard normal variate. 

3.2. Least-Square Estimation  
Consider  ( )iF X  is the CDF of the variables      1 2 nX  X   X     . Here  1 2, ,  , nX X X  is a 

random sample having size n with a distribution function F (.). LSE of the unknown parameters α, β, and 
λ, of MGE  , ,    distribution can be obtained by minimizing (13) with respect to unknown 
parameters α, β, and λ. 
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Substituting the distribution function of MGE in (13), we get 
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Following expression of partial derivatives is obtained by differentiating (14) with respect to parameters. 
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Coefficient of kurtosis is, 

 
       

   
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3. Parameter Estimation 

3.1. Maximum Likelihood Estimation  

There are different methods of parameter estimation available in statistics. For estimation of parameters, 
we used three most applicable and useful methods of estimation. Firstly we have used maximum 
likelihood estimation method. Let n denotes the number of items, then summation up to n in density 
function of MGE to get the log- likelihood function of random sample drawn from MGE distribution is 
given in (5.3.1). That is, taking log and then summation up to n in density function of proposed model. 
Resulting log-likelihood function is given in expression (11) 
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As α, β, and λ are the unknown parameters of the distribution, so for estimation, getting differentiation 
with respect to these unknown parameters and resulting expressions are mentioned below as, 
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Equating 0
  
  

  
  
    and solving simultaneously for α, β, and λ, we estimated ML estimators 

of the parameters MGE  , ,    model.  

Generally, this is not possible for solving non-linear equations above so with the aid of suitable computer 
package we can estimate them easily.  

Suppose  , ,     is the parameter vector of MGE  , ,    with respective MLE of   as

 ˆ ˆˆ( , , )    . The asymptotic normality is given as,      1
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Since   is unknown so it is worthless that the MLE has an asymptotic variance    1
I


 . Using the 

estimated value of parameters one can approximate the asymptotic variance. And observed fisher 

information matrix ( )O  can be used as an estimate of  I   in form of hessian matrix H as, 
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We can use Newton-Raphson technique for optimizing the likelihood can produce the observed 
information matrix. The variance covariance matrix is, 
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Using asymptotic normality for MLEs, 100(1-b) % approximated CI of , , and    of MGE  , ,    
can be constructed as, 
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ˆ ˆ ˆ ˆˆ ˆvar( ), var( ), and var( )b b bZ Z Z        ,  

where /2bZ be upper percentile for Standard normal variate. 

3.2. Least-Square Estimation  
Consider  ( )iF X  is the CDF of the variables      1 2 nX  X   X     . Here  1 2, ,  , nX X X  is a 

random sample having size n with a distribution function F (.). LSE of the unknown parameters α, β, and 
λ, of MGE  , ,    distribution can be obtained by minimizing (13) with respect to unknown 
parameters α, β, and λ. 
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Substituting the distribution function of MGE in (13), we get 

 
2

( )

1
; , , 1

1

n x ixe

i

iA X e
n


   



           
                     (14) 

Following expression of partial derivatives is obtained by differentiating (14) with respect to parameters. 
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By minimizing the function below we can find weighted least square estimates  
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Then weighted LSE can be determined by differentiating for minimization of relation (15) with respect α, 
β, and λ as, 
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3.3  Cramer-Von-Mises estimation  
We can minimize the function (16) to obtain the Cramer-Von-Mises estimators of the parameters α, β and λ. That is, 
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Differentiating (16) with respect to α, β, and λ we get, 

( ) ( )( ) ( ) ( )

1

2 12 1 log 1 1
2

x xn x i ii x e x ex e i ii

i

Z ie e e
n

    


 



                            
  

              

1
( ) ( )

1

2 12 1 1
2

n x xi ix e x ei i

i

Z ie e
n

  
 




 



                                
  

1
( ) ( ) ( )

( ) ( ) ( ) ( )
( )

1

2 12 1 1
2

x x xn i i ix x e x e x ei i i i
i

i

Z ix e e e e
n

   
   




  



                       


By simultaneous solving non-linear equations  = 0, = 0 and 0Z Z Z
  
  


  

 

we can obtain CVM estimators. 
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4. Application to Real Data Set 
Here, a real data set is taken for checking the suitability as well as applicability of the MGE model. The 
dataset is breaking stress of 100 observations of carbon fibers (in Gba) [Nichols & Padgett (2006)], from 
a bootstrap control chart for Weibull percentiles, “Quality and Reliability Engineering International”, 22, 
pp. 141-151. 

3.70, 2.74, 2.73, 2.50, 3.60, 3.11, 3.27, 2.87, 1.47, 3.11,4.42, 2.41, 3.19, 3.22, 1.69, 3.28, 1.87, 3.15, 
4.90,3.75, 3.65 ,2.43, 2.95, 2.97, 3.39, 2.96, 2.53, 2.67, 2.93, 3.22,3.39, 2.81, 4.20, 3.33, 2.55, 3.31, 3.31, 
2.85, 2.56, 3.56,3.15, 2.35, 2.55, 2.59, 2.38, 2.81, 2.77, 2.17, 2.83, 1.92,1.41, 3.68, 2.97, 1.36, 0.98, 2.76, 
4.91, 3.68, 1.84, 1.59,3.19, 1.57, 0.81, 5.56, 1.73, 1.59, 2.00, 1.22, 1.12, 1.71,2.17, 1.17, 5.08, 2.48, 1.18, 
3.51, 2.17, 1.69, 1.25, 4.38,1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.70, 2.03, 1.80,1.57, 1.08, 2.03, 1.61, 
2.12, 1.89, 2.88, 2.82, 2.05, 3.09. 
We have depicted the graph of parameter profile versus log-likelihood function in Figure 2. From these 
graph we can say that estimated ML can be calculated uniquely. 

 

 
Figure 2: Profile log-likelihood function of the parameters α, β, and λ of the MGE model. 

Here, we have used optim () function of R language (R Core Team, 2020) and (Ming Hui, 2019), The 
MLEs of MGE model are calculated by maximizing the likelihood function. We got the Log-Likelihood 
value as  l = -141.3544. Table 1 gives MLE’s with their corresponding standard errors for α, β, and λ 
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Then weighted LSE can be determined by differentiating for minimization of relation (15) with respect α, 
β, and λ as, 
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3.3  Cramer-Von-Mises estimation  
We can minimize the function (16) to obtain the Cramer-Von-Mises estimators of the parameters α, β and λ. That is, 
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we can obtain CVM estimators. 

Nepal Journal of Mathematical Sciences (NJMS), Vol.4 ,No. 1,2023 (February): 21-32 
  
 

27 
 

4. Application to Real Data Set 
Here, a real data set is taken for checking the suitability as well as applicability of the MGE model. The 
dataset is breaking stress of 100 observations of carbon fibers (in Gba) [Nichols & Padgett (2006)], from 
a bootstrap control chart for Weibull percentiles, “Quality and Reliability Engineering International”, 22, 
pp. 141-151. 

3.70, 2.74, 2.73, 2.50, 3.60, 3.11, 3.27, 2.87, 1.47, 3.11,4.42, 2.41, 3.19, 3.22, 1.69, 3.28, 1.87, 3.15, 
4.90,3.75, 3.65 ,2.43, 2.95, 2.97, 3.39, 2.96, 2.53, 2.67, 2.93, 3.22,3.39, 2.81, 4.20, 3.33, 2.55, 3.31, 3.31, 
2.85, 2.56, 3.56,3.15, 2.35, 2.55, 2.59, 2.38, 2.81, 2.77, 2.17, 2.83, 1.92,1.41, 3.68, 2.97, 1.36, 0.98, 2.76, 
4.91, 3.68, 1.84, 1.59,3.19, 1.57, 0.81, 5.56, 1.73, 1.59, 2.00, 1.22, 1.12, 1.71,2.17, 1.17, 5.08, 2.48, 1.18, 
3.51, 2.17, 1.69, 1.25, 4.38,1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.70, 2.03, 1.80,1.57, 1.08, 2.03, 1.61, 
2.12, 1.89, 2.88, 2.82, 2.05, 3.09. 
We have depicted the graph of parameter profile versus log-likelihood function in Figure 2. From these 
graph we can say that estimated ML can be calculated uniquely. 

 

 
Figure 2: Profile log-likelihood function of the parameters α, β, and λ of the MGE model. 

Here, we have used optim () function of R language (R Core Team, 2020) and (Ming Hui, 2019), The 
MLEs of MGE model are calculated by maximizing the likelihood function. We got the Log-Likelihood 
value as  l = -141.3544. Table 1 gives MLE’s with their corresponding standard errors for α, β, and λ 
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Table 1: MLE and SE for α, β, & λ 
 

Parameter MLE SE 
alpha 3.1502 1.10699 
beta 0,2167 0.09044 
lambda 0.3636 0.16083 

Graphs of P-P plot and Q-Q plot in Figure 3. From these plotted graphs it is clear that proposed model 
MGE fits the real data set more precisely.  

     
Figure 3: The P-P plot in left panel and Q-Q plot in right panel of the MGE distribution. 

Table 5.2 contains the estimated parameter values using all three methods of estimation MLE, LSE and 
CVE. Table also contains the values of different information criteria values like negative log-likelihood, 
AIC, BIC, CAIC, and HQIC. As we know that lesser the value of information criteria, better the fit of 
model. Here, MLE estimation method has least values among all in all the cases so MLE gives better 
estimates of parameter. 

Table 2: Estimated parameters, log-likelihood, AIC, BIC, CAIC, and HQIC 
 

Methods ̂  ̂  ̂  LL AIC BIC CAIC HQIC 

MLE 3.1502 0.2167 0.3636 -141.3544 288.7088 296.5244 288.9588 291.8719 
LSE 1.3085 0.5878 0.0729 -147.8597 301.7194 309.5349 301.9694 304.8825 
CVE 1.3158 0.5995 0.0710 -148.5176 303.0352 310.8507 303.2852 306.1983 

We have also calculated the KS, W and A2 statistics & corresponding p-values on same set of real data 
sets using the estimated parameters using all three methods of estimation and are displayed in table 3. 
 

Table 3: The KS, W and A2 statistic with a p-value 
 

Method  KS(p-value) W(p-value) A2(p-value) 
MLE  0.0637(0.8118)  0.0697(0.7542)  0.413(0.8354)  
LSE  0.0502(0.9623)  0.044(0.9126) 0.8363(0.4553)  
CVE  0.0521(0.9487)  0.0433(0.9161) 0.8861(0.4226)   

The Graph for Q-Q plot for estimation methods MLE, LSE and CVM and Histogram & the fitted density 
function of MGE distribution are shown in figure 4. 
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Figure 4: The Q-Q plot in right panel & Histogram and the density function of fitted distributions in 
left panel of different methods of estimation. 

5.  Model Comparison 
Here we have presented the applicability of MGE model distribution on same real dataset taking some 

important probability models used by previous researchers. For this, we have selected the six other 

distributions. These are Generalized Exponential Extension (GEE), Generalized Gompertz, Weibull 

Extension (WE) distribution, Flexible Weibull (FW) distribution, Generalized Exponential (GE) 

distribution  and  Gompertz distribution (GZ). 

We have illustrated the AIC, BIC, CAIC, and HQIC for the evaluation of the applicability of MGE 

distribution tabulated in Table 4. 

Table 4: Log-likelihood, AIC, BIC, CAIC, and HQIC 

10 LL AIC BIC CAIC HQIC 
MGE -141.3544 288.7088 296.5244 288.9588 291.8719 

GEE -141.3708 288.7416 296.5571 288.9916 291.9047 

GGZ -141.3899 288.7799 296.5954 289.0299 291.9430 

WE -141.5577 289.1153 296.9309 289.3653 292.2784 

FW -143.2775 290.5551 296.7654 290.6788 292.6638 

GE -146.1823 296.3646 301.5749 296.4883 298.4733 

GZ -149.1250 302.2500 307.4604 302.3737 304.3588 

We have also calculated the values of KS, AD, and CVME values and corresponding p values when 

parameters are estimated using three methods MLE, LSE and CVME. It is noted that in most of the cases 

MGE has minimum value and higher p-values than the competing distributions. 
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Table 5: The goodness-of-fit statistics and their corresponding p-value 
 

Model KS(p-value) W(p-value) A2(p-value) 
MGE 0.0637(0.8118) 0.0697(0.7542) 0.4130(0.8354)  
GEE 0.0654(0.7862) 0.0723(0.7385) 0.4202(0.8281)  
GGZ 0.0637(0.8114) 0.0708(0.7475) 0.4198(0.8286)  
WE 0.0607(0.8542) 0.0635(0.7932) 0.4212(0.8268)  
FW 0.0778(0.5805) 0.1103(0.5375) 0.6239(0.6253)  
GE 0.1078(0.1959) 0.2293(0.2174) 1.2250(0.2581)   
GZ 0.0962(0.3129) 0.2280(0.2193) 1.7537(0.1261)  

Here, we displayed graph of goodness-of-fit of MGE model and the considered models that are shown in 
Figure 5. It exhibits that the proposed model MGE fits data better to real data compared to other 
distribution taken in considerations. 

  
Figure 5: Histogram and fitted density function in left and graph for Empirical distribution 
function with estimated distribution function in right panel of MGE  

 
Models for Comparison:  

(i). Generalized Exponential Extension (GEE) Distribution:  

 The PDF of GEE given by [Lemonte, 2013] is 
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(ii). Generalized Gompertz distribution:  

The PDF of Gompertz distribution [El-Gohary et al., 2013] with parameters α, λ and θ is 

      
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(iii). Weibull Extension (WE) distribution:  

The probability density function of Weibull extension (Tang et al., 2003) with three   parameters 
(α, β, λ) is given by 

1
( ) exp exp exp 1 ; 0WE

x x xf x x
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 
  
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(iv). Flexible Weibull (FW) distribution:  

The density function of Flexible Weibull (FW) extension distribution [Bebbington, 2007] with α 
and β are given as 

2( ) exp exp exp ; 0, , 0FWf x x x x
x xx

      
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     
  

(v). Generalized Exponential (GE) distribution:  

The PDF of GE model [Gupta   &   Kundu, 1999] is given by 

            

  1
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GEf x e e x
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(vi). Gompertz distribution (GZ) distribution:  

PDF of Gompertz distribution [Murthy et al., 2003] is 

   1 0 0x x
GZf x e exp e ;x , , .   


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Here, we have also shown the estimated fitted cdf curve of the MGE model with the empirical cdf curve 
in figure 6. 

 
Figure 6: Empirical distribution plot and fitted distribution curve of MGE  

6. Conclusion 
Here, we have formulated a new model called Modified Generalized Exponential distribution containing 
three parameters. Here we have presented and plotted some important statistical as well as mathematical 
properties of the model. We also derived the expression for hazard function, reliability function, skewness 
and kurtosis etc. Three important method of estimation are used for the estimation of the parameters of 
the model. The probability density curve of MGE have shown that its shape is increasing-decreasing 
having right skewed. The curve is found to be more flexible for modeling for a real-life data also. Hazard 
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(iii). Weibull Extension (WE) distribution:  

The probability density function of Weibull extension (Tang et al., 2003) with three   parameters 
(α, β, λ) is given by 
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function shows that inverted bathtub or reverse j-shaped depending on the values of parameters of the 
model. A real set data and different model validation criteria show that the proposed model fits data better 
than the other models taken in consideration. 
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Abstract: The assets and liabilities of a general insurance underwriter constitutes two main variables 
usually adopted when evaluating the solvency requirements of a general insurance firm under which 
technical provisions form an unprecedented part of insurance liabilities. The technical provision of a 
general insurance business comprises provisions for unearned premiums and provisions for claims. The 
technical provisions specified under solvency II requirements asserts that the classical actuarial 
techniques for evaluating the best estimate for provisions in general business insurance obligations 
contains the run off triangles. The objective of this study are to (i) estimate the chain ladder reserve  
(ii) estimate the cape-cod reserve and (iii) compare the chain ladder with the cape-cod mathematical 
techniques with the disposition of estimating losses and technical provisions. These techniques evaluated 
through some run-off triangles can be adopted to estimate technical provisions for the outstanding 
claims. Computational evidence from our results over the periods considered revealed that despite the 
fact that the cape-cod technique is a mathematical variant of the chain ladder technique which seems less 
dependent on the variations of a single observation, the chain ladder reserve is numerically less than the 
corresponding cape-cod reserve and hence 18534.42 19123.84RESERVE RESERVECL CC    
 

Key words: Technical provisions, Chain ladder, Cape Cod, Solvency, Run-off triangles 

1. Introduction to Actuarial Loss Reserving 

Let  ;: yf y f R R   such that  f y defines a continuous claim density function representing 

the value of a claim momentarily at time y . The value  ,LV s t defining the total loss incurred within 

some time interval s y t   is numerically modelled as    ,
t

L
s

V s t f y dy   

However in actuarial practice, the functional form  f y seems quite difficult to model since all 
observable technical provisions represent observations on differing aggregate amounts and moreover 
these observable claim values could fall within intervals short of ultimate developments. Development in 
loss reserving usually describes the numerical difference between observable values of a defined actuarial 
variables at consecutive valuation dates which could be applied to loss reserve computations hence the 


