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Abstract: In this article, a new distribution having three called Modified Generalized Exponential
Distribution is proposed. Important statistical properties of the proposed model like survival function,
hazard rate function, the probability density function (PDF), the cumulative distribution function (CDF),
quantile function, skewness, and kurtosis are discussed here. Least Square Estimation (LSE), Cramer-
Von Mises (CVM) and Maximum Likelihood estimators (MLE) methods are used for estimation of
parameters using R programming software. A data set is discussed and performed the goodness-of-fit to
assess the applications of the proposed distribution. Various methods of model comparison and model
validation are also used. The proposed model Modified Generalized Exponential Distribution is more
applicable as compared to some existing probability model.
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1. Introduction

Probability models are very useful in reliability analysis of different fields of biological science, applied
statistics as well as engineering. During the modeling of the data, probability models available so far may
not produce better fit in modeling reliability data. Due to this reason, researchers have been adjusting
traditional probability models and describing the acceptance of those models in practice. This can be done
by adding one or more extra parameters to the baseline distribution. Addition of extra parameters
generates new probability models. These modified models usually provide a better fit to the data than the
traditional models.

In the last decades, exponential model is frequently used as baseline model to create new probability
models. In literature, we can find a lot of modifications of the exponential distributions. Some of the
modified distributions are generalized exponential (GE) [Gupta & Kundu, 2007], generalized inverted
exponential distribution [Abouammoh & Alshingiti, 2009], gamma EE [Ristic & Balakrishnan, 2012] and
exponential extension (EE) model [Kumar, 2010] etc.

These lifetime models may have bathtub-shaped Hazard rate function (hrf).In real life we can find many
data that have bathtub-shaped hrf. In literature we can also find many modifications of Weibull
distribution. The two parameter Weibull distribution is given as

F(y, 2, ) = exp[~(2,)]P (1)
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Above distribution does not have bathtub hrf. This distribution is modified to generate several
distributions that possess bathtub hrf. One of the modifications of Weibull distribution is exponentiated
Weibull distribution [Mudholkar & Srivastava (1993)]. Taking appropriate limits on beta integrated
distribution [Lai et al. (2016)] to get new lifetime distributions as

F(y) = explay’.exp(Ay)] @)

Here, generalized exponential distribution is modified to introduce new probability model called modified
generalized exponential distribution. The CDF of generalized exponential distribution is given as,

_ —Ax\*
F(x,a,A)=[1-e 3)
The CDF and PDF of the Modified Generalized exponential (MGE) model can be given as,

(04
F(x;a, B,2) =[1—exp(—/1xeﬂx)} ca>0,3>0,1>0,x>0

1
[, f.2) = ad(1+ fx)exp( fx— AxeP™ )[1 ~exp(~Axel” )T
2. Model Analysis

Modified Generalized Exponential (MGE) distribution:
Cumulative distribution function of Modified Generalized Exponential distribution is defined by

a
F(x;a, B,A) = [1 —exp(—/lxeﬂx )} ; a>0,8>0,A>0,x>0 (4)
And the PDF of Modified Generalized Exponential distribution can be as
a-1
fxa, B,A)=al(l+ ,Bx)exp(ﬂx —AxePx )[1 - exp(—/ixeﬂx )}
(3)
Survival function:
The Survival function of MGE model is
(04
R(x;«, ﬂ,ﬂ):l—[l—exp(—lxeﬂxﬂ ;x>0 (6)
Hazard rate function:
Hazard rate function of MGE distribution with parameters (0(, P, /1) is
pPx —ixeﬂx —/Ixeﬂx @l —ﬂxeﬂx “ B
h(x)za/l(l+ﬂx)e e l-e I-|1-e (7)
Reverse hazard function of MGE:
Reverse hazard function of MGE model can be expressed as
-1 -a
axeP¥ _axePr ]” axePx
By (x) = aA(1+ Bx)ePe e {l—e Axe } [l—e Axe } ; x>0, (8)

The various shapes of pdf and hazard rate function of MGE (05 , B, /1) at various values of constants are

displayed in Figure 1.
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Figure 1: Graphs of PDF in left panel and HRF in right panel for fixed \.
Cumulative hazard function:
The cumulative hazard rate function of the MGE (a, B, 1) is defined as
X
H(x)= [ h(y)dy=-log[l-F(x)]
—0
B "
=—log 1—{1—e Axe ; x>0, a,f,A>0 9)

Quantile function:
Let X be a non-negative random variable with CDF as [, (x) then quantile function can be defined by

ﬂxeﬂx+log(l—p(l/a))=0 ;0< p<l1.

log(A) +log(x) + Bx + log[log(l —p® )} =0 ;0<p<l.

Random Deviate Generation:
Random deviate generation for the MGE (a B, /1) is displayed in expression (10) as,

ﬂxeﬂx+log(l—u(1/a))20 0<u<l. (10)
where u has the uniform U(0, 1) distribution.

Skewness and Kurtosis:
The Bowley’s coefficient of skewness based on quartiles is,

0(0.75)-20(0.5)+ 0(0.25)
0(0.75)-0(0.25)
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Coefficient of kurtosis is,

0(0.875)-0(0.625) - 0(0.125)+ 0(0.375)
0(0.75)-0(0.25)

K — Moors =

3. Parameter Estimation

3.1. Maximum Likelihood Estimation

There are different methods of parameter estimation available in statistics. For estimation of parameters,
we used three most applicable and useful methods of estimation. Firstly we have used maximum
likelihood estimation method. Let n denotes the number of items, then summation up to n in density
function of MGE to get the log- likelihood function of random sample drawn from MGE distribution is
given in (5.3.1). That is, taking log and then summation up to » in density function of proposed model.
Resulting log-likelihood function is given in expression (11)

n n n
((a,B, 2| x)=nloga + nlog A+ Y log(1+ fx;)+ D x; —ﬂine'Bx"
i=1 i1 i-1

+(a-1) ilog[l—exp(—/ixi P )} (11)
i=1

As o, B, and A are the unknown parameters of the distribution, so for estimation, getting differentiation
with respect to these unknown parameters and resulting expressions are mentioned below as,

o Iy i{l — e_’lxieﬁXi }

oa a 5

— Zn:[l+ﬂ j+2x —ﬂszeﬂxl +(a-1) /12{ ﬂx"e_;tx"eﬂ)q}
— X;

i=1 i=1

n n .
o _n_ x;ePi +(a - I)Z{xieﬂxie_’lx"eﬂxl }

81 A i=1 i=1
Equating % = 2—2 = S—j =0 and solving simultancously for o, B, and A, we estimated ML estimators

of the parameters MGE (a 0, /1) model.

Generally, this is not possible for solving non-linear equations above so with the aid of suitable computer
package we can estimate them easily.

Suppose @Z(a, ﬂ,/i) is the parameter vector of MGE(a,ﬂ,l) with respective MLE of ® as

@) = (d,,&, /:t) The asymptotic normality is given as, (@—Q) — N, [0,(1(@))_1J .where,
2 2 2
E(az} E[ale[azj
Py PYY: oadA

2 2 2
1(©)=-|e| ZL| g &L g ZL
ofoa o 0507

2 2 2
o ) () [
oAda 020 o022
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-1
Since © is unknown so it is worthless that the MLE has an asymptotic Variance(l (@)) . Using the
estimated value of parameters one can approximate the asymptotic variance. And observed fisher

information matrix 0?@) can be used as an estimate of / ( @) in form of hessian matrix H as,

021 021 021

062 0d0B 04oA
2 2 2

o) - - f?{ Gl 2’1 __1(e)

opoa  op*  opoi !

021 021 021

0i06 o0i0f 012

(o-9)

(@61
We can use Newton-Raphson technique for optimizing the likelihood can produce the observed
information matrix. The variance covariance matrix is,
_1 var (&) cov(d,ﬁ) cov(a, 1)
- —H(@)| =|cov(B,d) var(f) cov(B,A) (12)
cov(A,&) cov(4,B)  var(d)

Using asymptotic normality for MLEs, 100(1-b) % approximated CI of, #, and A of MGE (a B, /1)

can be constructed as,

G+ 7y o \Var(@), f+ Z ;o var(f), and A+ Zp 5 var(1) ,

where Zj,/5be upper percentile for Standard normal variate.

3.2. Least-Square Estimation

ConsiderF()((i)) is the CDF of the variablesX(1) < X(2) < - < X(a) . Here {x,x,, ..,x,} isa
random sample having size n with a distribution function F (.). LSE of the unknown parameters a, 3, and
A, of MGE (a,ﬂ,ﬂ) distribution can be obtained by minimizing (13) with respect to unknown

parameters a, 3, and A.

2
n .
A(X;a,ﬂ,/l)=2[F(X(,-))— : } (13)
2 n+l
Substituting the distribution function of MGE in (13), we get
2
n sy 1“
A, B A) = | 11— N (14)
P n+l

Following expression of partial derivatives is obtained by differentiating (14) with respect to parameters.

a a
a_A — 2i 1 _ e—ﬂxl'eﬂx(i) log 1 _ e—ﬂxieﬁx(i) 1 . e—ﬂxieﬁx(i) B l
oo =

: n+l
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a a-1
a—Azzi {1—e“ieﬂx“)} b a{l—e—ﬂxieﬁ x(")}

op i=1 n+1

j ~ )¢ . qa-1
8_A: 20!Zn:xieﬂxi e—/"tx,-eﬂx(’) 1—e_lxieﬂx(l) K 1_6—/1xi€ﬂx(l)
o i=1 n+l

I
n+1

I (n+1)* (n+2)

By minimizing the function below we can find weighted least square estimates
Given that weights w; as y, = =

A(X;a,ﬁ,ﬁ)sz{F(X(i))— }
i=1
Var(X(l-)) i(n—i+l)

Then weighted LSE can be determined by differentiating for minimization of relation (15) with respect o,
B, and A as,

2

n (n+1)" (n+2) 0"
A(X;a, 1) = - N
( p ) E i(n—i+1) ¢ n+l (13)

3.3 Cramer-Von-Mises estimation

We can minimize the function (16) to obtain the Cramer-Von-Mises estimators of the parameters o, B and A. That is,

2
1 L 2i—1
i=1
o 2
1 i —AX(i)eﬁX(i) 2i—1
=+ l-e - (16)
12n 3 2n

Differentiating (16) with respect to a, B, and A we get,

9Z _)y {1—e—ﬁwﬁx(l)} logll—e_ix(i)eﬂm)} {l—e_lx(i)eﬂx(’)} 21
i=1

da 2n
Ay |47 Bxiy |% 2i_
6_2222 o l1_ i (@) | — g~ Aie (1) _21 |
aﬁ i=1 211
. L a-1 o
5_2 _ 205i . eﬂx(l-) e—lx(l-)eﬁx(l) 1— e—AX(i)eﬁx(l) 1— e—ﬂx(i)eﬂx(l) B 2i—1
or &=tw 2n
, , ‘ ‘ oz oz oz
By simultaneous solving non-linear equations —= 0,—=0and —=0
o 0B o

we can obtain CVM estimators.
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4. Application to Real Data Set

Here, a real data set is taken for checking the suitability as well as applicability of the MGE model. The
dataset is breaking stress of 100 observations of carbon fibers (in Gba) [Nichols & Padgett (2006)], from
a bootstrap control chart for Weibull percentiles, “Quality and Reliability Engineering International”, 22,
pp. 141-151.

3.70, 2.74, 2.73, 2.50, 3.60, 3.11, 3.27, 2.87, 1.47, 3.11,4.42, 2.41, 3.19, 3.22, 1.69, 3.28, 1.87, 3.15,
4.90,3.75, 3.65 ,2.43, 2.95, 2.97, 3.39, 2.96, 2.53, 2.67, 2.93, 3.22,3.39, 2.81, 4.20, 3.33, 2.55, 3.31, 3.31,
2.85,2.56, 3.56,3.15, 2.35, 2.55, 2.59, 2.38, 2.81, 2.77, 2.17, 2.83, 1.92,1.41, 3.68, 2.97, 1.36, 0.98, 2.76,
4091, 3.68, 1.84, 1.59,3.19, 1.57, 0.81, 5.56, 1.73, 1.59, 2.00, 1.22, 1.12, 1.71,2.17, 1.17, 5.08, 2.48, 1.18,
3.51,2.17, 1.69, 1.25, 4.38,1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.70, 2.03, 1.80,1.57, 1.08, 2.03, 1.61,
2.12,1.89,2.88,2.82, 2.05, 3.09.

We have depicted the graph of parameter profile versus log-likelihood function in Figure 2. From these
graph we can say that estimated ML can be calculated uniquely.
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Figure 2: Profile log-likelihood function of the parameters a, 5, and J. of the MGE model.

Here, we have used optim () function of R language (R Core Team, 2020) and (Ming Hui, 2019), The
MLEs of MGE model are calculated by maximizing the likelihood function. We got the Log-Likelihood

value as /=-141.3544. Table 1 gives MLE’s with their corresponding standard errors for a, 8, and A

27



Lal Babu Sah Telee and Vijay Kumar /Modified Generalized Exponential Distribution

Table 1: MLE and SE fora, B, & A

Parameter MLE SE

alpha 3.1502 1.10699
beta 0,2167 0.09044
lambda 0.3636 0.16083

Graphs of P-P plot and Q-Q plot in Figure 3. From these plotted graphs it is clear that proposed model
MGE fits the real data set more precisely.
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Figure 3: The P-P plot in left panel and Q-Q plot in right panel of the MGE distribution.

Table 5.2 contains the estimated parameter values using all three methods of estimation MLE, LSE and
CVE. Table also contains the values of different information criteria values like negative log-likelihood,
AIC, BIC, CAIC, and HQIC. As we know that lesser the value of information criteria, better the fit of
model. Here, MLE estimation method has least values among all in all the cases so MLE gives better
estimates of parameter.

Table 2: Estimated parameters, log-likelihood, AIC, BIC, CAIC, and HQIC

Methods a ,BA i LL AIC BIC CAIC HQIC

MLE  3.1502 0.2167 0.3636 -141.3544 288.7088 296.5244 288.9588 291.8719
LSE 1.3085 0.5878 0.0729 -147.8597 301.7194 309.5349 301.9694 304.8825
CVE 1.3158 0.5995 0.0710 -148.5176 303.0352 310.8507 303.2852 306.1983

We have also calculated the KS, W and A” statistics & corresponding p-values on same set of real data
sets using the estimated parameters using all three methods of estimation and are displayed in table 3.

Table 3: The KS, W and A* statistic with a p-value

Method KS(p-value) W(p-value) A’(p-value)

MLE 0.0637(0.8118) 0.0697(0.7542) 0.413(0.8354)
LSE 0.0502(0.9623) 0.044(0.9126) 0.8363(0.4553)
CVE 0.0521(0.9487) 0.0433(0.9161) 0.8861(0.4226)

The Graph for Q-Q plot for estimation methods MLE, LSE and CVM and Histogram & the fitted density
function of MGE distribution are shown in figure 4.

28



Nepal Journal of Mathematical Sciences (NJMS), Vol.4 ,No. 1,2023 (February): 21-32

= MLE
- = LSE
- CVME
w
2z
5
5 =2
o B
=
w
A
A}
A
I T I I I I T
0 1 2 3 4 5 6 1 2 3 4 5 6
X Sample quantiles

Figure 4: The Q-0 plot in right panel & Histogram and the density function of fitted distributions in
left panel of different methods of estimation.

5. Model Comparison

Here we have presented the applicability of MGE model distribution on same real dataset taking some
important probability models used by previous researchers. For this, we have selected the six other
distributions. These are Generalized Exponential Extension (GEE), Generalized Gompertz, Weibull
Extension (WE) distribution, Flexible Weibull (FW) distribution, Generalized Exponential (GE)
distribution and Gompertz distribution (GZ).

We have illustrated the AIC, BIC, CAIC, and HQIC for the evaluation of the applicability of MGE
distribution tabulated in Table 4.

Table 4: Log-likelihood, AIC, BIC, CAIC, and HQIC

10 LL AIC BIC CAIC HQIC

MGE -141.3544 288.7088 296.5244 288.9588 291.8719
GEE -141.3708 288.7416 296.5571 288.9916 291.9047
GGZ -141.3899 288.7799 296.5954 289.0299 291.9430
WE -141.5577 289.1153 296.9309 289.3653 292.2784
FW -143.2775 290.5551 296.7654 290.6788 292.6638
GE -146.1823 296.3646 301.5749 296.4883 298.4733
GZ -149.1250 302.2500 307.4604 302.3737 304.3588

~We have also calculated the values of KS, AD, and CVME values and corresponding p values when
parameters are estimated using three methods MLE, LSE and CVME. 1t is noted that in most of the cases

MGE has minimum value and higher p-values than the competing distributions.
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Density

Table 5: The goodness-of-fit statistics and their corresponding p-value

Model KS(p-value) W(p-value) A’(p-value)

MGE 0.0637(0.8118) 0.0697(0.7542) 0.4130(0.8354)
GEE 0.0654(0.7862) 0.0723(0.7385) 0.4202(0.8281)
GGZ 0.0637(0.8114) 0.0708(0.7475) 0.4198(0.8286)
WE 0.0607(0.8542) 0.0635(0.7932) 0.4212(0.8268)
FwW 0.0778(0.5805) 0.1103(0.5375) 0.6239(0.6253)
GE 0.1078(0.1959) 0.2293(0.2174) 1.2250(0.2581)
GZ 0.0962(0.3129) 0.2280(0.2193) 1.7537(0.1261)

Here, we displayed graph of goodness-of-fit of MGE model and the considered models that are shown in
Figure 5. It exhibits that the proposed model MGE fits data better to real data compared to other
distribution taken in considerations.
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Figure 5: Histogram and fitted density function in left and graph for Empirical distribution
Sfunction with estimated distribution function in right panel of MGE

Models for Comparison:

).

(ii).

Generalized Exponential Extension (GEE) Distribution:

The PDF of GEE given by [Lemonte, 2013] is

foee (x)=apA(1+ /bc)al_1 exp{l —(1+ ﬁ,x)a}[l — exp{l—(l +ix)a}}
Generalized Gompertz distribution:

The PDF of Gompertz distribution [EI-Gohary et al., 2013] with parameters o, A and 0 is
A

) - _;(eax _1) 2 . 0-1 .
fo6z (x)=61e""e 1—exp ——(e —1) 0 1,0>0,>0,x>0
a

B-1
x>0
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@iv).

V).

(vi).
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Weibull Extension (WE) distribution:

The probability density function of Weibull extension (Tang et al., 2003) with three parameters
(a, B, A) is given by

x V! x )P o\
=Ap| — - -4 =1 =1|p;x>0
Jwe (%) 'B(ﬂj exp(ﬂj expy —Aa exp(ﬂj x>

Flexible Weibull (FW) distribution:

The density function of Flexible Weibull (FW) extension distribution [Bebbington, 2007] with o
and [ are given as

Srw (x)= a+£ exp Ozx—é exp4 —exp ax—ﬁ ;x20, a,20
2 X X
Generalized Exponential (GE) distribution:

The PDF of GE model [Gupta & Kundu, 1999] is given by

£ _ “Ax |y _ —Ax a—l.
GE (x) = ale l-e ; a>0,A>0,x>0

Gompertz distribution (GZ) distribution:
PDF of Gompertz distribution [Murthy et al., 2003] is

foz(x)=0 %" exp{g(l—e“x)} ;x20,0>0 —0<a <o
a

Here, we have also shown the estimated fitted cdf curve of the MGE model with the empirical cdf curve
in figure 6.

—— Empirical
— Fitted

0.8 —

Figure 6: Empirical distribution plot and fitted distribution curve of MGE

6. Conclusion

Here, we have formulated a new model called Modified Generalized Exponential distribution containing
three parameters. Here we have presented and plotted some important statistical as well as mathematical
properties of the model. We also derived the expression for hazard function, reliability function, skewness
and kurtosis etc. Three important method of estimation are used for the estimation of the parameters of
the model. The probability density curve of MGE have shown that its shape is increasing-decreasing
having right skewed. The curve is found to be more flexible for modeling for a real-life data also. Hazard
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function shows that inverted bathtub or reverse j-shaped depending on the values of parameters of the
model. A real set data and different model validation criteria show that the proposed model fits data better
than the other models taken in consideration.
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