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   1. Introduction  

Mathematical analysis is primarily concerned with the notion of limit of a sequence of real or 

complex numbers which forms the basis for the study of infinite series. One important branch of the 

field of infinite series is the study of summability of divergent sequence (series). This study is an 

attempt to attach (in some series) a generalized limit to those sequences which do not converge in the 

usual sense, realizing at the same time that when the generalized limit is applied to a convergent 

sequence then it must agree with the limit in the ordinary sense. This procedure of assigning a new 

limit in generalized sense to divergent sequences is called a summability method. A sequence space is 

a linear space whose elements are sequences chosen from another linear space. The summability 

theory deals with the study of linear transformations on sequence spaces. In the earliest stage, the idea 

of summability theory were perhaps contained in a letter written by Leibnitz to C. Wolf (1713). In 

1880, Frobenius introduced the method of summability by arithmetic means, which was generalized 

by Ces`aro (1890) (see [9]) as the (C, k)-method of the summability. These types of summability can 

also be presented by the use of infinite matrix transformation. So, we now turn to the fact that how 

infinite matrix transformation can be used to define generalized limits. A   very important application 

of matrices, namely to the theory of summability of divergent sequence and the series was initiate by 

Toeplitz [12] in 1911. Although, the concept of absolute summability was introduced as early as in 

1911, by Fekete [ 4 ] in case of Ces ̀ro [ 9 ]method, and the same for Reisz [9] and Abel [ 9 ] methods 
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was defined by Obrechkoff [10] and Whittaker[ 14 ] in 1928 and 1932 respectively, for matrix 

transformation in general this was considered in 1937 by Mears [ 13 ]. 

Before proceeding with the main work, we use following German abbreviation in this paper.  

FF for sequence -to- sequence                       (1) 

RF for series - to – sequence            (2)   

RR for series – to- series.                                     (3) 

 Let P = (   ), (a,b = 1, 2,…) be a given matrix and  consider the transformation 

      ∑       
                                                                                                                        (4) 

 then the matrix P provides an FF, RF or RR transformation according as it transform a sequence z = 
{  } into the sequence r ={  }, the series ∑   into the series∑  , provided that each of the series (4) 
is convergent. A corresponding to FF – transformations each be made applicable with obvious 
changes o RF and RR transformation. 

If a transformation (4) the sequences r = {  } belongs to the space of convergent sequences. We say 
that the sequences x = {  } is summable by the matrix method P, or by the matrix method P, or by the 
matrix P or simply P- summable and we write either P-        =      . The class [ ] of all P - 
summable sequences is called the convergence field of P.  The matrix P is said to be convergence 
preserving if it transfers every convergent sequence r ={  }, with     not necessary is same as that 
of {  }. The matrix P is said to be permanent if it is transform every convergent sequences z = {  } 
into a convergent sequence r ={  } and  

 P-      =                                                                                                                                       (5) 

 Also, the matrix P is said to be absolutely convergence preserving if 

  ∑ |       | 
                                                                                                                            (6) 

   ∑ |       | 
       

In an addition to (6) , (5) also, the matrix P is said to be absolutely permanent. The matrix P is called 
reversible if the equation P(z) = r, has exactly one solution z, convergent, or not for each value of r in 
space. 

Some remarkable notations are: 

(1)    – matrix ( RF absolute convergence preserving ) 
(2)    – matrix ( RR absolute convergence preserving ) 

 Kojima, in 1917 began the work in this direction. He proved the result for FF- transformation by 
lower semi- matrices. His result was generalized by Schur, who proved that an FF- transform matrix 
gives convergence preserving transformation iff it is a K- matrix, 1931, Basanquet[3] proved that a 
matrix of an RF- transformation is convergence preserving iff it is a  - matrix ( RF convergence 
preserving). Vermes further studied the    - matrix ( RF convergence preserving) and obtained the 
result that necessary and sufficient condition for a matrix to give a convergence preserving RR- 
transformation .Several researchers like Sari ̈ l [4], G ̈kce and Sarig ̈l [4],[6] , Dawson [7] , Borsik et 
al [8], Borsik [9] and Vermes [14] have studied in the same directions but there results are almost 
different.Our utmost effort goes on extending P. Vermes [14] works:  
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2 Main Theorems 

In this section, we shall investigate some theorems that will be proved in section 4. 

Theorem 2.1 

If         =               , ( a,b    1 )                                                                        ( 7 ) 

 then H = (   )  is a    – matrix iff Q = (   ) is a   - matrix. 

Theorem 2.2 

The product HQ of    – matrix H and   - matrix Q exits and is a    – matrix. 

Theorem 2.3 

Every finite linear combination of    – matrices (or    – matrices) is a     – matrices (or    – 
matrix). 

Theorem 2.4 The product of a   - matrix H and   -matrix Q is not commutative. 

Theorem 2.5 The product matrix R = HQ exists and is a   - matrix for every   - matrix H iff Q is a 
  - matrix. 

For the proof of our theorems, following lemmas are required: 

Lemma 2.6 

In order that RF- transformation given by the matrix H = (   ) be absolute convergence preserving, it 
is necessary and sufficient that the conditions  

∑ |          | 
      L(H)                             (8) 

|   |                                (9) 

be satisfied, where the absolute constants L(H) and       are independent of b. 

Lemma 2.7  

The RR transformation given by the matrix Q = (     )   is absolute convergence preserving iff there 
exists constant L and    , both independent of R , such that the conditions  

∑ |   | 
       L(Q)                        (10) 

|   |                                (11) 

are satisfied. 

3. Proof of the theorems 

In this section , we shall prove the theorems with the help of Lemma 2.6 and 2.7 

3.1 Proof of theorem 2.1 

Suppose that the matrix Q = (     ) in (7) is a   - matrix. Then by lemma 2.6, 
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|     | = |              |  

              |     |+ |     |+ +|    | 

                      

                      say                                                                                                                        (12) 

where the constant    is independent of b. Also, by definition (7), we can write  

          =    ,           (a      ) 

    =    . 

Therefore  

∑ |          | 
    = ∑ |   | 

     L(Q)                                                                               (13) 

By condition (11). Thus, the inequalities (12) and (13) show that 

 H =(   ) in (7) is a   - matrix.  

Conversely, let H = (   ) in (7) by   a   - matrix then it is easy to verify that Q = (   )  so defined 

satisfies the condition of Lemma 2.6 

This completes the prof of the theorem. 

3.2 Proof of  theorem 2.2: 

We write 

 F = HQ = (   ), so that 

    = ∑        
    .                    (14) 

 Now, from (9), we have 

          |  ∑        
   |  ∑ |   |  

    |   |       ∑ |   | 
       

                                        .L(Q)   L(F)                               (15)  

 independent of b. 

Therefore, the matrix F = (   ) in (14) exists for all a and b. Also, we have from (15),  

|   |                                              (16) 

where    is independent of b. 

Also, as in (15), we can prove that, 

∑ |          | 
      L(F),                      (17) 

which is Independent of b. 

Thus, the result follows from (16) and (17) by virtual of lemma 2.6. 
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3.3 Proof of theorem 2.3 

Let C and H be a   -matrices corresponding to    – matrices P and Q respectively i.e.  

     =                (a, b   ) ,                                                                               (18) 

   =                 (a, b   ) .  

Also, let z and r be any two complex number and  write 

C =                                                                                                                              (19) 

 then from (9), we have 

|   |        |   | + |   ||   |   

             |  ||     | + |   ||     |                                                                                   (20) 

where the constant    is  independent of b. 

By (18), we have 

   = z.    + r             ( b   ) 

           =  z (           ) +  r (          ) ,     (   a      ). 

Hence, 

∑ |          | 
    |   | |   |  +∑  |   |  

   |           | + | | |   |+∑ | | 
   .|          |  

                                 |   |.L(C) +    │L(H)  

                                     L(F)                                                 (21) 

which is independent of b. 

The condition (20) and (21) are precisely, the condition of lemma3.1, and hence, the matrix (F) = 
(   ) as defined in (19) is a   - matrix, this proved the result for   - matrices. 

Now,     =      +      ,              ( b  )  

                     =      + r    ,     ( a       ) 

Therefore, the matrix  D = (   ) defined as 

    =       ( b   ) 

   =                 (  a      ) 

which corresponds to the   - matrix it is a   - matrix, and  

D =       . 

This completes the proof of the theorem 2.3. 

Similarly, we can show that remaining theorems. 
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4. Conclusion 

In this paper, we have proved some general theorems on the absolute convergence transformation of 
matrix which is expressed in terms of preserving transformation under the very general conditions. In 
fact, these results can be used for further study in many practical problems in science and engineering. 
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