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Abstract: In this article, a new flexible extension of xgamma probability distribution has been proposed. 
Several well known distributional properties viz., raw moments, generating functions, conditional 
moments, mean deviation, quantile functions etc., of this flexible extension model have derived and studied 
in detail. Further, the estimation of the unknown model parameters along with the survival function and 
hazard function are estimated using maximum likelihood estimation technique. The Monte Carlo 
simulation has been performed to check the consistency of the proposed estimators for the different 
variation of sample size and model parameters. Finally, the superiority of proposed extension over several 
well known lifetime models has been illustrated using four data sets pertaining to COVID-19 cases in 
different country of the world.  
 
Keywords: Xgamma distribution, Moments, Generating function, Conditional moments, Maximum 
likelihood method of estimation. 

 
1.  Introduction 
 

The development of new probability model plays an important role, as it is equipped with more flexibility 
that provides for explaining much wider range of real life situation. Foremost and vital requirement to 
analyse the considered (or given) data is the information about the probability distribution. For analysing 
the survival and reliability characteristics of the considered (or given) data, we must have the information of 
probability distribution which suited best to the considered (or given) data set before hand. In literature 
there exist several univariate, bivarite and multivariate probability distributions. For the complete analysis, 
data set must follow a specific pattern of the particular probability density function (PDF) and should have 
more or less similar shape of hazard rate function (HRF). HRF behaves in different ways like constant, 
monotone increasing, monotone decreasing, bathtub and inverted bathtub in real life scenario. Bathtub 
shape of HRF consists of two change points and a constant part enclosed within the change points. Hence 
depending upon the shape of hazard rate of survival data, we decide the plausible corresponding 
distribution model to state the interpretation and make the inferences about the considered data set. From 
the probabilistic point of view, we have large number of choices of models to analyse the data and pass the 
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statement about the nature of a data and further obtain the various statistical properties of that data on the 
basis of chosen model. 
 
In current fashion, the new probability distribution are developed by adding the additional parameter(s). 
There are many ways to add a new parameter to the distribution and expand the family of the distribution. 
Marshall-Olkin also suggested a approach to introduce a new parameter in a particular probability 
distribution and generate the family of considered distribution. For the more detailing of the Marshall-Olkin 
family readers may refer to see the Marshall and Olkin[15]. Marshall-Olkin[15] added a new parameter and 
developed the family of the exponential distribution (ED) and Weibull distribution (WD). The survival 
function (SF) of new extended distribution by Marshall-Olkin approach is given as; 

 
  ̅        ̅   

   ̅ ̅                 (1) 
 

where,  ̅      and when     then  ̅   ̅.  ̅    is the SF of baseline distribution which is used to 
generate a new family of distribution. All the commonly-used methods of introducing an additional 
parameter have a stability property: if the method of adding a new parameter is applied twice on a particular 
distribution model then nothing new is obtained. For example, power of an exponential random variable has 
a Weibull distribution, but the power of a Weibull random variable is just another Weibull random variable. 
Similarly, if, in    , SF of form  ̅  is introduced for  ̅ , then ( ) yields nothing new. PDF of 
Marshall-Olkin family corresponding to SF [see Equation 1] is: 

 
             

    ̅ ̅      (2) 
 

and HRF of Marshall-Olkin family is obtained by using PDF and SF of the same family. It is given as 
below; 

 
         

    ̅ ̅          (3) 
 

In literature many researchers have developed the Marshall-Olkin family for different probability models. 
For the details of Marshall-Olkin family, researchers are suggested to follow the articles : Afify et al. [1], 
Alizadeh et al[2], Bdair et al [3] , Cordeiro and Lemonte    , Eghwerido et al. [5], Ghitany et al.    ,  
Ghitany et al. [7], González-Hernández et al. [8], Jayakumar and Mathew [9], Jose et al.[10], Jose and Paul 
[11], Krishna et al. [12], Korkmaz et al.     , Klakattawi et al. [14],Marshall-Olkin[15],  Maxwell et 
al.[16], Nadarajah et al.[17], , Ristic and Kundu[18], Santos-Neto et al.     , Saboor and Pogany[20], and 
Yousof et al. [22]. 
 
The main purpose of this contribution is to propose a new two-parameter extension of xgamma distribution, 
by applying the approach suggested by Marshall–Olkin. From now, we call it as flexible extension of 
xgamma distribution (FEXg). The generalization obtained by this method provides better flexibility to 
analyze reliability/survival data with monotone hazard rate as compared to some well known lifetime 
distributions. The different distributional properties such as moments, reliability and hazard functions, 
conditional moments, generating function, Quantile function, aging intensity, entropy etc., have been 
derived. Further, the maximum likelihood estimation technique has been applied to estimate the unknown 
parameters, survival function and hazard function of the proposed extension. The performances of the 
proposed estimators are studied in terms of mean square error using Monte Carlo simulations. Lastly, four 
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COVID-19 survival data sets of different countries are taken for the illustration of FEXg extension in real 
life. 
 
Rest of article is organized as follows: FEXg is introduced and survival characteristics of FEXg are derived 
in section  . Important statistical properties such as moments, conditional moments, mean deviation, 
Bonferroni and Lorenz curves and procedure of random number generation of FEXg are discussed in 
section  . In section  , we have discussed about the classical method of estimation of parameters of FEXg 
through MLE. In section 5, Monte Carlo simulation study is carried out to assess the performance of the 
above cited classical method for SF and HRF in terms of mean square error (MSE). For illustrative 
purposes, four real data sets are analyzed in section 6. Finally, concluding remarks are given in section 7. 

 
2.  The Model and It’s Generalization 
 

Xgamma distribution (XGD) [see, Sen et al.[21]) is a mixture of expenential and gamma distribution with 
specific proportion.Sen et al. [21] showed the superiorty of XGD over existing distributions by using real 
life examples. FEXg is the extended version of XGD (see, Sen et al.[21]) by adding a new parameter 
through the Marshall-Olkin approach (see, Marshall and Olkin [15]). Marshall-Olkin have discussed the 
stability property over the adding the parameter by using all common methods and the property is: if the 
method is applied twice, nothing new is obtained the second time around. They have also discussed the 
behaviour of HRF of Marshall-Olkin family. Adding a new parameter in the XGD by using Marshall-Olkin 
family makes XGD more flexible thereby enhancing its beauty and practical significance. Thus, FEXg 
become more realistic and useful in real life situation. Let X be a random variable follows XGD and then 
the SF and PDF of XGD are given below: 

 

        
(        

   
 )

                    (4) 
 

and 
 
          

     (  
 
  

 )                (5) 
 
To obtained the SF of FEXg, we use SF of XGD [see, Equations  ]. The SF of FEXg  ̅        when X 
follows the XGD is as follows; 

 

  ̅        
 
(        

   
 )

         

[   ̅
(        

   
 )

         ]

 (6) 

 
Graphical representation of SF of FEXg is shown in Figure 2. PDF          and CDF          of 
FEXg with the scale parameter   and newly introduced parameter   is given as: 

 

             
     

(     
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(        
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Figure 1: Density and hazard function of FEXg. 
   
 
 

 
  

Figure 2: Distribution function and survival function of FEXg. 
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if    , then FEXg coincide with the XGD with the scale parameter  . HRF is the most important 
property to know the survival behaviour of any life time model. Hazard rate better known as instantaneous 
failure rate is the dynamic speed with which an system or component fails, expressed in failures per unit of 
time. HRF          of FEXg is: 
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 Also graphical representation of PDF and CDF of newly proposed model has been shown by the Figure   
and 2, respectively. Figures of CDF, PDF, SF and HRF plot for various choices of   and  . From the 
Figure 1, it is observed that the HRF of FEXg can take every possible shape, i.e, increasing, decreasing and 
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bathtub shape for the chosen value of the scale parameter     and the newly introduced parameter  . As 
compared to xgamma distribution, proposed distribution HRF is more flexible than xgamma distribution 
because Sen et al.[21] have been shown that the HRF of xgamma distribution can take only bathtub shape. 

 
3.  Statistical Properties of MOEXg 
 
In this section, mathematical expressions of statistical properties viz., raw moments, generating functions, 
conditional moments, order statistics etc. of the proposed model have been obtained. These statistical 
properties play key role to analyze the data and we conclude about the behaviour of the data on the basis of 
these statistical properties. 

 
3.1  Raw moments 
 

Raw moments are the extremely important aspect of any distributional form because they help to determine 
the skewness and kurtosis of a model. The r-th raw moments about origin is given as;  
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We use the following Lemma to obtain the closed form solution of the above equation.  
 

    Lemma 1: Let X be random variable having FEXg then 
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Integral of above equation can be easily solved by use of gamma function. 
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Expression of first four raw moments are obtained by putting r =        respectively in the Equation   . 
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Formulas of central moments rely on the raw moments thus, central moments can be calculated with the 
help of above expressions of raw moments. Further, the skewness and kurtosis of the proposed model can 
be determined from the central moments. The first two moments along with the cofficients of skewness 
(SK) and kurtosis (KR) helps us in getting a general glimpse of the data. Mean (computed using first raw 
moment) gives the idea of measure of central tendency. Variance (the second central moment) narrates 
about the spread of data whereas SK and KR comments upon the measure of assymetricity and of 
peakedness respectively. Pearson formulated the skewness and kurtosis by following formulas: 

 
       

   
            

   
 

 

3.2  Generating functions 
 
This subsection consists the brief theory and expressions of the generating functions viz., moment 
generating function      , characteristic function       and cumulant generating function      . 
Moment generating function can be calculated in following manner:  
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To get the solution of the integral of       [see, Equation   ], we have to used Lemma 1. Mathematical 
formulation of the       for the proposed plan is given below:  

       
   
                             (15) 

MGF suffers from the drawback that it is defined for a specified range i.e;        where   is a small 
positive number thus, we resort to characteristic function which is given for the real axis. Further, 
characteristic function always exist unlike MGF. For proposed distribution it can obtained with the help of 
Equation (  ) and we replace the dummy parameter   by   . Therefore, the expression of the characteristic 
function      .  
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Cumulants generating function is defined as the logarithmic of the characteristic function and is given in 
following equation [see, Equation   ].  
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3.3  Conditional moments 
 
Given that the life of the unit under observation exceeds a specified value say ’x’ then one may be interested 
for the expression for moments under such condition. Such moments are called as conditional moments. 
Thus, about origin the expression for n-th conditional moment is;  
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Integral of above equation can be easily solved by use of gamma function. 
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To get the solution of    we have to proceed in similar manner as          . So solution of           is:  
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Put the     and     in Lemma  , then the r-th raw moment is: 
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Expression of first four raw moments are obtained by putting r =        respectively in the Equation   . 
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Formulas of central moments rely on the raw moments thus, central moments can be calculated with the 
help of above expressions of raw moments. Further, the skewness and kurtosis of the proposed model can 
be determined from the central moments. The first two moments along with the cofficients of skewness 
(SK) and kurtosis (KR) helps us in getting a general glimpse of the data. Mean (computed using first raw 
moment) gives the idea of measure of central tendency. Variance (the second central moment) narrates 
about the spread of data whereas SK and KR comments upon the measure of assymetricity and of 
peakedness respectively. Pearson formulated the skewness and kurtosis by following formulas: 

 
       

   
            

   
 

 

3.2  Generating functions 
 
This subsection consists the brief theory and expressions of the generating functions viz., moment 
generating function      , characteristic function       and cumulant generating function      . 
Moment generating function can be calculated in following manner:  
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To get the solution of the integral of       [see, Equation   ], we have to used Lemma 1. Mathematical 
formulation of the       for the proposed plan is given below:  

       
   
                             (15) 

MGF suffers from the drawback that it is defined for a specified range i.e;        where   is a small 
positive number thus, we resort to characteristic function which is given for the real axis. Further, 
characteristic function always exist unlike MGF. For proposed distribution it can obtained with the help of 
Equation (  ) and we replace the dummy parameter   by   . Therefore, the expression of the characteristic 
function      .  

       
   
                               (16) 

Cumulants generating function is defined as the logarithmic of the characteristic function and is given in 
following equation [see, Equation   ].  
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3.3  Conditional moments 
 
Given that the life of the unit under observation exceeds a specified value say ’x’ then one may be interested 
for the expression for moments under such condition. Such moments are called as conditional moments. 
Thus, about origin the expression for n-th conditional moment is;  
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where,          and          is PDF and CDF of FEXg, given in Equations (   ).  
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Two complicated integrals are involve in above equation. For the solution of these integrals [see, Equation 
    ], we will apply the following lemma: 
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 Proof: Proof of lemma   is similar as the lemma  . Hence the expression of conditional moment is:  
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 Put a  , r=n, c   and     in Equation      and get the expression of n-th conditional moment of 
FEXg.  
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 Using Lemma  , the first four conditional moments are given as:  
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3.4  Mean deviation 
Mean deviation of the FEXg about the mean has been defined in following equation:  
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where,   mean of the FEXg.  
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3.5  Order statistics 
 

Let                 is a random sample of size from FEXg. Then, the ordered observations      
                     constitute the order statistic. Let          denotes the  -th order statistic, 
then the PDF and CDF of  -th order statistic are computed as follows:  
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Equation (22) represents the PDF of k-th order statistics. Now, the CDF of k-th order statistics is: 
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By putting the value of PDF and CDF [see, Equations (   and ( ) respectively] of FEXg in Equations      
and      then we get the PDF and CDF of k-th oreder staistics of FEXg. Also, the distribution of 
                                    and                                     can 
be computed with help of above Equations     by putting     and     respectively. 
 

 
3.6  Bonferroni and Lorenz curves 
 

Bonferroni and Lorenz curves are very important tools in actuarial and population science to study the 
income and poverty level. Let   be a random variable with PDF         , defined in Equation ( ) then 
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Bonferroni curve      and Lorenz curve      are defined by the following Equations (  ) and (  ) 
respectively.  

       
  *  ∫               + 

       
 *  ∫               + 

After simplification, the final expression of      and      are obtained as:  
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 where,       . Bonferroni and Gini indices are helpful in several fields such as income, wealth, 
reliability, insurance, demography and medicine. Mathematical expressions thes indices based on the above 
two curves are given as;  
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3.7  Entropy measurement 
 

Entropy is used to measure the randomness of systems and it is widely used in areas like physics, 
molecular imaging of tumors and sparse kernel density estimation. General expression of 
generalized entropy is given below:  
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             .    is determined by the  -th raw moments. Now the 

expression of generalized entropy in case of FEXg model is: 
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3.8  Ageing intensity 
 

Ageing is a important aspect in study of the survival and reliability analysis and ageing is a basic 
characteristic of the any system or product. Ageing characteristic of the system can be calculated 
mathematically using formula given in Equation     . Ageing intensity is a function of x and is defined as 
the ratio of hazard rate to baseline hazard rate. Ageing intensity is denoted by AI, is given below:  
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 Using the expression of      ,  ̅     for the proposed probability distribution, we get 
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 Pattern of AI depends on the hazard rate. If hazard rate is increasing, decreasing and constant then ageing 
is positive, negative and non-ageing respectively. When X is a non negative random variable then       
can take three value namely,   ,    and    for all    . Value of       is   if and only if hazard 
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and      then we get the PDF and CDF of k-th oreder staistics of FEXg. Also, the distribution of 
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be computed with help of above Equations     by putting     and     respectively. 
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income and poverty level. Let   be a random variable with PDF         , defined in Equation ( ) then 
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Bonferroni curve      and Lorenz curve      are defined by the following Equations (  ) and (  ) 
respectively.  

       
  *  ∫               + 

       
 *  ∫               + 

After simplification, the final expression of      and      are obtained as:  

       
  *  

   
   (            

 
            )+ (24) 

and  

       
 *  

   
   (            

 
            )+ (25) 

 where,       . Bonferroni and Gini indices are helpful in several fields such as income, wealth, 
reliability, insurance, demography and medicine. Mathematical expressions thes indices based on the above 
two curves are given as;  

     ∫                        ∫           
 
3.7  Entropy measurement 
 

Entropy is used to measure the randomness of systems and it is widely used in areas like physics, 
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Ageing is a important aspect in study of the survival and reliability analysis and ageing is a basic 
characteristic of the any system or product. Ageing characteristic of the system can be calculated 
mathematically using formula given in Equation     . Ageing intensity is a function of x and is defined as 
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 Pattern of AI depends on the hazard rate. If hazard rate is increasing, decreasing and constant then ageing 
is positive, negative and non-ageing respectively. When X is a non negative random variable then       
can take three value namely,   ,    and    for all    . Value of       is   if and only if hazard 
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rate is constant.       is    if hazard rate is increasing in t and       is    if hazard rate is decreasing 
function in t. 

 
3.9  Residual lifetime functions 
 

Residual lifetime function is used to determine the remaining lifetime associated with any particular 
system. In this section, we have derived the residual lifetime functions for the FEXg. It is defined by the    
and reversed residual lifetime function is defined by    which denotes the time elapsed from the failure of 
a component given that it has life less or equal to t. Expressions of residual lifetime function and reversed 
lifetime function are:  

                       
 

                        
The survival function of residual life function and reverse residual life function are given by;  
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respectively. Hence, using the survival function of the proposed model the required expressions of  ̅     , 
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 (29) 

 
Corresponding PDFs and hazard rate function can be obtained with help of above defined survival 

functions for both the lifetimes. 
 

4.  Maximum Likelihood Estimation 
 

In this section, we have considered maximum likelihood estimation (MLE) procedure for the estimation of 
the unknown model parameters and the survival characteristics (SF, HRF). Let            be a random 
sample of size   from Equation (7). Then, the log-likelihood function for the observed random sample 
           is given as;  
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The resulting partial derivatives of the log-likelihood function are  
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Equating these partial derivatives to zero does not yield closed-form solutions for the MLEs and thus a 
numerical method is used for solving these equations simultaneously. So for the determination of MLEs 
from above equations [see, Equation 31 and 32], we have used nlm() function in R. Substituting the MLEs 
( ̂     ̂   ) of (   ) and using the invariance properties of MLEs, we can get the estimators of  ̅    and 
     as;  
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 respectively for the given value of  .  
 

5.  Simulation Study 
 

In this section, Monte Carlo simulation study is compiled to check the performances of maximum 
likelihood estimators for the proposed distribution. Monte carlo simulation study provides an enviourment 
under which we repeat the same program for prefixed number of times under similar conditions, and this 
enables us to estimate the average estimate of parameter and average mean square error for considered 
model. The performances of the estimators i.e. survival and hazard functions   ̅            are studied in 
terms of average mean square errors. The study is carried out for the different variation of sample size     
and parametric values (    ). In particular, we have taken,                              and 
     =(1.60,0.32), (0.60,0.32), (1.75,0.50), (2.25,0.45), (1.20,0.15), (1.05,0.35). The estimates of the 
survival function and hazard function are computed using invariance property of the MLE for arbitrary 
chosen specified mission time         . For each considered combination      , we generate the 
sample of size   from the FEXg using accept reject method of sample generation. Next, we calculated the 
average value (AV) and mean square error (MSE) the proposed estimators based on        
replications using the following expressions;  
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     ̅       ̅                     
 ∑   

                 

From Table ( ), it is observed that the average MSEs of the  ̅    and      decrease as sample sizes 
increases for all the considered combination of      . The decreasing trend of MSEs proves that the 
estimators of  ̅    and      are consistent. All simulations were performed using programs written in the 
open source statistical package R. 
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Equating these partial derivatives to zero does not yield closed-form solutions for the MLEs and thus a 
numerical method is used for solving these equations simultaneously. So for the determination of MLEs 
from above equations [see, Equation 31 and 32], we have used nlm() function in R. Substituting the MLEs 
( ̂     ̂   ) of (   ) and using the invariance properties of MLEs, we can get the estimators of  ̅    and 
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5.  Simulation Study 
 

In this section, Monte Carlo simulation study is compiled to check the performances of maximum 
likelihood estimators for the proposed distribution. Monte carlo simulation study provides an enviourment 
under which we repeat the same program for prefixed number of times under similar conditions, and this 
enables us to estimate the average estimate of parameter and average mean square error for considered 
model. The performances of the estimators i.e. survival and hazard functions   ̅            are studied in 
terms of average mean square errors. The study is carried out for the different variation of sample size     
and parametric values (    ). In particular, we have taken,                              and 
     =(1.60,0.32), (0.60,0.32), (1.75,0.50), (2.25,0.45), (1.20,0.15), (1.05,0.35). The estimates of the 
survival function and hazard function are computed using invariance property of the MLE for arbitrary 
chosen specified mission time         . For each considered combination      , we generate the 
sample of size   from the FEXg using accept reject method of sample generation. Next, we calculated the 
average value (AV) and mean square error (MSE) the proposed estimators based on        
replications using the following expressions;  
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From Table ( ), it is observed that the average MSEs of the  ̅    and      decrease as sample sizes 
increases for all the considered combination of      . The decreasing trend of MSEs proves that the 
estimators of  ̅    and      are consistent. All simulations were performed using programs written in the 
open source statistical package R. 
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6  Real life Examples and Discussion 
 

Coronavirus disease (COVID-19) is a zoonatic disease caused by coronavirus. The wide spread of this 
disease has shaped into a global pandemic. It has worstly affected the different spheres of life. The study of 
data pertaining to coronavirus has become inevitable so that we can study it’s effect on social and economic 
front. Thus, in this section we attempt to illustrate the practical applicability of our proposed model on the 
data releated to Coronavirus disease (COVID-19). Description of the considered examples and associated 
data are given below. Also, the descriptive summary, viz., Minimum,   , median, mean,   , maximum, 
coefficient of skewness (CS) and coefficient of kurtosis (CK) are displayed in Table  . For the applications 
part, first we checked whether the considered data sets comes from FEXg or not by using 
Kolmogrov-Smirnov (K-S) goodness-of-fit test. Thes test based on the K-S statistic compares an empirical 
and a theoretical model by computing the maximum absolute difference between the empirical and 
theoretical CDFs and is defined as                      , where,         and      is the 
supremum of the set of the distances,       is the empirical distribution function and        is the CDF. 
Note that, K-S statistic to be used only to verify the goodness-of-fit not as a discrimination criteria. 
Therefore, we consider two discrimination criteria based on the likelihood-function evaluated at the MLEs. 
The criterion are: Akaike’s Information Criteria (AIC) and Bayesian Information Criteria (BIC). These 
statistics are given by          ̂    ,          ̂        , where,    ̂  denotes the 
log-likelihood function evaluated at the MLEs,   is the number of model parameters and   is the sample 
size. The model with lowest values for these two statistics could be chosen as the best model to fit the data. 
Tables 3,  ,   and   are all about to show the flexibility of proposed model over other life time models.   
 
Data I: Following observations represents the new cases of Covid-19 in Italy during      May 2020 to 
     June 2020 [see, https://www.worldometers.info/coronavirus/country/italy/] and the observations are:  
 

                                                                 
 

                                                             
 

Model fitting summary of considered data set has been given in Table  . The values of MLEs of the 
parameters,    ̂ , AIC, BIC, K-S Statistic with corresponding   values are reported. From Table  , it is 
observed that the proposed model is best fit as compared to generalized exponential distribution (GED), 
Weibull distribution (WD), Transmuted Rayleigh (TR) distribution, Frechet distribution (FD), Lindley 
distribution (LD), inverse Weibull distribution (IWD), Akash distribution (AKD) and xgamma distribution 
(XGD) in terms of   value. 
 
Data II: Data represent the percentage of death rate in India due to Covid-19 pandemic from      March 
2020 to      April, 2020, for more detail one may visit to the website and URL of the website is 
www.worldometers.info/coronavirus/country/india/. 
  

                                                                
 

                                                                
 

                                                             
 

Model fitting summary of considered data set II has been given in Table  . The values of MLEs of the 
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parameters,    ̂ , AIC, BIC, K-S Statistic with corresponding p values are displayed in Table  . From 
Table  , it is observed that the proposed model is best fit as compared to generalized exponential 
distribution (GED), Frechet distribution (FD), Lindley distribution (LD), Akash distribution (AKD), 
xgamma distribution (XGD), inverted exponential distribution (IED), , exponential distribution (ED) and 
inverse Weibull distribution (IWD) in terms of   value.  
 
Data III: Data represents the death rate due to Coronaviruses (CoVID-19). These are large family of 
viruses that cause illness ranging from the common cold to more severe diseases such as Middle East 
Respiratory Syndrome (MERS-CoV) and Severe Acute Respiratory Syndrome (SARS-CoV). Following 
data represents the death rate due to CoVID-19 for a particular day data in China. URL is 
towardsdatascience.com/an-r-package-to-explore-the-novel-coronavirus-590055738ad6 

 

                                                        
 

Model fitting summary of considered data set III has been given in Table  . The values of MLEs of the 
parameters,    ̂ , AIC, BIC, K-S Statistic with corresponding p values of data III are displayed in Table  . 
From Table  , it is observed that the proposed model is best fit as compared to exponential power 
distribution (EPD), Frechet distribution (FD), , Weibull distribution (WD), xgamma distribution (XGD), 
Akash distribution (AKD), inverted exponential distribution (IED), exponential distribution (ED) and 
Lindley distribution (LD) in terms of   value.  
 
Data IV: Here, we consider the corona-virus cases distribution among the fifteen countries viz.,France, 
Italy, Spain, US, Germony, UK, Turkey, Iran, Russia, China, Brazil, Canada, Belgium, Netherlands and 
Switzerland. Data has taken from a website and URL is 
https://www.worldometers.info/coronavirus/coronavirus-cases/. Data is given in percentage and the 
observations are:  

                                                                             
 

Model fitting summary of considered data set IV has given in Table  . The MLEs of the parameters,    ̂ , 
AIC, BIC, K-S Statistic with corresponding   values of data IV are displayed in Table  . From Table  , it 
has been observed that the proposed model is best fit as compared to xgamma distribution (XGD), Lindley 
distribution (LD), Akash distribution (AKD), inverted exponential distribution (IED), inverse xgamma 
distribution (IXGD), inverse Lindley distribution (ILD), Pareto type-2 Lomax distribution (Pt2LD), inverse 
Pareto (IP) and exponential power distribution (EPD) in terms of   value. Descriptive summary of the data 
IV has given in Table  . 

The descriptive summary of all the considered data sets are shown via box plots in Figure 3. Further, the 
empirical cumulative distribution function (ECDF) plots for the proposed model with all the considered 
competitive models are given in Figures 4. From ECDF plots, it has been noticed that FEXg distribution 
provides better fit as compared to the other two parametric distributions. Also, the estimated value of 
survival function and hazard rate function for all the considered data sets for the differently chosen value of 
mission time   are reported in Table 8. 
 

We found that proposed probability distribution suited well to real life scenarios as compared to some 
popular existing probability distributions and to supposrt this statement we have provided numerical results 
in Tables 3-6.  

 



23

H.Tripathi, A. S. Yadav, M. Saha and S. Shukla / A New Flexible Extension of Xgamma Distribution …… 

22 
 

 
6  Real life Examples and Discussion 
 

Coronavirus disease (COVID-19) is a zoonatic disease caused by coronavirus. The wide spread of this 
disease has shaped into a global pandemic. It has worstly affected the different spheres of life. The study of 
data pertaining to coronavirus has become inevitable so that we can study it’s effect on social and economic 
front. Thus, in this section we attempt to illustrate the practical applicability of our proposed model on the 
data releated to Coronavirus disease (COVID-19). Description of the considered examples and associated 
data are given below. Also, the descriptive summary, viz., Minimum,   , median, mean,   , maximum, 
coefficient of skewness (CS) and coefficient of kurtosis (CK) are displayed in Table  . For the applications 
part, first we checked whether the considered data sets comes from FEXg or not by using 
Kolmogrov-Smirnov (K-S) goodness-of-fit test. Thes test based on the K-S statistic compares an empirical 
and a theoretical model by computing the maximum absolute difference between the empirical and 
theoretical CDFs and is defined as                      , where,         and      is the 
supremum of the set of the distances,       is the empirical distribution function and        is the CDF. 
Note that, K-S statistic to be used only to verify the goodness-of-fit not as a discrimination criteria. 
Therefore, we consider two discrimination criteria based on the likelihood-function evaluated at the MLEs. 
The criterion are: Akaike’s Information Criteria (AIC) and Bayesian Information Criteria (BIC). These 
statistics are given by          ̂    ,          ̂        , where,    ̂  denotes the 
log-likelihood function evaluated at the MLEs,   is the number of model parameters and   is the sample 
size. The model with lowest values for these two statistics could be chosen as the best model to fit the data. 
Tables 3,  ,   and   are all about to show the flexibility of proposed model over other life time models.   
 
Data I: Following observations represents the new cases of Covid-19 in Italy during      May 2020 to 
     June 2020 [see, https://www.worldometers.info/coronavirus/country/italy/] and the observations are:  
 

                                                                 
 

                                                             
 

Model fitting summary of considered data set has been given in Table  . The values of MLEs of the 
parameters,    ̂ , AIC, BIC, K-S Statistic with corresponding   values are reported. From Table  , it is 
observed that the proposed model is best fit as compared to generalized exponential distribution (GED), 
Weibull distribution (WD), Transmuted Rayleigh (TR) distribution, Frechet distribution (FD), Lindley 
distribution (LD), inverse Weibull distribution (IWD), Akash distribution (AKD) and xgamma distribution 
(XGD) in terms of   value. 
 
Data II: Data represent the percentage of death rate in India due to Covid-19 pandemic from      March 
2020 to      April, 2020, for more detail one may visit to the website and URL of the website is 
www.worldometers.info/coronavirus/country/india/. 
  

                                                                
 

                                                                
 

                                                             
 

Model fitting summary of considered data set II has been given in Table  . The values of MLEs of the 
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parameters,    ̂ , AIC, BIC, K-S Statistic with corresponding p values are displayed in Table  . From 
Table  , it is observed that the proposed model is best fit as compared to generalized exponential 
distribution (GED), Frechet distribution (FD), Lindley distribution (LD), Akash distribution (AKD), 
xgamma distribution (XGD), inverted exponential distribution (IED), , exponential distribution (ED) and 
inverse Weibull distribution (IWD) in terms of   value.  
 
Data III: Data represents the death rate due to Coronaviruses (CoVID-19). These are large family of 
viruses that cause illness ranging from the common cold to more severe diseases such as Middle East 
Respiratory Syndrome (MERS-CoV) and Severe Acute Respiratory Syndrome (SARS-CoV). Following 
data represents the death rate due to CoVID-19 for a particular day data in China. URL is 
towardsdatascience.com/an-r-package-to-explore-the-novel-coronavirus-590055738ad6 

 

                                                        
 

Model fitting summary of considered data set III has been given in Table  . The values of MLEs of the 
parameters,    ̂ , AIC, BIC, K-S Statistic with corresponding p values of data III are displayed in Table  . 
From Table  , it is observed that the proposed model is best fit as compared to exponential power 
distribution (EPD), Frechet distribution (FD), , Weibull distribution (WD), xgamma distribution (XGD), 
Akash distribution (AKD), inverted exponential distribution (IED), exponential distribution (ED) and 
Lindley distribution (LD) in terms of   value.  
 
Data IV: Here, we consider the corona-virus cases distribution among the fifteen countries viz.,France, 
Italy, Spain, US, Germony, UK, Turkey, Iran, Russia, China, Brazil, Canada, Belgium, Netherlands and 
Switzerland. Data has taken from a website and URL is 
https://www.worldometers.info/coronavirus/coronavirus-cases/. Data is given in percentage and the 
observations are:  

                                                                             
 

Model fitting summary of considered data set IV has given in Table  . The MLEs of the parameters,    ̂ , 
AIC, BIC, K-S Statistic with corresponding   values of data IV are displayed in Table  . From Table  , it 
has been observed that the proposed model is best fit as compared to xgamma distribution (XGD), Lindley 
distribution (LD), Akash distribution (AKD), inverted exponential distribution (IED), inverse xgamma 
distribution (IXGD), inverse Lindley distribution (ILD), Pareto type-2 Lomax distribution (Pt2LD), inverse 
Pareto (IP) and exponential power distribution (EPD) in terms of   value. Descriptive summary of the data 
IV has given in Table  . 

The descriptive summary of all the considered data sets are shown via box plots in Figure 3. Further, the 
empirical cumulative distribution function (ECDF) plots for the proposed model with all the considered 
competitive models are given in Figures 4. From ECDF plots, it has been noticed that FEXg distribution 
provides better fit as compared to the other two parametric distributions. Also, the estimated value of 
survival function and hazard rate function for all the considered data sets for the differently chosen value of 
mission time   are reported in Table 8. 
 

We found that proposed probability distribution suited well to real life scenarios as compared to some 
popular existing probability distributions and to supposrt this statement we have provided numerical results 
in Tables 3-6.  
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7.  Conclusions 
 

In this article, we have proposed a new lifetime probability distribution, named as FEXg distribution. 
Different distribution properties such as moments, conditional moments, mean deviation, generating 
function, entropy, order statistics, ageing intensity, residual and reverse residual functions etc. are derived. 
The MLE method is used to estimate the survival function and hazard function for specified time. Further, 
the trend of the estimators are studied through Monte Carlo simulation, and noticed that the MSEs of the SF 
and HRF are decreases as the magnitude of sample size is increases which insure the trend of consistency of 
the estimators. Lastly, the applicability of the introduced extension has been shown using noble 
Coronavirus data of different countries. It is worthless to mention that the proposed FEXg model is a good 
competitor of several one and two parametric family of lifetime distributions. Hence, the proposed 
extension might be chosen by researcher to model the real life data with monotone increasing, monotone 
decreasing and bathtub hazard rate behaviour.  
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7.  Conclusions 
 

In this article, we have proposed a new lifetime probability distribution, named as FEXg distribution. 
Different distribution properties such as moments, conditional moments, mean deviation, generating 
function, entropy, order statistics, ageing intensity, residual and reverse residual functions etc. are derived. 
The MLE method is used to estimate the survival function and hazard function for specified time. Further, 
the trend of the estimators are studied through Monte Carlo simulation, and noticed that the MSEs of the SF 
and HRF are decreases as the magnitude of sample size is increases which insure the trend of consistency of 
the estimators. Lastly, the applicability of the introduced extension has been shown using noble 
Coronavirus data of different countries. It is worthless to mention that the proposed FEXg model is a good 
competitor of several one and two parametric family of lifetime distributions. Hence, the proposed 
extension might be chosen by researcher to model the real life data with monotone increasing, monotone 
decreasing and bathtub hazard rate behaviour.  
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        Mean   Median   Variance   Skewness   Kurtosis  
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   0.75   0.46093   0.45349   0.07515   0.05575   1.79105  
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   1.00   2.24733   2.29250   1.72972   -0.07194   1.74407  

   1.50   1.26756   1.36504   1.56621   -0.11267   1.77688  

 2.00   0.50   5.49671   5.39148   8.52423   0.07095   1.75142  

   0.75   3.42854   3.36312   4.14281   0.00947   1.84185  

   1.00   2.28991   2.31023   1.91979   0.05839   1.78504  
   1.50   1.31076   1.28566   0.65196   0.04810   1.78938  
 2.5   0.50   6.21731   6.08132   9.59394   0.03831   1.79644  
   0.75   3.80539   3.76465   3.89006   0.00885   1.87036  
   1.00   2.72659   2.71487   2.72596   0.04900   1.80169  
   1.5   1.52906   1.48998   0.83842   0.04219   1.77426  
 3.0   0.50   7.07237   7.13003   11.3914   -0.05354   1.81212  
   0.75   3.99226   3.91462   3.83259   0.07685   1.84265  
   1.00   2.86224   2.80709   2.40283   0.08433   1.82191  
   1.5   1.79435   1.84541   1.05947   -0.07654   1.82514  

  
   
Table 2: MSE, Average estimated value of  ̅    and      for different values of t. 

   
n  ,  t  ̅          ̅̂        ̂       MSE of  ̅    MSE of      
10 1.60,0.32 2 0.91095 0.05107 0.99182 0.00507 0.002875 0.000925 
20     0.96300 0.02258 0.001747 0.000531 
30     0.95337 0.028377 0.001351 0.000396 
40     0.94908 0.030902 0.001194 0.000343 
50     0.94648 0.032473 0.001102 0.000310 
100     0.94240 0.034859 0.000913 0.000247 
150     0.94051 0.035962 0.000830 0.000220 
200     0.94019 0.036155 0.000822 0.000217 
10 0.60,0.32 2 0.79324 0.11859 0.94828 0.03633 0.016152 0.005944 
20     0.89035 0.07524 0.008476 0.002721 
30     0.86824 0.08977 0.005443 0.001593 
40     0.86332 0.09284 0.004671 0.001232 
50     0.85352 0.09923 0.003889 0.000987 
100     0.84401 0.10534 0.002779 0.000524 
150     0.84118 0.10716 0.002416 0.000354 
200     0.83804 0.10918 0.002120 0.000267 
10 1.75,0.50 3 0.73538 0.13489 0.93482 0.04327 0.015222 0.005593 
20     0.85156 0.09519 0.009101 0.002410 
30     0.82436 0.11131 0.007148 0.001694 
40     0.81282 0.11800 0.005819 0.001161 
50     0.80610 0.12192 0.005086 0.000922 
100     0.79268 0.12940 0.003511 0.000447 
150     0.78985 0.13087 0.003124 0.000293 
200     0.78766 0.13193 0.002929 0.000241 
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10 2.25,0.45 3 0.81607 0.09022 0.96156 0.02227 0.009287 0.002290 
20     0.90783 0.05207 0.005703 0.001206 

30     0.89173 0.06052 0.004496 0.000868 

40     0.88168 0.06577 0.003806 0.000663 

50     0.87726 0.06799 0.003353 0.000557 

100     0.86744 0.07301 0.002583 0.000362 

150     0.86365 0.07502 0.002261 0.000280 

200     0.86268 0.07554 0.002182 0.000255 

10 1.20,0.15 4 0.93333 0.02165 0.96004 0.00612 0.001438 0.000151 

20     0.98095 0.00612 0.001438 0.000149 

30     0.97691 0.00741 0.001353 0.000143 
40     0.97384 0.00837 0.001256 0.000135 
50     0.97303 0.00863 0.001227 0.000132 

100     0.97016 0.00953 0.001197 0.000129 
150     0.96904 0.00988 0.001170 0.000127 
200     0.96884 0.00995 0.001179 0.000126 
10 1.05,0.35 4 0.69183 0.12068 0.91869 0.04286 0.019907 0.005154 
20     0.81544 0.09348 0.011091 0.002119 
30     0.78163 0.10899 0.007858 0.001337 
40     0.76920 0.11519 0.006249 0.001017 
50     0.76008 0.11936 0.005367 0.000885 

100     0.74579 0.12550 0.003520 0.000499 
150     0.74019 0.12789 0.002873 0.000397 
200     0.73670 0.12940 0.002432 0.000321 

  
    
 

Table 3: The model fitting summary for the considered data set I. 
  

 Model   MLE   L-L   AIC   BIC   KS     value  

 FEXg                       -181.6155   367.2311   370.099   0.0882   0.9516  

 GED                          -180.8895   365.779   368.647   0.0949   0.9178  

 WD                        -181.827   367.6539   370.5219   0.0935   0.9259  

 TR                        -187.7672   379.5345   382.4025   0.2605   0.0241  

 FD                          -183.7472   371.4944   374.3624   0.1304   0.6205  

 LD             -192.7683   387.5366   388.9706   0.2681   0.0185  

 IWD                        -187.0328   378.0656   380.9336   0.2271   0.0690  

 AKD             -187.7058   377.4116   378.8455   0.2051   0.1276  

 XGD             -187.9498   377.8996   379.3336   0.20848   0.1166  
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10 2.25,0.45 3 0.81607 0.09022 0.96156 0.02227 0.009287 0.002290 
20     0.90783 0.05207 0.005703 0.001206 

30     0.89173 0.06052 0.004496 0.000868 

40     0.88168 0.06577 0.003806 0.000663 

50     0.87726 0.06799 0.003353 0.000557 

100     0.86744 0.07301 0.002583 0.000362 

150     0.86365 0.07502 0.002261 0.000280 

200     0.86268 0.07554 0.002182 0.000255 

10 1.20,0.15 4 0.93333 0.02165 0.96004 0.00612 0.001438 0.000151 

20     0.98095 0.00612 0.001438 0.000149 

30     0.97691 0.00741 0.001353 0.000143 
40     0.97384 0.00837 0.001256 0.000135 
50     0.97303 0.00863 0.001227 0.000132 

100     0.97016 0.00953 0.001197 0.000129 
150     0.96904 0.00988 0.001170 0.000127 
200     0.96884 0.00995 0.001179 0.000126 
10 1.05,0.35 4 0.69183 0.12068 0.91869 0.04286 0.019907 0.005154 
20     0.81544 0.09348 0.011091 0.002119 
30     0.78163 0.10899 0.007858 0.001337 
40     0.76920 0.11519 0.006249 0.001017 
50     0.76008 0.11936 0.005367 0.000885 

100     0.74579 0.12550 0.003520 0.000499 
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200     0.73670 0.12940 0.002432 0.000321 
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Table 4: The model fitting summary for the considered data set II.  

 
 Model   MLE   L-L   AIC   BIC   KS     value  

 FEXg                        -95.74962   195.4992   198.4307   0.11774   0.7667  

 GED                       -96.73035   197.4607   200.3922   0.14751   0.4893  

 FD                       -99.71265   203.4253   206.3568   0.17762   0.2649  

 LD             -121.0507   244.1014   245.5671   0.3835   0.0001  

 AKD             -113.8608   229.7216   231.1873   0.32534   0.0022  

 XGD             -116.4718   234.9435   236.4093   0.35396   0.0006  

 IED             -131.497   264.9941   266.4598   0.49784   2.583e-07  

 ED             -131.4435   264.887   266.3527   0.46289   2.215e-06  

 IWD                        -99.71265   203.4253   206.3568   0.17762   0.2649  

  
    

Table 5: The model fitting summary for the considered data set III. 
  

 Model   MLE   L-L   AIC   BIC   KS     value  

 FEXg                       -19.91846   43.83693   45.25303   0.13851   0.9358  

 EPD                      -21.05967   46.11933   47.53543   0.24581   0.3250  

 FD                      -19.77290   43.5458   44.9619   0.1489   0.8952  

 WD                      -19.85424   43.70848   45.12458   0.19547   0.6153  

 XGD             -28.26686   58.53372   59.24177   0.38825   0.0217  

 AKD             -26.25298   54.50595   55.21400   0.31111   0.1096  

 IED             -30.29933   62.59866   63.30671   0.40868   0.0133  

 ED             -30.30075   62.6015   63.30955   0.41776   0.0106  

 LD             -27.82462   57.64924   58.35729   0.3559   0.0447  

  
   Table 6: The model fitting summary for the considered data set IV. 
  

  Model   MLE   L-L   AIC   BIC   KS     value  

 FEXg                      -40.4889   84.9779   86.394   0.1973   0.5385  

 XGD             -43.5558   89.11175   89.8198   0.2501   0.2585  

 LD             -41.42952   -84.8590   85.5671   0.2131   0.4424  

 AKD             -44.5656   91.1313   91.8394   0.2687   0.1905  

 IED             -38.0421   78.0843   78.7923   0.2222   0.3912  

 IXGD             -38.3578   78.7156   79.4237   0.2405,   0.2998  
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 ILD             -37.84871  77.6974   78.4054   0.2118   0.4500  

 Pty2Lomax                        -39.9882   83.9765   85.3926   0.1979   0.5348 

 IP                         -38.0610   80.1221   81.5382   0.2209   0.3986 

 EPD                       -42.9405   89.8811   91.2972   0.2471   0.2709  

  
   

 
   
 Figure 3: Boxplots of considered data set I, II, III, IV, V. 
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Table 4: ECDF plots of the considered data set I, II, III, IV, V. 
   

   Table  7: Descriptive summary for the considered data sets. 
  

Data Minimum       Mean    Maximum CS CK 

I 113 193.5 255 255.9 320 519.0 0.6954 3.8598 

II 13.33 17.86 22.40 22.37 26.10 30.94 -0.0402 2.2894 

III 1.500 2.200 2.800 2.773 3.100 4.90 0.7932 3.2362 

IV 0.970 1.835 3.030 5.496 5.305 32.83 3.0901 11.4119 

    

Table 8: Estimated survival function and hazard rate function for the considered data sets. 
  

Data  ̂     ̂    t  ̅̂        ̂       
I 21.8159 0.0254 50 0.99194 0.00036 
   255.9 0.48893 0.01000 
   100 0.95976 0.00102 

II 483.2629 0.4420 50 2.265712e-05 0.40385 
   22.37 0.50684 0.17893 
   100 2.183881e-14 0.42246 

III 95.34097 2.52378 50 3.443906e-50 2.48411 
   2.773 4.659548e-01 1.04944 

   100 2.149399e-104 2.50386 
IV 0.08515374 0.1608966 50 0.00098 0.12722 

   5.596 0.35637 0.17599 
   100 1.107039e-06 0.14215 

 
 
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Abstract: South Asia (SA) predominantly consists of developing economies with massive growth 

potential in their banking industries. To this end, this paper examines the efficiency and productivity 

change in 136 commercial banks (CBS) of 6 countries: Afganistan, Bangladesh, India, Nepal, 

Pakistan and Sri Lanka in South-Asia from 2013 to 2019. Data envelopment analysis (DEA) method 

is employed to identify the efficiency frontier for South Asian CBS (SA-CBS). DEA-based Malmquist 

productivity index (MPI) is used to determine whether a change in total factor productivity of SA-CBS 

is due to technical efficiency change or technology change. Findings indicate that the average 

technical efficiency of SA-CBS is 62.45 percent, which reveals that 37.55 percent of inefficiency exists 

under the study period. In addition, results show that technical inefficiency in SA-CBS is attributed to 

pure technical inefficiency rather than scale inefficiency. Results further indicate a marginal decline 

in productivity over the study period, where the average total factor productivity score is 0.998. This 

deterioration is mainly attributed to technical efficiency decline since the average technological 

change increased, thus causing a negative impact on the total factor productivity. 

 

Keywords: South Asia, Commercial Banks, DEA, Efficiency, Total factor productivity 
 

1. Introduction:  

A region or country's economic growth depends on regional cooperation and financial 
development Hamadi and Bassil [41]. Moreover, financial services contribute to industrial expansion 
and economic growth Prasad et al [57]. Commercial banks are the backbone of any economy's 
financial sector as it provides capital for different development projects that foster economic growth 
([21], [78]). As commercial banking efficiency positively impacts financial development Fernandes et 
al [35], CBS's efficiency level improvement greatly concerns banking authorities and financial 
policymakers. South Asian Association for Regional Cooperation (SAARC) was established on 8 
December 1985 in Dhaka, Bangladesh. It consists of 8 member countries, including Afghanistan, 
Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan, and Sri Lanka.  
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