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5.2 Advantage 
The main advantage of the proposed expert system is to remove hesitant phase in group decision making 
process. The output of the system appears in Envelope form. 

 

6. Conclusion 
 

 Most of the time expert provide their assessments by using single linguistic term. But in hesitant 
situation, experts needed to provide more precious linguistic expressions. Here HFLTS provide to 
increase flexibility in an indecisive case. For a decision-making system, an envelope for HFLTS is used 
as a linguistic interval, where as in the final result initial fuzziness loosed. 
In this present study, the expert system is designed through the concept of fuzzy envelopes where the 
initial fuzzy representation of the linguistic terms is aggregate to fuzzy membership function without 
loss of the initial fuzziness. Invalidation processes using the same example and got the same result 
which has used in the decision-making model through the symbolic linguistic interval envelopes. But 
the advantage is that our output may not lose the initial fuzziness. 
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 Abstract: In this paper, a generic procedure for the development and subsequent validation of the 
Riemann surface structure (RSS) for a punctured curved surface lying on a Riemann surface is discussed. 
The proposed procedure differs from the existing methods involving triangular meshes and rectangular 
grids that rely on induced patches on surfaces. This procedure can be applied to non-punctured surfaces as 
well as to surfaces with irregularly located punctures. Further, by defining appropriate transition 
functions, the proposed procedure eliminates the requirement for smooth transitions across the boundaries 
of adjacent patches. The analytic formulations of the RSS for an ellipsoid and a sphere are elaborated 
using the proposed procedure. Moreover, the RSS of a sphere defined through a family of conformal unit 
discs is proven equivalent to that defined by an existing method based on stereographic projection. This 
study proves that a smooth projection between the surface and (a subset of) the complex plane  , can be 
remapped to the original surface. 
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1.  Introduction 

 Surface modeling plays a substantial role in image analysis, surface projection, and object 
recognition. In the field of image processing [2, Figure~1, p.2], 3D surface models are used to visualize the 
geometry of a surface. For instance, in medical imaging use cases, it is vital to examine the anatomy of the 
brain surface [9, p.670] and subsequently map functional imaging parameters [10]. Generally, in surface 
modeling, any curved surface in    is considered a real manifold, i.e., as a rectangular grid [1, p.184] or a 
triangulated mesh [5], [4, p.8433]. Surface parameterization of these models using existing methods [8, 
p.704],[11, p.3] requires a differentiable one-to-one mapping of 3D surfaces onto 2D constraints (such as 
meshes and grids), such that the numerical computation can be easily formed by the resulting models. 

 
Most existing methods for analyzing surfaces rely on induced grids or patches on the defined curved 

surface, which only have a one-to-one correspondence rather than a bijective (one-to-one and onto) 
correspondence between the original and the grid-induced surfaces. Further, both [4, p.8431] and [5, p.188] 
did not consider surfaces with punctured points or smooth transitions between the adjacent grids across grid 
boundaries. Moreover, pre-processing is performed to restrict the overlapping region between meshes or 
grids. However, due to the challenges involved in smoothly deforming a surface with genus to a 2D structure, 

1
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the generic approach proposed in this study uses RSS on a complex manifold for a curved surface with 
punctured points to overcome the above mentioned limitations by defining smooth transition functions. 

 
1.1  Riemann Surface Structure 
 An RSS is a collection of compatible complex coordinate charts on a curved surface covering the 

entire surface. A Riemann surface M is a surface with a class of charts            , such that         
is a holomorphic homeomorphism, where    maps the open subset    of M to an open subset of   . 

A coordinate chart is a homeomorphic map   from an open subset of a topological space M to an 
open subset of   (  , and is represented as the ordered pair      . Assuming that         and         
are two charts for an RSS with   ⋂      , then, the transition map     is defined by     =         . 
As    and    are both homeomorphisms, the transition map is also homeomorphic. Two charts on a 
topological space are compatible if the transition map is smooth. An atlas for a topological space   is the 
collection {           } of pairwise compatible charts whose domains cover  . In a complex manifold, 
the transition maps are holomorphic and are defined from   to  . The pair         for each     is a 
complex co-ordinate chart [6, Definition~1.6, p.2]. 

Let X be a curved surface with punctured points, lying on a Riemann surface M. Moreover, a curved 
surface can be represented as a family of open conformal unit discs, such that the union of these conformal 
unit discs covers the curved surface. Let    be the k-th conformal unit disc such that       . If 
       ,    , is a holomorphic function, then {           } defines the RSS on X.  

This paper presents an analytical formulation for the development of the RSS for a collection of 
conformal open unit discs covering the curved surface on a Riemann surface. The RSS includes a 
holomorphic function and compatibility conditions between every pair of coordinate charts. 

The remainder of this paper is structured into four sections and outlined as follows. In Section 2, the 
construction of the RSS of a curved surface X on a Riemann surface using the defined complex coordinate 
charts, holomorphic atlas, and compatibility conditions is described. In Section 3, the generation process of 
the RSS of a typical canonical curved surface, namely an ellipsoid, is defined. In Section 4, the RSS of a 
sphere is validated based on the developed methodology by comparing it with that based on an existing 
procedure using stereographic projection. Finally, Section 5 presents the conclusion. 

 
2.  Construction of an RSS on a Curved Surface 
 

 A surface that is not flat and has smooth bending is called a curved surface. In topology, a surface is 
a topological space where every point has an open neighborhood, and it is homeomorphic to an open subset 
of the Euclidean plane [3, p.195]. This section deals with the analytical formulations involved in developing 
the RSS for a curved surface X(x, y, z). 

 

2.1  Formulation of conformal unit disc 
  Any curved surface can be defined as a family of conformal open unit discs such that the union of 

these conformal unit discs covers the entire curved surface. Let X be a curved surface with a function z = 
F(x,y). If {            }  are the open conformal unit discs covering X, then   ⋃     , i.e.,                         
                                                                                                                                           (2.1) 
 Let p be the number of punctured points on the curved surface, with p < n. Let the positional co-ordinates of 
the k-th puncture be denoted by           , k =1,2,…,p. For k =1,2,...,n,    are open conformal unit discs 
whose centers are the punctured points            on the curved surface. By fixing            on the 
curved surface, for all (x, y, z)    , the following equations hold. 

 

Nepal Journal of Mathematical Sciences (NJMS), Vol.2(1), 2021 (February): 7-16 
 

9 
 

         
√                                               

   {                          }
                                             (2.2) 

2.2  Bi-holomorphic function 
   

Theorem 2.1  Let                            {           }                    (2.3) 
 such that (x,y,z),           , and (u,v,0) are in the same line. Then   , k =1,2,...,n, is a bijective 
bi-holomorphic function. 

 
  Figure  1: Holomorphic function from    to complex plane ( ) 

Proof.  
From Fig. 1, it can be seen that           , (x,y,z), and           = (u,v) lie in the same straight line. Using 
the property of a straight line,  
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According to Royden’s theorem [7, Proposition~1, p.306], “Suppose that        . Write F = 
           , where        . If for all i and j,       

 is (defined and) continuous near t, then F is 

differentiable at t, and the matrix for DF(t) is given by the Jacobian matrix at the point t. If the determinant of 
the Jacobian matrix is non-zero for every point in topological space S in   , then the function f is differential 
everywhere in S.” 

Clearly, ‖  ‖ ‖  ‖ and ‖  ‖ are non-zero by the definition of   . Therefore,    is complex 
differentiable at every point (x, y, z) in an open conformal unit disc    punctured at           . Hence,    
is a holomorphic function on an open set    for all    . This, implies that the family of conformal unit 
discs entirely covering the curved surface satisfies the property of a holomorphic atlas. 

The evaluation of the inverse function of    is required for the compatibility condition, which must 
be satisfied by the given curved surface, such that it can be referred to as an RSS.  

To generate the inverse of       , we have,  
     

    
     

    
     

  
   (2.15) 

  
             
            
        

 (2.16) 

 By Eq. (2.16), the curved surface X is given by,  
                                            (2.17) 

 By solving Eq. (2.17),   can be parameterized as a function of u and v, i.e.,        = t:  
                                                         (2.18) 

 The function      defined in Eq. (2.18) is holomorphic using the Jacobian matrix described in Royden’s 
theorem. The associated holomorphic atlas can be represented as a set A denoted by  

   {                        (     )            }  (2.19)     
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2.3  Compatibility condition 
 The compatibility condition must be satisfied by the given curved surface, such that it can be 

referred to as an RSS. In Section 2.2, Royden’s theorem has been used to prove that the functions    and 
     are holomorphic for all    . This section discusses the composition operation of two holomorphic 
functions, namely    and     , which leads to the definition of the transition function. 

Corollary 2.1 If         for some       and (u, v) in      , then the transition function 
 

 
                                
                                        

 (2.20) 

 is a holomorphic function.  
Because the holomorphic functions        referred to in Eq. (2.5) that are defined on the family 

of conformal unit discs on X and satisfy the compatibility condition, the curved surface has the RSS defined 
through the family of ordered pairs         , k=1,2,…,n, as defined in Eq. (2.19).  
3  Riemann Surface Structure of Canonical Curved Surface 
 

 The most common canonical forms of curved surfaces are the ellipsoid, hyperboloid, and 
paraboloid. Section 3.1 presents a detailed procedure for defining the RSS for an ellipsoid.  

3.1  Ellipsoid 
  This section considers the analytical formulations involved in the development of the RSS for an 

ellipsoid. Any arbitrary point (x, y, z) on an ellipsoidal surface of revolution is governed by the equation,  

   
   

  

   
  
     (3.1) 

 where a, b, and c are the semi-major, semi-minor, and semi-median axes, respectively. The geometrical 
profile of an ellipsoid in a 3D representation is shown in Fig. 2.  
   

Figure  2: Ellipsoid with (i) a<b and (ii) a>b   
3.1.1  Holomorphic function 
  The functions   , k =1,2,...,n, defined on the family of conformal unit discs on the ellipsoid are 

verified for their holomorphicity. Let         such that  
                (3.2) 

 where    is a conformal unit disc on the ellipsoid described in Section 2.1. From Fig. 1,           , 
(x,y,z), and           = (u,v) lie in the same straight line. By the property of a straight line,  
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Therefore,           = (x,y,z), where x, y, and z are defined by Eq. (3.7), and it is holomorphic.  
3.1.3  Compatibility condition 
 The compatibility condition must be satisfied by the given curved surface, such that it can be 

referred to as an RSS. In Sections 3.1.1 and 3.1.2, it was proved that the functions    and      are 
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Here, Eq. (3.8), which defines the transition function of an ellipsoid, is holomorphic. Therefore, the 

given holomorphic functions defined on the family of conformal unit discs on the ellipsoid satisfy the 
compatibility condition. The ellipsoid has the RSS defined through the family of ordered pairs         , k 
=1,2,…,n, as defined in Eq. (2.19).  

A similar procedure can be used to formulate the RSS for other canonical curved surfaces such as a 
hyperboloid of one sheet, a hyperboloid of two sheets, an elliptical paraboloid, and a hyperbolic paraboloid. 
The methodology as a pre-requisite requires curved surfaces to be defined as an algebraic expression, i.e., the 
surface must be expressed in the form of         . Additionally, the methodology requires a smoothly 
overlapped region of conformal unit discs.  
4.  Validation of an RSS with a Stereographic Projection 
 

 In this section, we aim to validate the analytical expression for the RSS of a sphere derived through 
the family of conformal unit discs on the sphere by comparing it with the results obtained through a 
stereographic projection.  

4.1  RSS of an unit sphere 
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Figure  4: Stereographic projection of a Riemann sphere   
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 is holomorphic. This RSS defined through set    on    is called the Riemann sphere.  

Thus,    is a holomorphic atlas defined by the family of conformal unit discs  

{                           }, and    is another atlas, defined by the stereographic projection 

{               }. Two atlases of a topological space are said to be equivalent if every chart of one atlas is 

compatible with every chart of the other atlas. Subsequently, we discuss the equivalence of the two atlases 

   and    defined above. 

For     (punctured at N), the transition function is,  
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Thus,     is also holomorphic. Therefore, the two atlases    and    are compatible and the RSS 
of a sphere defined through a family of conformal unit discs is equivalent to that defined through 
stereographic projection.  

 
5.  Conclusion 

 This paper introduced a generalized procedure for the development of the RSS for a curved surface 
by defining a family of conformal unit discs on the curved surface. The proposed method uses the 
holomorphic function defined for a family of conformal unit discs on a curved surface. Moreover, the 
proposed method can consider multiple unevenly distributed punctures on the curved surface. Further, the 
primary result was used to formulate a geodesic equation for a curved surface and establish the geodesic 
length function. In addition, the analytic formulations of the RSS for an ellipsoid and a sphere were 
elaborated using the developed procedure. Finally, the RSS of a sphere defined through a family of conformal 
unit discs was shown to be equivalent to that defined by an existing method using stereographic projection.  

A generic procedure for the construction of a universal cover of an arbitrary, non-simply connected 
curved surface can overcome the need for the assumption that the entire surface must be simply connected. 
An elegant proof for the existence of a non-trivial equivalence between the universal cover and the 
fundamental group of the RSS of a curved surface was outlined, as well as validated using the uniformization 
theorem for simply connected Riemann surfaces. This would facilitate the determination of a geodesic 
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between any two points on the conformal unit disc. Moreover, a conformal mapping between the RSS and the 
curved surface will be defined to evaluate the geodesic between two points on the curved surface. 
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Abstract:  In this work, we present two Newton type iterative methods for finding the solution of 
nonlinear equations of single variable. One is obtained as variant of McDougall and Wotherspoon 
method, and another is obtained by amalgamation of Potra and Pta’k method and our newly introduced 
method. The order of convergence of these methods are   √   and        . Some numerical examples 
are given to compare the performance of these methods with some similar existing methods. 

Keywords: Newton’s method, Nonlinear equations, Convergence order, Iterative methods. 

1. Introduction 

 Finding the solution of a single variable nonlinear equations is one of the most important tasks in 
numerical analysis. Nonlinear equations are frequently encountered in all fields of science and 
engineering. Most of the cases, it is impossible to solve such equations analytically. In those conditions, 
when an analytic solution cannot be obtained or the process of finding it is tedious, numerical methods are 
employed to get the approximate solutions. Main goal of numerical methods is to find the solution of 
given problem in allowed tolerance level. The construction of iterative method has been attracted the 
attention of mathematicians for more than four centuries. Because of the advent of different verities of 
computers and simulation software, the demand for numerical methods are increased rapidly in the 
applications to engineering and scientific fields. So during last two decades, large numbers of 
mathematicians are devoted to develop new numerical methods for solving nonlinear equations. One of 
the widely used and best known iterative methods for solving nonlinear equations is the Newton method. 
The iterative formula for Newton method to solve nonlinear equations  ( )     is given by [1] 

                                                       ( )
  ( )                                                                                     ( )  

This method converges quadratically to simple zero and need to evaluate two functions per iteration. Now 
days tremendous variant of this method have appeared, some of them are found in the papers [ 2] -[13] .  
In [9], McDougall and Wotherspoon proposed a new variant of Newton method using a different 
technique. Their method’s iterative scheme is as follows: 
 If     is the initial approximation, then 
                                      

                                                                                                            (2a) 

                                            (  )

  (      
 *

     (  )
  (  )

                                                       (2b) 

Subsequently for      the iteration can be obtained as  

                                    
       (  )

  (           
 *

                                                                   (2c) 

                                        (  )

  (      
 *
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