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Abstract: In this paper, a generic procedure for the development and subsequent validation of the
Riemann surface structure (RSS) for a punctured curved surface lying on a Riemann surface is discussed.
The proposed procedure differs from the existing methods involving triangular meshes and rectangular
grids that rely on induced patches on surfaces. This procedure can be applied to non-punctured surfaces as
well as to surfaces with irregularly located punctures. Further, by defining appropriate transition
functions, the proposed procedure eliminates the requirement for smooth transitions across the boundaries
of adjacent patches. The analytic formulations of the RSS for an ellipsoid and a sphere are elaborated
using the proposed procedure. Moreover, the RSS of a sphere defined through a family of conformal unit
discs is proven equivalent to that defined by an existing method based on stereographic projection. This
study proves that a smooth projection between the surface and (a subset of) the complex plane C, can be
remapped to the original surface.
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1. Introduction

Surface modeling plays a substantial role in image analysis, surface projection, and object
recognition. In the field of image processing [2, Figure~1, p.2], 3D surface models are used to visualize the
geometry of a surface. For instance, in medical imaging use cases, it is vital to examine the anatomy of the
brain surface [9, p.670] and subsequently map functional imaging parameters [10]. Generally, in surface
modeling, any curved surface in R? is considered a real manifold, i.e., as a rectangular grid [1, p.184] or a
triangulated mesh [5], [4, p.8433]. Surface parameterization of these models using existing methods [8,
p.704],[11, p.3] requires a differentiable one-to-one mapping of 3D surfaces onto 2D constraints (such as
meshes and grids), such that the numerical computation can be easily formed by the resulting models.

Most existing methods for analyzing surfaces rely on induced grids or patches on the defined curved
surface, which only have a one-to-one correspondence rather than a bijective (one-to-one and onto)
correspondence between the original and the grid-induced surfaces. Further, both [4, p.8431] and [5, p.188]
did not consider surfaces with punctured points or smooth transitions between the adjacent grids across grid
boundaries. Moreover, pre-processing is performed to restrict the overlapping region between meshes or
grids. However, due to the challenges involved in smoothly deforming a surface with genus to a 2D structure,
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the generic approach proposed in this study uses RSS on a complex manifold for a curved surface with
punctured points to overcome the above mentioned limitations by defining smooth transition functions.

1.1 Riemann Surface Structure
An RSS is a collection of compatible complex coordinate charts on a curved surface covering the

entire surface. A Riemann surface M is a surface with a class of charts (Ug, o), @ € N, such that ¢, - @5 1

is a holomorphic homeomorphism, where ¢, maps the open subset U, of M to an open subset of C .

A coordinate chart is a homeomorphic map ¢ from an open subset of a topological space M to an
open subset of R?(C), and is represented as the ordered pair (U, ¢). Assuming that (U, ¢;) and (U,, ¢5)
are two charts for an RSS with U; N U, # ¢, then, the transition map g;, is definedby g, = @ - @371 .
As ¢, and ¢, are both homeomorphisms, the transition map is also homeomorphic. Two charts on a
topological space are compatible if the transition map is smooth. An atlas for a topological space t is the
collection {(Uy, ¢g): o € N} of pairwise compatible charts whose domains cover t. In a complex manifold,
the transition maps are holomorphic and are defined from C to C. The pair (U,, ¢,) for each « EN is a
complex co-ordinate chart [6, Definition~1.6, p.2].

Let X be a curved surface with punctured points, lying on a Riemann surface M. Moreover, a curved
surface can be represented as a family of open conformal unit discs, such that the union of these conformal
unit discs covers the curved surface. Let V), be the k-th conformal unit disc such that X =U, V. If
fi:Vi — C, k € N, is a holomorphic function, then {(Vy, fi), k € N} defines the RSS on X.

This paper presents an analytical formulation for the development of the RSS for a collection of
conformal open unit discs covering the curved surface on a Riemann surface. The RSS includes a
holomorphic function and compatibility conditions between every pair of coordinate charts.

The remainder of this paper is structured into four sections and outlined as follows. In Section 2, the
construction of the RSS of a curved surface X on a Riemann surface using the defined complex coordinate
charts, holomorphic atlas, and compatibility conditions is described. In Section 3, the generation process of
the RSS of a typical canonical curved surface, namely an ellipsoid, is defined. In Section 4, the RSS of a
sphere is validated based on the developed methodology by comparing it with that based on an existing
procedure using stereographic projection. Finally, Section 5 presents the conclusion.

2. Construction of an RSS on a Curved Surface

A surface that is not flat and has smooth bending is called a curved surface. In topology, a surface is
a topological space where every point has an open neighborhood, and it is homeomorphic to an open subset
of the Euclidean plane [3, p.195]. This section deals with the analytical formulations involved in developing
the RSS for a curved surface X(x, y, z).

2.1 Formulation of conformal unit disc
Any curved surface can be defined as a family of conformal open unit discs such that the union of

these conformal unit discs covers the entire curved surface. Let X be a curved surface with a function z =
F(xy). If {V;,i =1,2,--,n} are the open conformal unit discs covering X, then X = U; V;, ie.,
X=VuV,u-ulUu-Ul, 2.1
Let p be the number of punctured points on the curved surface, with p < n. Let the positional co-ordinates of
the k-th puncture be denoted by (xy, Vi, zx), k£ =1,2,...,p. For k=1,2,...,n, V), are open conformal unit discs
whose centers are the punctured points (X, Vi, Zx) on the curved surface. By fixing (X, Vi, Zx) on the
curved surface, for all (x, y, z) € Vy, the following equations hold.
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V=) + @ —m)? <1

(2.2)
Vk = {(x:y;z)5d((x;3’) - (xk!yk)) < 1}

2.2 Bi-holomorphic function
Theorem 2.1 Let fi,(x,y,2z) =u+iv,V(x,y,2) € Vi — {(Xx, Vx, Zx) } (2.3)

such that (x,y,z), (Xx, Vi, Zx), and (u,v,0) are in the same line. Then f;, k=1,2,...,n, is a bijective
bi-holomorphic function.

Figure 1: Holomorphic function from V}, to complex plane (C)
Proof.

From Fig. 1, it can be seen that (x, Vi, Zx), (x,0,2), and fi(x,¥,2) = (u,v) lie in the same straight line. Using
the property of a straight line,

u-x _ v-y _ -z —r (24)
X=Xk Y=Yk Z-Zk )
u=x+x—-—x)r, v=y+ (y —y)r and r:Z:Ek
U=x—2z"—"% gnd v =y — 722
Z—Zk Z—Zk
X=X . y-y
fi(x,y,2) = x—zz_zl’: +l(y—ZZ_—Z:) (2.5)
where u= x — z=—K and y= y — 722k
k Z=Zk
Differentiating u with respect to x and y,
_ 1 _ A _ —Zk
ux - Z—Zk - Z—Zk
u, =0 (2.6)
Z—Zk—Z X=X
R L 7=nT
Differentiating v with respect to x and y,
v, =0
_ _ zZ — —Zk
Uy - 1 Z—Zk Z—Zk (27)
_ Z—2k—27 _ V—YVk
v, =-(y— yk)[(z_zk)z] = 2k
The Jacobian matrix for Eq. (2.5) is given by,
U U U —Zk 0 Zk X=Xk
(% y z\ _ | z—zk (z—2zp)?
A= (vx Uy vz) - 0 —Zk 7 YV Vk (28)

z—2z) k (z—2zp)?
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-
Z—Z
A = 0 k —2 (2.9)
Z—Zk
—Z
= ©
_ — 4k
= _Zk
Z — Zy
[ p— 2.10
T @-zy? 2.10)
—Zk 7 X=X
k
| z-zk (z—zy)?
A, = 0 5 Vi (2.11)
(z—zp)?
—Zk 7 X=X
k 2
_ |7z« (z-zi)?| _ _ zg(y—yi)
1Azl = (y_y,;z =~ (2.12)
Z—Zk
0 5 X=X
(z—zx)?
Ay =1 _,, Yy (2.13)
z=Zj Zi (z—zk)?
O 5 X=Xk
_ (z-z1)%|  _ zg(x—xp)
lAsll = | -, v | = oo (2.14)

z—2Z k (z—2zy)?

According to Royden’s theorem [7, Proposition~1, p.306], “Suppose that F:R™ — R™. Write F =

(fir+--r fm), where fi:R™ — R. If for all i and j, g—? is (defined and) continuous near #, then F is
J

differentiable at t, and the matrix for DF(¢) is given by the Jacobian matrix at the point z. If the determinant of
the Jacobian matrix is non-zero for every point in topological space Sin R", then the function fis differential
everywhere in S.”

Clearly, ||A1]l,1|A,]] and ||A3]] are non-zero by the definition of f,. Therefore, f; is complex
differentiable at every point (x, y, z) in an open conformal unit disc V}, punctured at (xi, yx, Zx). Hence, f
is a holomorphic function on an open set V;, for all k € N. This, implies that the family of conformal unit
discs entirely covering the curved surface satisfies the property of a holomorphic atlas.

The evaluation of the inverse function of f} is required for the compatibility condition, which must
be satisfied by the given curved surface, such that it can be referred to as an RSS.

To generate the inverse of fi, k € N, we have,

ot s = e Tt 2.15)
X =x+ (xp —wt,
y =¥kt k-t (2.16)
zZ =2Zp+zit
By Eq. (2.16), the curved surface X is given by,
X=X0,v,2)=X(x + (g —wit,y + (Vi — V)L, zp + 2k t) (2.17)
By solving Eq. (2.17), t can be parameterized as a function of # and v, i.e., o(u,v) =+¢
fit @) = (o + i —Wowv), Y + Gk — VIoW,v), zx + zxo (4, v)) (2.18)

The function f;;* defined in Eq. (2.18) is holomorphic using the Jacobian matrix described in Royden’s
theorem. The associated holomorphic atlas can be represented as a set 4 denoted by

A= {(Vl' fl)r L] (Vi' fl)l L] (Vpl fp)' L] (Vn' fn)} (2 19)

10
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2.3 Compatibility condition
The compatibility condition must be satisfied by the given curved surface, such that it can be
referred to as an RSS. In Section 2.2, Royden’s theorem has been used to prove that the functions f;, and
fiw'! are holomorphic for all k € N. This section discusses the composition operation of two holomorphic
functions, namely fj and fj_l, which leads to the definition of the transition function.

Corollary 2.1 If V;, N V; # @ for some k,j € N and (u, v) in V} NV}, then the transition function

gjk: € - C as
1 (2.20)
gjk(u'v) = f]fk (U,U) ,V(u,v)EanVj

is a holomorphic function.

Because the holomorphic functions f;, k € N referred to in Eq. (2.5) that are defined on the family
of conformal unit discs on X and satisfy the compatibility condition, the curved surface has the RSS defined
through the family of ordered pairs (Vy, fx) , &=1,2,...,n, as defined in Eq. (2.19).

3 Riemann Surface Structure of Canonical Curved Surface

The most common canonical forms of curved surfaces are the ellipsoid, hyperboloid, and
paraboloid. Section 3.1 presents a detailed procedure for defining the RSS for an ellipsoid.
3.1 Ellipsoid
This section considers the analytical formulations involved in the development of the RSS for an
ellipsoid. Any arbitrary point (x, y, z) on an ellipsoidal surface of revolution is governed by the equation,

xZ yZ ZZ

atpta=l (3.1)
where a, b, and ¢ are the semi-major, semi-minor, and semi-median axes, respectively. The geometrical
profile of an ellipsoid in a 3D representation is shown in Fig. 2.

a=h a=b
Figure 2: Ellipsoid with (i) a<b and (ii) a>b
3.1.1 Holomorphic function
The functions f, k =1,2,...,n, defined on the family of conformal unit discs on the ellipsoid are
verified for their holomorphicity. Let f;: V};, — C such that

fi(x,y,z) =u+iv 3.2)
where V, is a conformal unit disc on the ellipsoid described in Section 2.1. From Fig. 1, (xg, Vi, Zk),

(x,y,2), and fi(x,y,2) = (u,v) lie in the same straight line. By the property of a straight line,

u-—x v-y z _ ., (3.3)
X=Xk = Y-V Z-Zk

11
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(v - 222) (3.4)

Z—Zk

fre(xy,

As stated in Section 2.2, Royden’s theorem can be used to prove that f;, defined in Eq. 3.4 is complex

differential at every point (x,y,z) € Vi — {(xk, Yk, Zx)} using the property of a Jacobian matrix. This,

implies that the family of conformal unit discs that entirely cover the ellipsoid satisfies the property of a

holomorphic atlas.
3.1.2 Inverse of holomorphic function

This section describes the evaluation of the inverse function of f; required for the compatibility

condition. To generate the inverse of fi, k € N, we have,

XXk = Y~ Vi = 272k =t (35)
Xk—Uu Y~V Z)
Which gives x = x3 + (x, —w)t, v =y + (Vi — V)t, z = 73 + Zi L.
By Eq. (3.1), we have

(p+Ce—wt)? | Y+ e-v? | (Zg+zet)? 1
a? b2 c? -

2 2 2 2
X, ((xg—w)t) 2xpt(xE—w) ((3’k V? | 2ytVk-v) | Zk (Zkf) 2tzj _
or, ; + 2 + a2 + b2 b2 + b2 + + + c_2 =1
2 | >k Vic Zj, 2uxy 2vyk yk UXk VYk
or, t [2+b2+§_?_ + +—]+2t[ + +——F—b2 0
2 2
or, t2 [1 -2 S 4 —] +2t [1 =k ”yz"] =0
a b
Which gives t = zuxk 2oy 2 o7y A t#0 (3.6)
(1 a? b2 ' a? : bz)
2 2 .2 2 2 .2
L QuO--n (g v -m () 2y
- 2uxy 2vyp u? v - 2uxy 2vyp u? v2 "’ Z = Zk 2uxy, Zvyk u2 p2 (37)

a a? b2 a2 b2 ¢ a? b2 a2 b2 e a? b2 I(12'b2

Therefore, fi; 1 (u, v) = (x,y,z), where x, y, and z are defined by Eq. (3.7), and it is holomorphic.

3.1.3 Compatibility condition
The compatibility condition must be satisfied by the given curved surface, such that it can be

referred to as an RSS. In Sections 3.1.1 and 3.1.2, it was proved that the functions f, and fi ! are
holomorphic.

This section discusses the composition operation of two holomorphic functions, namely f; and
fi' 1, which leads to the definition of the transition function. If (x, y, z) € V; n V; for some k,j € N with
image (u, v) in C, then there exists a transition function defined by gjx:C — C such that g (u,v) =

fi - fitwv),Y(u,v) € C:

Yi u? v? xi vZ u?
2u[1—b—2]—xk[1+a—2—b—2] 2v[1—a—2]—xk[1+b—2—a—2] [ﬂ vy_k_l]
Ijk (u' 1.7) = fj( 2uxy 2vyp u? v’ 2uxy_2vyg u? v 'z, a? b2 a— (3.8)
[1-—7 7 tzt;2 2z 2 tztyzl [1 2UXp 2VYg uc v

a? b2 Iazlbz
gjik(w,v) = Py +1iQ,

2 2 2 2
P LA A Yiy_ Ju- v
[x]zk( 2+b2 1)-zj(2u(1 b2 ) xk(lTaz bz))]

Where P, = PR
[zk(ﬂ+——1) zj(1 ZZ’;" 2232”‘:32:;2]
and Ql _ [y]Zk( +b2 1)- Z](Zv(l_ k) -yr(1- 2+b2))]

2uxy, 2vyk u2 v?
a? tezt bz)

uxj vy
[k( ’<+ £-1)-z;(1

12
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Here, Eq. (3.8), which defines the transition function of an ellipsoid, is holomorphic. Therefore, the
given holomorphic functions defined on the family of conformal unit discs on the ellipsoid satisfy the
compatibility condition. The ellipsoid has the RSS defined through the family of ordered pairs (V, fi) , k
=1,2,...,n, as defined in Eq. (2.19).

A similar procedure can be used to formulate the RSS for other canonical curved surfaces such as a
hyperboloid of one sheet, a hyperboloid of two sheets, an elliptical paraboloid, and a hyperbolic paraboloid.
The methodology as a pre-requisite requires curved surfaces to be defined as an algebraic expression, i.e., the
surface must be expressed in the form of z = F(x,y). Additionally, the methodology requires a smoothly
overlapped region of conformal unit discs.

4. Validation of an RSS with a Stereographic Projection

In this section, we aim to validate the analytical expression for the RSS of a sphere derived through
the family of conformal unit discs on the sphere by comparing it with the results obtained through a
stereographic projection.
4.1 RSS of an unit sphere
Let S? be a unit sphere in R3. Consider a set A; = {(V1, f1), V2, f2), ..., (Vy, fn)} for some
natural number n, where Vy, k € N, are open discs with punctures at (xy, Vi, 2zx) for k < n on sphere
$2, as shown in Fig. 3. Further, fj:V;, — C such that,
frxy,z) =u+iv,V(x,y,z) € Vi — {(X, Vi, 21)}
fr(x,v,2) =x—z%+i(y—zi:—i’:) @1
As shown in Section 2.2, Royden’s theorem can be used to prove that f; defined in Eq. (4.1) is complex
differentiable at every point (x,y,z) € V,, — {(Xx, Yk, Zx)} using the property of a Jacobian matrix.

Figure 3: Family of conformal unit discs on a Riemann sphere

4.1.1 Inverse of a function f;,k € N

X (W2 —u?)—2u(1+vyy)

1-2ux—2vyE+u+v?2
Vie(W?-v2)—2v(1+uxy)

fk_l(u' U) =

1—2ux—2vyE+u+v?2
-1+u?+v?

VA
k1—2uxk—2vyk+u2+v2

13
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4.1.2 Compatibility condition
For each (x,y,z) €V NV}, Vk,j €N, and (u, v) in C, the transition function gj,:C — C is
defined as g (u,v) = f; - fit(u,v)

gjxkw,v) = P, +iQ, 4.2)
where
P, — [xjzr (W2 +v2-1)—z; Qu(A-vyR) —x (1+u®—v?)]
2 [z (uxg+VyE—1)—zj(1—2ux —2vyE+u+v2?)]
and 0, = [yjzr (W2 +v2-1)—z; 2v(1—uxE) —yr (1-u?+v2))]

[z (ux+vyE—1)—z;(1—-2uxR—2VY +u+v2)]

4.2 Stereographic projection
A unit sphere $? in R3 with N =(0,0,1) and S = (0,0,-1) is shown in Fig. 4. Consider a set A, =
{(U1, 1), (U, 7)}, where U= S* — {N} and U, =S* — {S}.
¢1:U; — C (stereographic projection from N) such that,

X

$1(xy.2) = 75 +i(3) V(6. 7,2) € by @3)

—Z

and ¢,: U, — C (stereographic projection from S) such that

¢o(x,y,2) = SN (ﬁ),v(x, Y,Z) € ¢s. 4.4)

1+z
Therefore, for any points P and Q in §2, ¢, (P) is the intersection point of line NP with the complex plane

C, and ¢,(Q) is an intersection point of line SQ with the complex plane C, as shown in Fig. 4

N

@4(P]

S

Figure 4: Stereographic projection of a Riemann sphere

4.2.1 Compatibility condition
Because U; N U, = S%2 —{N, S} belongs to S?, ¢, (U; NU,) = ¢p,(U; NU,) = C—{(0,0)},
which shows that the domain has a puncture at (u, v) = (0, 0) in C. Therefore, the transition map

021: C—{(0,0)} — C — {(0,0)} is defined as 0,7 = ¢, - 1 L. It can easily be verified that

14
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7 (u,v) = 31 (u,v) = L ] 2w, 2v, (-1 + u? + v?)) (4.5)

where ¢, defined by Eq. (4.5) is holomorphic. Therefore,
1 .
0,1 (W, v) = a7 (u+iv)
is holomorphic. This RSS defined through set A, on $? is called the Riemann sphere.
Thus, A; is a holomorphic atlas defined by the family of conformal unit discs

(VL D), Vo, f2), oo, (Vi )}, and A, is another atlas, defined by the stereographic projection
{(U1, 1), (U, d2)}. Two atlases of a topological space are said to be equivalent if every chart of one atlas is
compatible with every chart of the other atlas. Subsequently, we discuss the equivalence of the two atlases

A; and A, defined above.

For z # 1 (punctured at N), the transition function is,

Vk1:C— C as Pra(wv) = fi - d1' (W v) (4.6)
Yra(w,v) = P3+1iQ3 (4.7)
where
_ [F2uzptag(—1+ut+v?)] _ [m2vzptyr(—1+u?+v?)]
Py = [(—1+u?+v2) -z (1+u?+v?)] and (5 = [(—1+u?+v2) -z (1+u?+v?2)]
Clearly, Y1 is holomorphic. For z # —1(punctured at S), the transition function ;,: C — C is,
VW v) = fi ¢ W v) (4.8)
Yr2(w,v) = P3+iQ3 (4.9)
where Py = [—2uzp+xp(—1+u?+v?)] and Qs = [—2vzZp+YE(-1+u?+v2)]
[

[(—1+u2+4+v2)—z(1+u2+v2)] (—1+u2+v2)—z(1+u2+v2)]’

Thus, ¥y, is also holomorphic. Therefore, the two atlases A; and A, are compatible and the RSS
of a sphere defined through a family of conformal unit discs is equivalent to that defined through
stereographic projection.

5. Conclusion

This paper introduced a generalized procedure for the development of the RSS for a curved surface
by defining a family of conformal unit discs on the curved surface. The proposed method uses the
holomorphic function defined for a family of conformal unit discs on a curved surface. Moreover, the
proposed method can consider multiple unevenly distributed punctures on the curved surface. Further, the
primary result was used to formulate a geodesic equation for a curved surface and establish the geodesic
length function. In addition, the analytic formulations of the RSS for an ellipsoid and a sphere were
elaborated using the developed procedure. Finally, the RSS of a sphere defined through a family of conformal
unit discs was shown to be equivalent to that defined by an existing method using stereographic projection.

A generic procedure for the construction of a universal cover of an arbitrary, non-simply connected
curved surface can overcome the need for the assumption that the entire surface must be simply connected.
An elegant proof for the existence of a non-trivial equivalence between the universal cover and the
fundamental group of the RSS of a curved surface was outlined, as well as validated using the uniformization
theorem for simply connected Riemann surfaces. This would facilitate the determination of a geodesic

15
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between any two points on the conformal unit disc. Moreover, a conformal mapping between the RSS and the
curved surface will be defined to evaluate the geodesic between two points on the curved surface.
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