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Abstract  
While river macroinvertebrates are the most widely used form of bioindicators, their baseline information, 
although crucial, is scarce in Nepal. The main objective of this study was to assess the macroinvertebrate 
assemblages in mountain tributaries of the glacial-fed Tamor and rain-fed Kamala rivers. A total of eight sites 
were sampled during March 2015 (Spring), November 2015 (Autumn), January 2016 (Winter), and May 2016 
(Summer). Altogether, 49 Families of macroinvertebrates belonging to 15 Orders were identified with 39 
Families and 12 Orders in Tamor’s tributaries, and 33 Families and 10 Orders in Kamala’s tributaries. Non-
metric multi-dimensional scaling (NMDS) revealed different assemblages between the two river systems. The 
most dominant Order in the Tamor was Ephemeroptera and it was Trichoptera in the Kamala. EPT 
(Ephemeroptera Plecoptera Trichoptera) assemblages were the most abundant in all four seasons for both the 
river systems and higher % EPT in Tamor’s tributaries indicate better water quality than in the Kamala's 
tributaries. Typical cold water adapted Families such as Rhyacophilidae and Stenopsychidae were observed in 
Tamor’s tributaries whereas in Kamala’s tributaries, warm water adapted Families like Naididae and Thiaridae 
were found, reflecting a difference in the abiotic variables such as temperature, dissolved oxygen attributed to 
each of the catchments. This baseline data can serve as the foundation for further bioassessment including 
those of climate change impacts on aquatic biodiversity.  
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Introduction 
Tributaries are important features of any river system 
serving a multitude of ecosystem services. Tributaries 
connect different rivers and watersheds thereby forming 
passageways for nutrient transport, organic and inorganic 
matter; provide unique habitats to aquatic biota and often 
act as spawning sites and refuges for these organisms (Rice 
et al., 2008). Mountain rivers and their tributaries exhibit 
tremendous variation across spatio-temporal scales 
attributed to differences in their origin, tectonics, 
watershed geology and size, landuse, connectivity, 
hydrology etc. (Wohl, 2010). These differences in turn 
result in a range of different river physical and chemical 
parameters and aquatic biota. 
  
Nepal with its distinct physiographic zones has large 
numbers of rivers and streams and the country’s river 
systems can be broadly classified into three types based on 
their origin (WECS, 2011) – those arising from the glaciers 
and snow-fed lakes in Himalaya and Trans-Himalaya; 
those arising from the Mahabharat ranges (1000 -3000 
masl) and those arising from the Chure Hills (200 -1000 
masl).  Accordingly, the biotic communities are likely to 
vary in these lotic systems.   For instance, the headwaters 
of glacial-fed and rain-fed rivers exhibit distinctive 
climatic, geologic and riparian conditions, affecting abiotic 
parameters like hydrology, temperature, food sources and 
water chemistry (Espinosa et al., 2020; Jacobsen, 2009; 
Laursen et al., 2015), which ultimately have an impact on 
the abundance and diversity of the different biotic 
assemblages present (Meyer et al., 2007). Rain-fed 
headwaters are often characterized by forested catchments 

and biological communities in such forested headwaters 
primarily comprise heterotrophic organisms because of 
the lower photosynthesis/respiration ratio attributed to 
the shading effect (Vannote et al., 1980). 
  
Benthic macroinvertebrates encompassing a rich 
taxonomic diversity of Arthropods, Annelids, Molluscs, 
Nematodes and Turbellarians (Hauer & Resh, 2017; 
Heino, 2005) are important freshwater heterotrophic 
groups acting as linkages between the producers and 
higher level consumers (Wallace & Webster, 1996). Their 
community structures differ along the longitudinal 
gradient of lotic systems, reflecting the difference in 
abiotic variables such as temperature (Suren, 1994), flow 
(LeCraw & Mackereth, 2010), and available food sources 

(Mantyka‐Pringle et al., 2014). In the upper reaches of 
forested mountain rivers, this group of organisms is often 
dominated by functional feeding group of shredders and 
collectors, primarily attributed to the presence of 
allochthonous coarse particulate organic matter (CPOM) 
which forms the principal food component (Cummins, 
1974). 
 
Macroinvertebrates are frequently used in the 
bioassessment of water bodies and watersheds because of 
their ability to reflect a range of environmental changes 
(Eriksen et al., 2021; Ofenböck et al., 2010). They have 
been used as bioindicators in a large number of studies to 
track changes in aquatic systems (Korte et al., 2010, 
Tamiru et al., 2017), particularly in streams and rivers 
(Buss et al., 2002; Patang et al., 2018).  A number of 
macroinvertebrate-based indices and scores have been 
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developed in many countries for water quality assessment 
and monitoring programmes (Metcalfe, 1989). Likewise, in 
Nepal, with the development of macroinvertebrate-based 
ecological assessment tool -NEPBIOS (Nepalese Biotic 
Score) (Sharma, 1996), these organisms have been 
frequently used to assess the impact of a range of stressors 
(Gurung et al., 2013; Sharma et al., 2005; Sharma et al., 
2009). However, macroinvertebrate baseline studies in the 
country are still scarce and sporadic (Rundle et al., 1993; 
Suren, 1994), with a majority of these being concentrated 
in the western and central regions of Nepal (e.g., Gurung 
et al., 2013; Matangulu et al., 2017; Shah & Shah, 2012; 
Shah et al., 2020a, 2020b). Studies in the eastern region are 
scarce (Jha et al., 2015; Poudel et al., 2014) despite the 
region being a biodiversity hotspot (IUCN, 2016). 
Therefore, the main objective of this study is to generate 
baseline information on the macroinvertebrate 
assemblages of selected tributaries of the Tamor River 

(glacial-fed) and the Kamala River (rain-fed) of eastern 
Nepal. 
  

MATERIALS AND METHODS 
Study area 
This study was conducted in selected tributaries of two 
major rivers - Tamor and Kamala - in Taplejung, 
Panchthar and Udaypur, eastern districts of Nepal (Fig. 1). 
The Tamor River originates from the Kanchenjunga range 
and is a perennial glacial-fed river (Negi, 1991; Shrestha et 
al., 2009). The Kamala River originates from the Chure 
Hills and is a rain/spring-fed river with minimal flow 
during dry seasons. The Mewa, the Maiwa and the Hewa 
are the Tamor’s tributaries whereas the Tawa is a tributary 
of the Kamala and the Lalleri is a tributary of the Tawa 
(Fig. 1; Table 1). The Mewa Khola (Khola in Nepali means 
stream) originates in Sudu Pokhari at an elevation of 3800 
masl and it confluences with the Tamor River at Dobhan 
(Shrestha et al., 2016). 

   

 
Figure 1 Map of Nepal showing the study area's location (in the inset) and the sampling sites. 

 
Macroinvertebrate collection  
A seasonal approach of sampling was adopted 
encompassing four seasons - March 2015 (Spring), 
November 2015 (Autumn), January 2016 (Winter), and 
May 2016 (Summer). Sites were chosen based on 
accessibility and proximity to the confluence in the case of 
the Tamor (Jha et al., 2018). Macroinvertebrates were 
sampled from around a hundred-meter river stretch with a 
hand net of mesh size 250 µm following Barbour et al. 
(1999). This method involves the inclusion of different 
microhabitats such as the riffles, pools, runs, and different 
substratum types. The collected organisms were preserved 
in 70 % ethanol in the field itself and samples were 
transferred to the laboratory for identification to Family 

level following standard literature (Merritt & Cummins, 
1996; Nesemann et al., 2007). Selected water parameters 
viz. dissolved oxygen (DO), conductivity, temperature and 
pH were measured on-site using portable multi-parameter 
probe (LUTRON).  
 
Data analysis 
Percentage abundance of the different Orders of 
macroinvertebrates was calculated. Percentage EPT 
richness was also calculated for its comparison with the 
other Orders using the following formula:  

% EPT = Number of Families belonging to 
Orders Ephemeroptera, Plecoptera and Trichoptera 
/Total number of Families found *100 
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Table 1 Sampling sites, geographical coordinates, dominant substratum types, surrounding land-use and river stressors. 
Modified from Jha et al. (2015; 2018). 

 
 
Shannon-Wiener diversity index (up to Family level) was 
estimated following Magurran (2004). Non-Metric 
Multidimensional Scaling (NMDS) was performed using 
R-programming to assess site-wise similarity of 
macroinvertebrate assemblages. ANOSIM (Analysis of 
similarity) was performed to assess significant variation in 
assemblages between the Tamor and the Kamala systems. 
Spearman rank correlation coefficient was used to assess 
the correlation between % EPT, Shannon-Wiener 
diversity index (Family-based) and physico-chemical 
variables. T-test was conducted to assess significant 
differences in % EPT, Shannon-Wiener diversity index, 
and Family richness between river systems. 
 

Results and Discussion 
Macroinvertebrate assemblages  
A total of 49 Families belonging to 15 Orders and 5 
Classes of macroinvertebrates were identified from the 
two selected river systems (Fig. 2; Table 2) indicating a 
rich macroinvertebrate fauna. 
 
Studies conducted by Füreder et al. (1998) and Shah et al. 
(2020b) found that the spring-fed systems had a greater 
number of macroinvertebrate Families. However, our 
study found more in the glacial-fed system. Pokharel 
(2013) found similar results where the glacial-fed system 
had a greater taxonomic richness due to less urban 
influence in such systems. This may be the case in our 
study as well. Although a number of Families were 
common to both rivers, some Families were observed 
exclusively in either the glacial-fed Tamor system or the 

rain-fed Kamala system. NMDS revealed two distinct 
assemblages for the glacial-fed and rain-fed tributaries 
(Fig. 3). ANOSIM revealed significant variation in 
assemblages between the Tamor and the Kamala systems 
(R = 0.79; p < 0.05). 
 
Families Nemouridae, Rhyacophilidae and Stenopsychidae 
were found exclusively in the tributaries of the glacial-fed 
Tamor system.  Nemouridae and Rhyacophilidae are 
typical of snow-fed and glacial-fed lotic systems and are 
well adapted to cold water mountain streams (Hilsenhoff, 
2001; Hotaling et al., 2020; Saito et al., 2018) and have 
previously been reported from cold fast-flowing rivers and 
streams from Nepal as well (Sharma, 1996). In contrast, 
Naididae, Nepidae and Thiaridae were among the Families 
found exclusively in the tributaries of the Kamala. The 
presence of these taxa has been reported in warm lowland 
waters in Nepal by Nesemann (2006) and Khatri et al. 
(unpublished data) as well. These taxa are known to be 
pollution tolerant (Dodds & Whiles, 2010; Silva et al., 
2010) and their presence points to human disturbances 
such as agricultural runoff, fish poisoning, cremation, 
washing and cattle farming (Thapa, 2015).  A study by 
Akindele and Liadi (2014) have reported correlation of 
these taxa with nitrate in a tropical Nigerian stream as 
well. Agriculture was the most dominant landuse in the 
sampling sites at Tawa and Lalleri. These reasons coupled 
with lesser dissolved oxygen probably explain the presence 
of these organic pollution tolerant taxa in the Kamala 
system.

 
 

River type Site 
Name 

Site 
Code 

District Geographical 
Co-ordinates 

Elevation 
(masl) 

Major Inorganic 
substrates 

Land-use and 
river stressor 

Glacial-fed 
(Tamor’s 
tributaries) 

Maiwa  M1 Taplejung N 27˚22.064’      
E 087˚37.098’ 

664 Large rocks and 
boulders dominant 

Electro fishing 
and washing, 
tractor crossing 

Mewa  M2 Taplejung N 27˚22.675’      
E 087˚37.617’ 

666 Large rocks and 
boulders dominant 

Electro fishing 
and occasional 
washing 

Hewa  H1 Panchthar N 27˚10.061’      
E 087˚47.321’ 

629 Boulders and cobbles 
dominant 

Upstream of the 
bridge of the 
Hewa Khola; 
hydropower 
construction 

Hewa  H2 Panchthar N 27˚09.802’      
E 087˚45.560’ 

550 Boulders and cobbles 
dominant 

Agriculture, 
cremation site, 
washing 
 

Rain-fed 
(Kamala’s 
tributaries) 

Tawa T1 Udaypur N 26˚59.211’ 
E 086˚ 7.743’ 

330 Mostly cobbles Agriculture 

Lalleri L1 Udaypur N 26˚59.347’      
E 086˚27.430’ 

327 Small stream, 
boulders and cobbles 

Agriculture, road 
crossing 

Tawa T2 Udaypur N 26˚57.512’      
E 086˚23.361’ 

258 Pebbles 
 

Agriculture 

Tawa T3 Udaypur N 26˚56.925’      
E 086˚17.291’ 

167 Pebbles Agriculture, road 
crossing 



48 

 

 
TU-CDES 

Nep J Environ Sci (2021), 9(2), 45-55 
https://doi.org/10.3126/njes.v9i2.39988 

Table 2 Macroinvertebrate taxa observed in sampling sites 
 

Note:1 means non-insect fauna; # means Class; † means Subclass; * means Phylum; ++ means present; -- means absent 

Macroinvertebrate taxa Sites 

Order/Taxa Family M1 M2 H1 H2 T1 L1 T2 T3 

Plecoptera Perlidae ++ ++ ++ ++ ++ ++ ++ ++ 
 Nemouridae -- ++ -- -- -- -- -- -- 
Ephemeroptera Baetidae ++ ++ ++ ++ ++ ++ ++ ++ 
 Caenidae ++ -- ++ ++ -- -- ++ ++ 
 Ephemerellidae ++ ++ ++ ++ ++ ++ ++ ++ 
 Ephemeridae ++ ++ -- -- ++ -- -- -- 
 Heptageniidae ++ ++ ++ ++ ++ ++ -- ++ 
 Leptophlebiidae -- -- -- ++ ++ ++ ++ ++ 
Trichoptera Hydropsychidae ++ ++ ++ ++ ++ ++ ++ ++ 
 Glossosomatidae ++ ++ ++ -- -- -- -- -- 
 Philopotamidae ++ ++ -- -- ++ ++ -- -- 
 Stenopsychidae ++ -- ++ -- -- -- -- -- 
 Brachycentridae -- ++ -- -- -- -- -- -- 
 Limnocentropodidae -- ++ -- -- -- -- -- -- 
 Psychomyiidae -- ++ -- -- -- -- -- -- 
 Rhyacophilidae -- ++ -- -- -- -- -- -- 
 Uenoidae -- ++ ++ -- -- -- -- -- 
 Trichoptera in. det. -- ++ ++ -- -- -- -- -- 
Diptera Blephariceridae ++ -- ++ ++ -- -- -- -- 
 Simuliidae ++ ++ ++ ++ ++ ++ ++ -- 
 Tabanidae ++ -- -- -- ++ ++ ++ ++ 
 Limoniidae -- ++ ++ ++ ++ ++ ++ ++ 
 Tipulidae -- ++ ++ -- -- -- -- -- 
 Chironomidae -- ++ ++ ++ ++ ++ ++ ++ 
 Ceratopogonidae -- -- -- -- -- -- ++ -- 
 Dolichopodidae -- -- -- ++ ++ ++ -- -- 
 Diptera in. det. -- -- ++ -- -- -- -- -- 
Odonata Gomphidae ++ ++ ++ ++ ++ ++ ++ ++ 
 Euphaeidae -- ++ ++ -- -- -- -- -- 
 Coenagrionidae -- -- ++ -- -- -- -- -- 
 Corduliidae -- -- -- -- ++ -- -- -- 
Hemiptera Aphelocheiridae ++ -- ++ -- -- -- -- ++ 
 Naucoridae -- ++ -- -- -- -- -- -- 
 Gerridae -- -- ++ ++ ++ ++ -- -- 
 Nepidae -- -- -- -- ++ ++ -- ++ 
 Micronectidae -- -- -- -- -- -- ++ -- 
Coleoptera Gyrinidae -- ++ ++ ++ ++ -- -- ++ 
 Elmidae -- ++ ++ ++ -- -- ++ ++ 
 Psephenidae -- -- -- ++ ++ -- ++ -- 
Megaloptera Corydalidae -- ++ -- ++ ++ ++ ++ -- 
Decapoda1 Potamidae -- -- ++ ++ ++ ++ -- -- 
Crustacea1# Palaemonidae -- -- -- -- ++ ++ ++ ++ 
Oligochaeta1† Hirudinidae ++ -- ++ -- -- -- -- -- 
 Oligochaeta in. det. -- -- ++ -- -- -- -- -- 
 Naididae -- -- ++ -- -- -- ++ -- 
Mollusca1* Planorbidae -- -- -- -- -- -- -- ++ 
 Lymnaeidae -- -- -- -- ++  ++ -- 
 Thiaridae -- -- -- -- ++ ++ -- -- 
 Viviparidae -- -- -- -- -- -- -- -- 
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Figure 2 Total number of Families, Orders and Classes observed in the Tamor and Kamala systems. 
 

 
 
 
 
 
 
 
 
                        
 
 
 
 
 
 
 
 
 

Figure 3 NMDS graph showing glacial-fed and rain-fed sites with two clusters 
 

 
Figures 4a and 4b show the percentage composition of 
different macroinvertebrate Orders observed in the 
tributaries of the Tamor and the Kamala. The most 
dominant Order in Tamor’s tributaries was 
Ephemeroptera, followed by Trichoptera and Diptera. In 
rain-fed systems, the Order Trichoptera was the most 
dominant, followed by Ephemeroptera, Diptera, and 
Odonata. The abundance of Plecoptera - a cold water 
taxon (Bouchard, 2004; Cui et al., 2019), was higher in the 
glacial-fed river. Similar findings were observed in the 
Patagonian Andean glacial streams and the Austrian 
Central Alps (Füreder et al., 1998; Martyniuk et al., 2019). 
The most dominant Family in the Tamor was Baetidae. 
This taxon is quite common in streams and the abundance 
of this Family has been reported in other glacial streams 
(Milner et al., 2001; Mishra et al., 2013) as well as in 
nutrient-rich streams (Harrington & Born, 2000). The 
Trichoptera Family Hydropsychidae is a cosmopolitan 
taxon commonly found in a range of lotic systems 
(Oliveira & Froehlich, 1996). This taxon represents one of 
the major insect groups in Southeast Asia (Uy et al., 2018) 
and has been reported from a large number of lotic 
systems across Nepal (Ormerod et al., 1994; Pokharel, 

2013). This taxon was the most dominant Family in 
Kamala’s tributaries. Jha et al. (2015) also reported 
abundant Hydropsychidae in the Kamala systems. This 
taxon is also referred to as net spinners and are filter 
feeders trapping fine particulate organic matter from 
running waters (Dudgeon, 1999).  Their abundance in 
lowland Tawa is an indication of presence of suspended 
sediment and fine particulate organic matter in water.  
 
The percentage of EPT (Ephemeroptera, Plecoptera and 
Trichoptera) was higher in Tamor’s tributaries (Fig. 5). T-
test further revealed that the observed sample means of 
%EPT differed significantly for the Tamor and Kamala 
river (t(6) = -5.9, p = 0.001). 
 
Rundle et al. (1993), Ormerod et al. (1994), and Suren 
(1994) found EPT to be the abundant Orders in their 
studies from different lotic systems in Nepal. In this study 
also, EPT abundance was found to be greater than those 
of other Orders in both rivers in all the seasons (Figs. 6a 
and 6b). The overall EPT abundance in the glacial-fed 
river was 79%, whereas for the rain-fed river, it was 61%. 
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                             Figure 4 Percentage abundance of different macroinvertebrate Orders in (a) Tamor system and (b) Kamala system 
 
Most of the EPT taxa are considered to be pollution sensitive and the % EPT is regarded 
as a simple and crude indicator of environmental water quality (Feld et al., 2010). Higher 
% EPT values in all seasons in sites M1, M2, H1 and H2 indicates better water quality in 
Tamor’s tributaries. This finding is supported by the fact that Tamor’s tributaries have 
higher levels of dissolved oxygen (Jha et al., 2018), fast-flowing waters, and less organic 
pollution. In contrast, although the overall proportion of % EPT was higher in all of the 
Kamala’s tributaries, contributions from other Orders were also significant, most possibly 
reflecting agricultural runoff in the area.  
 
Macroinvertebrate assemblages and seasonal variation 
Figures 6a and 6b show the percentage abundance of EPT and other taxa in different 
seasons in the tributaries of the Tamor and Kamala respectively. The EPT dominated in 
all the seasons in both the systems. In the Tamor’s tributaries, EPT was dominant 
throughout the seasons, and it was highest during the autumn. The highest EPT 
abundance in Kamala’s tributaries was observed during the winter, but other taxa also 
showed significant contribution during other seasons. 
 

Seasonal variation in macroinvertebrate assemblages have been reported by several 
authors (Brewin et al., 2000; Mesa, 2012). Seasons tend to affect a range of environmental 
variables, such as water temperature, discharge and habitat changes which in turn 
influence community characteristics like food availability (Mesa, 2012; Miserendino & 
Pizzolon, 2003). For instance, it has been shown that higher discharge during the wet 
season tend to dilute pollution and improve the quality of macroinvertebrate assemblages 
(Jacobsen, 1998; Jacobsen & Encalada 1998). Furthermore, seasons also affect the 
emergence time of macroinvertebrates (Baxter et al., 2017; Milner & Petts, 1994). Sweeney 
and Vannote (1982) and Malison and Baxter (2010) found that emergence was greatest 
during the summer season. 
 
Macroinvertebrate assemblages and physico-chemical parameters 
Table 3 shows the mean values of selected physico-chemical parameters and Tables 4a and 
4b show the Spearman rank correlation of macroinvertebrate assemblages with physico-
chemical parameters. All the sites were characterized by circum-neutral to slightly alkaline 
pH. As expected, rain-fed Kamala’s tributaries had higher temperature than those of 
glacial-fed Tamor’s tributaries. Conductivity was also higher in Kamala’s tributaries (Table 
3).
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Figure 5 %EPT, Shannon-Wiener, Family richness difference between the headwater tributaries of the glacial–fed 
Tamor system and the rain-fed Kamala system. [Error bars with different letters denote significant difference (T-test; p< 0.05)]. 

 
 
 

 

 
 

Figure 6 Seasonal comparison of EPT and other Orders (a) Tamor system (b) Kamala system 
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Table 3 Physico-chemical parameters of the sampling sites 

Source: Jha et al. (2018) 
 
Table 4a Spearman rank’s correlation coefficient for physico-chemical parameters and macroinvertebrate assemblages 
attributes in Tamor’s tributaries 

 

 
 

Table 4b Spearman rank’s correlation coefficient for physico-chemical parameters and macroinvertebrate assemblages 
attributes in Kamala’s tributaries 

 

 
In both the river systems, % EPT and Shannon Wiener 
diversity showed positive correlation (p < 0.01) with taxa 
richness. In Tamor’s tributaries, taxa richness and % EPT 
showed significant negative correlation (p < 0.01) whereas 
in Kamala’s tributaries although these parameters showed 
negative correlation, significant variations were not 
observed. Temperature and oxygen are crucial parameters 
in shaping up macroinvertebrate communities in many 
aquatic systems (Fumetti et al., 2017; Jacobsen, 2008) 
along with substrate types, hydrological regimes (Beauger 

et al., 2006). Being ectotherms, for most 
macroinvertebrate assemblages, an increase in temperature 
may lead to their decline (Durance & Ormerod, 2007; 
Woodward et al., 2010). Tamiru et al. (2017) found that 
low dissolved oxygen levels caused disease and slow 
growth rates, resulting in a drop in the percentage of EPT. 
Studies have found that macroinvertebrate abundance and 
richness decreased with a decrease in pH (Baldigo et al., 
2009; Duggan et al., 2007; Gaskill, 2014) particularly the 
Ephemeroptera (Courtney & Clements, 1998).  

River type Site Parameters 

pH Temperature 
(°C) 

Dissolved oxygen 
(mgL-1) 

Conductivity 
(µScm-1) 

Glacial-fed 
(Tamor’s 
tributaries) 

M1 7.07±0.46 16.41±3.07 6.62±1.90 57.98±7.40 
M2 7.47±0.38 14.24±2.66 7.38±2.46 48.10±6.48 
H1 7.23±0.16 17.28±5.50 6.29±1.65 50.26±11.22 
H2 7.51±0.26 16.73±3.49 6.30±2.49 62.63±6.05 
Average 7.32±0.37 16.17±3.89 6.65±2.11 54.74±9.78 

Rain-fed 
(Kamala’s 
tributaries) 

T1 7.99±0.53 23.89±3.72 6.03±1.70 241.15±58.14 
L1 8.12±0.63 24.95±4.94 5.45±2.57 283.52±26.24 
T2 8.22±0.54 25.18±6.20 5.41±2.04 286.50±43.03 
T3 7.62±0.92 24.02±6.86 5.46±3.36 354.18±29.73 
Average 7.99±0.69 24.51±5.41 5.60±2.40 293.83±60.10 

  pH Temperature DO Conductivity Taxa 
Richness 

% EPT  Shannon 
Diversity (H') 

pH 1 
      

Temperature 0.325 1 
     

DO .662* 0.294 1 
    

Conductivity 0.364 0.465 .643* 1 
   

Taxa Richness 0.188 -.507* 0.014 -0.142 1 
  

% EPT  -0.036 -.651** 0.257 -0.085 .762** 1 
 

Shannon 
Diversity (H') 

0.050 -0.302 0.021 -0.129 .870** .647** 1 

  pH Temperature DO Conductivity Taxa 
Richness 

% EPT  Shannon 
Diversity (H') 

pH 1       

Temperature -0.168 1      

DO -0.455 0.294 1     

Conductivity -0.385 0.394 0.203 1    

Taxa Richness -0.129 -0.138 -0.169 -0.067 1   

% EPT taxa -0.101 -0.096 -0.431 -0.099 .734** 1  

Shannon 
Diversity (H') 

-0.253 0.371 0.287 0.335 .650** 0.203 1 
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Conclusion 
This study was conducted to generate baseline 
information on macroinvertebrate assemblages of the 
glacial-fed Tamor’s and rain-fed Kamala’s tributaries in 
eastern Nepal. A total of 49 macroinvertebrate Families 
were observed indicating rich macroinvertebrate diversity. 
The macroinvertebrate assemblages differed in the two 
systems. The most dominant Order was Ephemeroptera 
and Trichoptera in the Tamor’s tributaries and Kamala’s 
tributaries respectively. Certain taxa like Rhyacophilidae 
and Stenopsychidae were observed exclusively in glacial-
fed Tamor’s tributaries whereas warm water taxa were 
characteristics of rain-fed systems, clearly reflecting a 
difference in the abiotic variables attributed to glacial-fed 
and rain-fed catchments. The presence of taxa like 
Naididae and Thiaridae were observed in Kamala’s 
tributaries and indicate organic pollution in the rivers. This 
baseline data can serve as the foundation for further 
bioassessment including climate change impacts on 
aquatic biodiversity.  
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