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Abstract 

 Program translation refers to the technical process of automatically converting the source code 

of a computer program written in one programming language into an equivalent program in 

another. This study compares the transformer model and the CodeBERT-based encoder-decoder 

model on the program translation task. Specifically, it trains the 6 and 12-layer models for 50 and 

100 epochs to translate programs written in Java to Python and Python to Java. The models were 

trained with 3133 sets of Java Python parallel programs. Among different layered models, the 

transformer model with 6 layers trained for 50 epochs to translate from Java to Python achieved 

the highest BLEU and CodeBLEU scores, with values of 0.28 and 0.28, respectively. Similarly, 

the transformer model with 6 layers trained for 100 epochs to translate from Python to Java 

received the highest BLEU and CodeBLEU scores of 0.39 and 0.40, respectively. These results 

show that the transformer models perform better than the CodeBERT models. Also, the BLEU 

and CodeBLEU scores of the Java to Python and Python to Java translation models are different. 

Keywords: Program Translation, Transformer, Code Bidirectional Encoder Representations from 

Transformers, Bilingual Evaluation Understudy (BLEU), Code Bilingual Evaluation Understudy 

(CodeBLEU) 
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Comparative Analysis of Transformer and CodeBERT for Program Translation 

      Software applications are computer programs that may become obsolete over time due to a 

variety of factors, including hardware platform updates, skills shortages in the original 

programming language in which the application was written, and a lack of software support from 

the language compiler vendors. As a result, software developers are often required to review 

software applications implemented in one programming language to a more recent and efficient 

language. Such reimplementation of any software needs knowledge of both programming 

languages: one that was used to develop the software and the other that will be used to rewrite 

the software.  

Also, reimplementation is an expensive and time-consuming procedure. A bank in Australia, 

for example, spent $750 million in 5 years to migrate its core COBOL platform to Java (Lachaux 

et al., 2020). To reduce the risk and cost associated with code migration, developers often apply 

the simplest form of software re-engineering approach called program translation. Program 

translation is the technical process of automatically translating the source code of a computer 

program written in one language into an equivalent program in another language (Ahmad et al., 

2023). Unlike traditional compilers, which translate a program written in a high-level 

programming language to a lower-level machine code (Java → Bytecode), the program translation 

system, also called a transcompiler, focuses on translation between high-level programming 

languages (Zhu et al., 2022).  

Traditionally, program translation is performed in a rule-based manner, which involves parsing 

the input source code, constructing an abstract syntax tree (AST), transforming the AST, and 

finally generating source code in the target programming language. Given the dataset, the program 

written in one language can be translated to a different language without any programmatic 

intervention by employing a modern machine translation approach like neural machine translation 

(NMT). NMT is a machine learning approach to automate translation by utilizing neural networks. 

As NMT was the recurrent neural network-based encoder-decoder model, this model has issues 

with long-range dependencies and non-parallelization within training examples. To deal with these 

issues, a novel transformer model was presented that achieved state-of-the-art on the WMT-14 

English-to-German and English-to-French translation tasks and required significantly fewer 
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calculations and less time to train (Vaswani et al., 2017). The transformer-based NMT model can 

be trained by initializing the model weights to random values. Alternatively, the weights can be 

initialized by copying them from a previously trained model. This approach is called warm-

starting. In the case of the programming language, the encoder-only model, Code Bidirectional 

Encoder Representations from Transformers (CodeBERT), can be used to warm-start the encoder 

and decoder of the NMT model. 

Problem Statement 

As programming languages can be considered as natural languages (Aggarwal et al., 2015), 

program translation problems can also be viewed as natural language translation problems. 

Therefore, different natural language translation approaches, such as rule-based, statistical 

machine translation (SMT), or NMT methods, can be applied to program translation problems. 

The transformer-based NMT architecture and the pretrained models improve the translation 

quality. In the case of the pretrained models, the CodeBERT encoders can also be used on the 

decoder side of the encoder-decoder model to have better output representation. And to reduce the 

memory usage as well as to reduce the execution time, the weights of encoders can be shared with 

those of decoders. The study attempts to provide answers of the following questions, How does 

encoder decoder model can be trained using parallel program data set?, How to compare different 

translation models? Do the Java to Python and Python to Java translation models yield similar 

scores? 

Objectives 

▪ To train the transformer and CodeBERT models on the Java – Python parallel program 

dataset 

▪ To translate the program written in Java to Python and vice versa using Transformer 

and CodeBERT 

▪ To compare the performance of the transformer and CodeBERT using BLEU and 

CodeBLEU as evaluation metrics 
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Theoretical Background 

Transformer 

A transformer is a deep learning model that utilizes the self-attention mechanism to solve 

sequence-to-sequence problems while resolving long-range dependencies. It is a type of artificial 

intelligence    model that learns to understand and generate natural language text by analyzing 

patterns in large amount of text data. Transformers are a current state-of-the-art NLP model and 

are considered the evolution of the encoder-decoder architecture. This model avoids recurrence 

and trains the network in parallel to speed up the development of the model with a large number 

of parameters. Transformers are specially designed to comprehend context and meaning by 

analyzing the relationship between different elements, and they rely almost entirely on a 

mathematical technique called attention. The transformer architecture is shown in  

Figure 1. 

Transformer Model Architecture (Vaswani et al., 2017) 

 

The model consists of two components: an encoder and a decoder. The encoder reads a 

sequence of symbol representations x = (x1, . . . , xn) as input and generates a sequence of continuous 

representations z = (z1, . . . , zn). Given z, the decoder produces a sequence of symbols (y1, . . . , ym) 

one element at a time (Vaswani et al., 2017).  
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The encoder block consists of N identical layers stacked on top of each other. Each layer 

contains two basic sub-layers: a multi-head self-attention mechanism and a position-wise fully 

connected feed-forward network. The decoder also consists of N identical layers stacked on top of 

each other. Each layer contains three sub-layers: a masked multi-head attention mechanism, a 

multi-head attention mechanism, and a position-wise fully connected feed-forward network. 

Given the input tokens or the output tokens, the embedding sub-layer generates the vectors 

of dimensions dmodel using learned embeddings . The learned linear transformation sublayer 

projects the vector produced by the stack of decoders to a logits vector, and the softmax function 

converts the vector to predicted next-token probabilities. Positional encoding add information 

about the relative or absolute position to input embeddings, positional encoding of dimension dmodel 

is computed using sine and cosine functions of different frequencies. An attention function uses a 

query and a set of key-value pairs to calculate an attention. The compatibility function of the query 

with the corresponding key determines the weight allocated to each value. 

CodeBERT 

Bidirectional Encoder Representations from Transformers (BERT) is a language 

representation model based on the transformer architecture. The two types of BERT models based 

on the model size are BERTBase and BERTLarge. BERTBase has 12 transformer layers, 768 

hidden size, 12 attention heads, and 110M trainable parameters, whereas BERTLarge has 24 

transformer layers, 1024 hidden size, 16 attention heads, and 340M trainable parameters 

The BERT model is designed to pretrain deep bidirectional representation using two tasks: 

masked language modeling (MLM) and next sentence prediction (NSP). During training the 

model, 15% of the tokens are masked, and the correct tokens in the masked positions are predicted 

using the final hidden state. NSP is used to learn the link between sentence pairs. For NSP, when 

choosing sentence pair A and B, 50% of the time it is an arbitrary sentence in the corpus. To predict 

the correct label and compute loss, the output hidden state is used. The pretrained BERT model 

can be used to fine-tune the downstream natural language processing tasks (Devlin et al., 2019). 

CodeBERT is a bimodal pretrained model based on the transformer architecture for 

programming languages (PL) and natural language (NL). It learns the semantics connection 

between Pl and NL and supports downstream NL-PL tasks like natural language code search, code 

documentation generation, and so on. CodeBERT uses the RoBERTa-base architecture with 125M 
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model parameters (Feng et al., 2020). The CodeBERT is trained on both bimodal data (natural 

language–code) and unimodal data (code) across six programming languages (Python, Java, 

JavaScript, PHP, Ruby, and Go) with a hybrid objective function (Feng et al., 2020).  

Methodology 

Data Collection 

A parallel dataset for Java-Python program translation was collected from AVATAR: A 

Parallel Corpus for Java-Python Program Translation (Ahmad et al., 2023). The dataset contains 

Java and Python solutions to the programming problems. These solutions were taken from 

programming contest sites such as Codeforces, Google Code Jam, and online platforms such as 

GeeksforGeeks, LeetCode, and Project Euler.  Hence, 20,363 parallel programs were taken. 

However, due to resource limitations, the programs having lengths less than 5 and greater than 450 

were discarded after cleaning and pretokenization, leading to size 3133. For this study, as 

mentioned earlier the programs having length less than 5 and greater than 450 were discarded, so 

after that 3133 parallel program tasks were used for training and testing the model. The details 

about data can be seen in Table 1. 

Table 1  

Dataset Description 

Source Java Python Program Counts 

Codeforces 1726 

GeeksforGeeks 1354 

LeetCode 35 

Project Euler 18 

Total 3133 

Out of 3133, 80% (2506) were used for training and the remaining 20% (627) were used as test 

samples. Sample of the dataset is presented in Figure 2 and Figure 3. 

 

 

Figure 2 
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Program written in Java 

import java.io.*; 

class GfG { 

static int sumOfTheSeries(int n){ 

return (n * (n + 1) / 2) * 

(2 * n + 1) / 3; 

} 

public static void main (String[] args) 

{ 

int n = 5; 

System.out.println("Sum = "+ 

sumOfTheSeries(n)); 

}} 

 

Figure 3 

Program in Python of code of program written in Java in Figure 2 

def sumOfTheSeries( n ): 

return int((n * (n + 1) / 2) * 

(2 * n + 1) / 3) 

n = 5 

print("Sum =", sumOfTheSeries(n)) 

Data Preprocessing 

The dataset of Java and Python programs were processed through the preprocessing tasks 

to obtain data suitable to train the models. The tasks include data cleaning, pretokenization and 

tokenization. Unlike other programming languages, indentation is a crucial concept that should be 

followed when writing Python code. Moreover, Python does not allow mixing tabs and spaces for 

indentation. However, Python programs in Project Euler have IndentationError, which was fixed 

using autopep8. Following this, pyminifier was used to remove the docstrings, comments, and 

extraneous whitespaces present in each Python program, as well as to minimize indentation spaces. 

The pyminifier uses a single space to substitute multiple whitespaces or tabs used as an indentation 

in the program. 
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In pretokenization phase, each program was split into meaningful code tokens. For the 

transformer model, each Java program was tokenized using javalang. The javalang tokenizer 

generates a stream of Java tokens, each having position (line, column) and value information. It 

also removes code comments. Each Python program was tokenized using tokenize from the Python 

library. For CodeBERT, pretokenization of a Java program was done by splitting the program into 

tokens, detokenizing those tokens using javalang, and then binding tokens using a space character.       

Tokenization is the process of splitting a text into words, phrases, or other meaningful elements 

called tokens. In this step, each pretokenized program was split into smaller subunits using a 

subword tokenization approach called Byte Pair Encoding (BPE). A BPE has two parts: a token 

learner that generates a vocabulary from a raw training corpus and a token segmenter that tokenizes 

a raw program based on the vocabulary. 

Neural Translation Model 

Two neural translation models were built using an encoder and decoder model: one with a 

transformer architecture and the other with both the encoder and the decoder initialized with the 

public CodeBERT checkpoint. 

Inference 

To generate translations from a probability model, the Greedy 1-best search criterion was 

used. In greedy search, the probability at every time step is calculated and the token that gives the 

highest probability is selected to use as the next token in the sequence. 

Data Postprocessing 

The programs translated using the transformer were postprocessed by first removing BPE 

tokens and “<unk>” tokens. In the case of Java program, the program tokens were detokenized by 

simply reformatting using javalang. For a Python program, any text in capital or small letters 

matching “newline” and “new line” was replaced with the text “NEWLINE”, “indent” with 

“INDENT”, and “dedent” with “DEDENT”. Following that, the program was detokenized by 

splitting it on “NEWLINE”, replacing “INDENT” appearing at the beginning of each line with 

four spaces, and removing the texts “INDENT”, “DEDENT”, “NL”, and “ENDMARKER”. 

Finally, all the lines were joined with the “\n” character. In the resulting program, “. ” and “ .” 

were replaced with “.” and minified using pyminifier. 
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Evaluation 

The BLEU score and the CodeBLEU score were used to assess the transformer and 

CodeBERT models’ performance. Both the BLEU and CodeBLEU scores ranges from 0 to 1, with 

0 indicating a perfect mismatch and 1 indicating a perfect match. The models were evaluated under 

the hyper parameters described in Table 2. 

Table 2  

Hyperparameters Description 

No. of layers (6,6), (12,12) 

No. of heads 12 

Embedding size 768 

FFN Hidden Dimension 3072 

Activation GELU 

Dropout 0.1 

Layer normalization epsilon 1e-12 

Loss function Cross Entropy Loss 

Optimizer Adam Optimizer 

Batch size 16 

Learning rate 2e-5 

No. of epochs 50,100 

 

Result Analysis 

The experiment was conducted on different configurations of the transformer and the 

CodeBERT model, for varying numbers of epochs. The sample of output is shown in Figure 4 and 

Figure 

 

Figure 4  

Program written in Java 5 
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                                                import java.io.*; 

class GFG { 

static long calculateSum(int n) 

{ 

long sum = 0; 

for (int row = 0; row < n; row++) { 

sum = sum + (1 << row); 

} 

return sum; 

} 

public static void main(String[] args) 

{ 

int n = 10; 

System.out.println("Sum of all elements:" 

+ calculateSum(n)); 

}} 

 

Figure 5  

Generated Python code of Figure 4 

def calculateSum(n) : 

sum = 0 

for row in range(n): 

sum = sum + (1 << row) 

return sum 

n = 10 

print("Sum of all elements:", calculateSum(n)) 

 

The BLEU and CodeBLEU scores of the transformer and CodeBERT models obtained for 

627 testing samples are shown in Table 3 (Java to Python) and Table 4 (Python to Java). 

Table 3   

BLEU, CodeBLEU, scores for Java to Python translation 
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Epoch Layers Model BLEU Code BLEU 

50 6 Transformer 0.28 0.28 

CodeBERT 0.13 0.21 

12 Transformer 0.26 0.27 

CodeBERT 0.10 0.19 

100 6 Transformer 0.27 0.27 

CodeBERT 0.15 0.22 

12 Transformer 0.25 0.27 

CodeBERT 0.11 0.17 

 

Table 4  

BLEU, CodeBLEU, scores for Python to Java translation 

Epoch Layers Model BLEU Code BLEU 

50 6 Transformer 0.39 0.40 

CodeBERT 0.27 0.35 

12 Transformer 0.37 0.38 

CodeBERT 0.26 0.33 

100 6 Transformer 0.39 0.40 

CodeBERT 0.29 0.37 

12 Transformer 0.37 0.38 

CodeBERT 0.29 0.37 

 

In order to choose the appropriate model for program translation, the study evaluates the 

BLEU and CodeBLEU scores of the CodeBERT and the transformer models. The study uses 

trained models to translate programs from the test dataset and compute BLEU and CodeBLEU 

scores. It determines whether the Python to Java program translation models have equivalent 

BLEU and .CodeBLEU scores to the Java to Python program translation models. The results 

demonstrated that the transformer model with 6 encoder and 6 decoder layers, trained for 50 epochs 

to translate from Java to Python, received the highest BLEU and CodeBLEU scores, with values 

of 0.28 and 0.28, respectively. Similarly, the transformer model, trained for 100 epochs to translate 

from Python to Java, achieved the highest BLEU (0.39) and CodeBLEU (0.40) scores. 
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Additionally, the results demonstrate that Python to Java translation models have higher BLEU 

and CodeBLEU scores than Java to Python translation models. In this study, the transformer 

models have performed better than the CodeBERT models in terms of BLEU and CodeBLEU 

scores.  

Conclusion 

The purpose of this study was to compare the transformer and the CodeBERT model on 

program translation tasks. The study used a 3133 Java Python parallel program dataset to translate 

the programs written in the source language to the target language. 80% (2506) of the data was 

used to train and 20% (672) of the data was used to test the transformer and the CodeBERT models. 

Based on the BLEU and CodeBLEU scores of the models trained for different epochs, it can 

be concluded that the transformer models performed better than the CodeBERT models on the test 

dataset used in the study. 

For the Java to Python program translation task, the transformer model with 6 encoder and 6 

decoder layers trained for 50 epochs achieved the highest BLEU and Code BLEU scores, of 0.28 

and 0.28, respectively. 

Similarly, for the Python to Java program translation task, the transformer model with 6 

encoder and 6 decoder layers trained for 100 epochs received the highest BLEU and CodeBLEU 

scores, with values of 0.39 and 0.40, respectively. Furthermore, the scores of Java-to-Python 

translation models differ from those of Python to Java translation models. 

Future Enhancements 

The study used the CodeBERT block on both the encoder and decoder side of the translation 

model with shared weights. It is possible to use an autoregressive model on the decoder side. 

Additionally, due to resource constraints, the experiment was run on a small set of data. It would 

have been good if all of the datasets were used to train the models. 
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