
NCCS Research Journal, Volume 3, No. 1 October 2024, ISSN NO: 2822-1605

19

Received Date: June 2024 Revised: August 2024 Accepted: October 2024

Comparative Analysis of Transformer and CodeBERT for Program

Translation

Bikash Balami

Assistant Professor

Central Department of Computer Science and Information Technology

Tribhuvan University

bikash@cdcsit.edu.np

Joshana Shakya

Machine Learning Engineer, Fusemachines

joshanashakya@gmail.com

mailto:bikash@cdcsit.edu.np

NCCS Research Journal, Volume 3, No. 1 October 2024, ISSN NO: 2822-1605

20

Abstract

 Program translation refers to the technical process of automatically converting the source code

of a computer program written in one programming language into an equivalent program in

another. This study compares the transformer model and the CodeBERT-based encoder-decoder

model on the program translation task. Specifically, it trains the 6 and 12-layer models for 50 and

100 epochs to translate programs written in Java to Python and Python to Java. The models were

trained with 3133 sets of Java Python parallel programs. Among different layered models, the

transformer model with 6 layers trained for 50 epochs to translate from Java to Python achieved

the highest BLEU and CodeBLEU scores, with values of 0.28 and 0.28, respectively. Similarly,

the transformer model with 6 layers trained for 100 epochs to translate from Python to Java

received the highest BLEU and CodeBLEU scores of 0.39 and 0.40, respectively. These results

show that the transformer models perform better than the CodeBERT models. Also, the BLEU

and CodeBLEU scores of the Java to Python and Python to Java translation models are different.

Keywords: Program Translation, Transformer, Code Bidirectional Encoder Representations from

Transformers, Bilingual Evaluation Understudy (BLEU), Code Bilingual Evaluation Understudy

(CodeBLEU)

NCCS Research Journal, Volume 3, No. 1 October 2024, ISSN NO: 2822-1605

21

Comparative Analysis of Transformer and CodeBERT for Program Translation

 Software applications are computer programs that may become obsolete over time due to a

variety of factors, including hardware platform updates, skills shortages in the original

programming language in which the application was written, and a lack of software support from

the language compiler vendors. As a result, software developers are often required to review

software applications implemented in one programming language to a more recent and efficient

language. Such reimplementation of any software needs knowledge of both programming

languages: one that was used to develop the software and the other that will be used to rewrite

the software.

Also, reimplementation is an expensive and time-consuming procedure. A bank in Australia,

for example, spent $750 million in 5 years to migrate its core COBOL platform to Java (Lachaux

et al., 2020). To reduce the risk and cost associated with code migration, developers often apply

the simplest form of software re-engineering approach called program translation. Program

translation is the technical process of automatically translating the source code of a computer

program written in one language into an equivalent program in another language (Ahmad et al.,

2023). Unlike traditional compilers, which translate a program written in a high-level

programming language to a lower-level machine code (Java → Bytecode), the program translation

system, also called a transcompiler, focuses on translation between high-level programming

languages (Zhu et al., 2022).

Traditionally, program translation is performed in a rule-based manner, which involves parsing

the input source code, constructing an abstract syntax tree (AST), transforming the AST, and

finally generating source code in the target programming language. Given the dataset, the program

written in one language can be translated to a different language without any programmatic

intervention by employing a modern machine translation approach like neural machine translation

(NMT). NMT is a machine learning approach to automate translation by utilizing neural networks.

As NMT was the recurrent neural network-based encoder-decoder model, this model has issues

with long-range dependencies and non-parallelization within training examples. To deal with these

issues, a novel transformer model was presented that achieved state-of-the-art on the WMT-14

English-to-German and English-to-French translation tasks and required significantly fewer

NCCS Research Journal, Volume 3, No. 1 October 2024, ISSN NO: 2822-1605

22

calculations and less time to train (Vaswani et al., 2017). The transformer-based NMT model can

be trained by initializing the model weights to random values. Alternatively, the weights can be

initialized by copying them from a previously trained model. This approach is called warm-

starting. In the case of the programming language, the encoder-only model, Code Bidirectional

Encoder Representations from Transformers (CodeBERT), can be used to warm-start the encoder

and decoder of the NMT model.

Problem Statement

As programming languages can be considered as natural languages (Aggarwal et al., 2015),

program translation problems can also be viewed as natural language translation problems.

Therefore, different natural language translation approaches, such as rule-based, statistical

machine translation (SMT), or NMT methods, can be applied to program translation problems.

The transformer-based NMT architecture and the pretrained models improve the translation

quality. In the case of the pretrained models, the CodeBERT encoders can also be used on the

decoder side of the encoder-decoder model to have better output representation. And to reduce the

memory usage as well as to reduce the execution time, the weights of encoders can be shared with

those of decoders. The study attempts to provide answers of the following questions, How does

encoder decoder model can be trained using parallel program data set?, How to compare different

translation models? Do the Java to Python and Python to Java translation models yield similar

scores?

Objectives

▪ To train the transformer and CodeBERT models on the Java – Python parallel program

dataset

▪ To translate the program written in Java to Python and vice versa using Transformer

and CodeBERT

▪ To compare the performance of the transformer and CodeBERT using BLEU and

CodeBLEU as evaluation metrics

NCCS Research Journal, Volume 3, No. 1 October 2024, ISSN NO: 2822-1605

23

Theoretical Background

Transformer

A transformer is a deep learning model that utilizes the self-attention mechanism to solve

sequence-to-sequence problems while resolving long-range dependencies. It is a type of artificial

intelligence model that learns to understand and generate natural language text by analyzing

patterns in large amount of text data. Transformers are a current state-of-the-art NLP model and

are considered the evolution of the encoder-decoder architecture. This model avoids recurrence

and trains the network in parallel to speed up the development of the model with a large number

of parameters. Transformers are specially designed to comprehend context and meaning by

analyzing the relationship between different elements, and they rely almost entirely on a

mathematical technique called attention. The transformer architecture is shown in

Figure 1.

Transformer Model Architecture (Vaswani et al., 2017)

The model consists of two components: an encoder and a decoder. The encoder reads a

sequence of symbol representations x = (x1, . . . , xn) as input and generates a sequence of continuous

representations z = (z1, . . . , zn). Given z, the decoder produces a sequence of symbols (y1, . . . , ym)

one element at a time (Vaswani et al., 2017).

NCCS Research Journal, Volume 3, No. 1 October 2024, ISSN NO: 2822-1605

24

The encoder block consists of N identical layers stacked on top of each other. Each layer

contains two basic sub-layers: a multi-head self-attention mechanism and a position-wise fully

connected feed-forward network. The decoder also consists of N identical layers stacked on top of

each other. Each layer contains three sub-layers: a masked multi-head attention mechanism, a

multi-head attention mechanism, and a position-wise fully connected feed-forward network.

Given the input tokens or the output tokens, the embedding sub-layer generates the vectors

of dimensions dmodel using learned embeddings . The learned linear transformation sublayer

projects the vector produced by the stack of decoders to a logits vector, and the softmax function

converts the vector to predicted next-token probabilities. Positional encoding add information

about the relative or absolute position to input embeddings, positional encoding of dimension dmodel

is computed using sine and cosine functions of different frequencies. An attention function uses a

query and a set of key-value pairs to calculate an attention. The compatibility function of the query

with the corresponding key determines the weight allocated to each value.

CodeBERT

Bidirectional Encoder Representations from Transformers (BERT) is a language

representation model based on the transformer architecture. The two types of BERT models based

on the model size are BERTBase and BERTLarge. BERTBase has 12 transformer layers, 768

hidden size, 12 attention heads, and 110M trainable parameters, whereas BERTLarge has 24

transformer layers, 1024 hidden size, 16 attention heads, and 340M trainable parameters

The BERT model is designed to pretrain deep bidirectional representation using two tasks:

masked language modeling (MLM) and next sentence prediction (NSP). During training the

model, 15% of the tokens are masked, and the correct tokens in the masked positions are predicted

using the final hidden state. NSP is used to learn the link between sentence pairs. For NSP, when

choosing sentence pair A and B, 50% of the time it is an arbitrary sentence in the corpus. To predict

the correct label and compute loss, the output hidden state is used. The pretrained BERT model

can be used to fine-tune the downstream natural language processing tasks (Devlin et al., 2019).

CodeBERT is a bimodal pretrained model based on the transformer architecture for

programming languages (PL) and natural language (NL). It learns the semantics connection

between Pl and NL and supports downstream NL-PL tasks like natural language code search, code

documentation generation, and so on. CodeBERT uses the RoBERTa-base architecture with 125M

NCCS Research Journal, Volume 3, No. 1 October 2024, ISSN NO: 2822-1605

25

model parameters (Feng et al., 2020). The CodeBERT is trained on both bimodal data (natural

language–code) and unimodal data (code) across six programming languages (Python, Java,

JavaScript, PHP, Ruby, and Go) with a hybrid objective function (Feng et al., 2020).

Methodology

Data Collection

A parallel dataset for Java-Python program translation was collected from AVATAR: A

Parallel Corpus for Java-Python Program Translation (Ahmad et al., 2023). The dataset contains

Java and Python solutions to the programming problems. These solutions were taken from

programming contest sites such as Codeforces, Google Code Jam, and online platforms such as

GeeksforGeeks, LeetCode, and Project Euler. Hence, 20,363 parallel programs were taken.

However, due to resource limitations, the programs having lengths less than 5 and greater than 450

were discarded after cleaning and pretokenization, leading to size 3133. For this study, as

mentioned earlier the programs having length less than 5 and greater than 450 were discarded, so

after that 3133 parallel program tasks were used for training and testing the model. The details

about data can be seen in Table 1.

Table 1

Dataset Description

Source Java Python Program Counts

Codeforces 1726

GeeksforGeeks 1354

LeetCode 35

Project Euler 18

Total 3133

Out of 3133, 80% (2506) were used for training and the remaining 20% (627) were used as test

samples. Sample of the dataset is presented in Figure 2 and Figure 3.

Figure 2

NCCS Research Journal, Volume 3, No. 1 October 2024, ISSN NO: 2822-1605

26

Program written in Java

import java.io.*;

class GfG {

static int sumOfTheSeries(int n){

return (n * (n + 1) / 2) *

(2 * n + 1) / 3;

}

public static void main (String[] args)

{

int n = 5;

System.out.println("Sum = "+

sumOfTheSeries(n));

}}

Figure 3

Program in Python of code of program written in Java in Figure 2

def sumOfTheSeries(n):

return int((n * (n + 1) / 2) *

(2 * n + 1) / 3)

n = 5

print("Sum =", sumOfTheSeries(n))

Data Preprocessing

The dataset of Java and Python programs were processed through the preprocessing tasks

to obtain data suitable to train the models. The tasks include data cleaning, pretokenization and

tokenization. Unlike other programming languages, indentation is a crucial concept that should be

followed when writing Python code. Moreover, Python does not allow mixing tabs and spaces for

indentation. However, Python programs in Project Euler have IndentationError, which was fixed

using autopep8. Following this, pyminifier was used to remove the docstrings, comments, and

extraneous whitespaces present in each Python program, as well as to minimize indentation spaces.

The pyminifier uses a single space to substitute multiple whitespaces or tabs used as an indentation

in the program.

NCCS Research Journal, Volume 3, No. 1 October 2024, ISSN NO: 2822-1605

27

In pretokenization phase, each program was split into meaningful code tokens. For the

transformer model, each Java program was tokenized using javalang. The javalang tokenizer

generates a stream of Java tokens, each having position (line, column) and value information. It

also removes code comments. Each Python program was tokenized using tokenize from the Python

library. For CodeBERT, pretokenization of a Java program was done by splitting the program into

tokens, detokenizing those tokens using javalang, and then binding tokens using a space character.

Tokenization is the process of splitting a text into words, phrases, or other meaningful elements

called tokens. In this step, each pretokenized program was split into smaller subunits using a

subword tokenization approach called Byte Pair Encoding (BPE). A BPE has two parts: a token

learner that generates a vocabulary from a raw training corpus and a token segmenter that tokenizes

a raw program based on the vocabulary.

Neural Translation Model

Two neural translation models were built using an encoder and decoder model: one with a

transformer architecture and the other with both the encoder and the decoder initialized with the

public CodeBERT checkpoint.

Inference

To generate translations from a probability model, the Greedy 1-best search criterion was

used. In greedy search, the probability at every time step is calculated and the token that gives the

highest probability is selected to use as the next token in the sequence.

Data Postprocessing

The programs translated using the transformer were postprocessed by first removing BPE

tokens and “<unk>” tokens. In the case of Java program, the program tokens were detokenized by

simply reformatting using javalang. For a Python program, any text in capital or small letters

matching “newline” and “new line” was replaced with the text “NEWLINE”, “indent” with

“INDENT”, and “dedent” with “DEDENT”. Following that, the program was detokenized by

splitting it on “NEWLINE”, replacing “INDENT” appearing at the beginning of each line with

four spaces, and removing the texts “INDENT”, “DEDENT”, “NL”, and “ENDMARKER”.

Finally, all the lines were joined with the “\n” character. In the resulting program, “. ” and “ .”

were replaced with “.” and minified using pyminifier.

NCCS Research Journal, Volume 3, No. 1 October 2024, ISSN NO: 2822-1605

28

Evaluation

The BLEU score and the CodeBLEU score were used to assess the transformer and

CodeBERT models’ performance. Both the BLEU and CodeBLEU scores ranges from 0 to 1, with

0 indicating a perfect mismatch and 1 indicating a perfect match. The models were evaluated under

the hyper parameters described in Table 2.

Table 2

Hyperparameters Description

No. of layers (6,6), (12,12)

No. of heads 12

Embedding size 768

FFN Hidden Dimension 3072

Activation GELU

Dropout 0.1

Layer normalization epsilon 1e-12

Loss function Cross Entropy Loss

Optimizer Adam Optimizer

Batch size 16

Learning rate 2e-5

No. of epochs 50,100

Result Analysis

The experiment was conducted on different configurations of the transformer and the

CodeBERT model, for varying numbers of epochs. The sample of output is shown in Figure 4 and

Figure

Figure 4

Program written in Java 5

NCCS Research Journal, Volume 3, No. 1 October 2024, ISSN NO: 2822-1605

29

 import java.io.*;

class GFG {

static long calculateSum(int n)

{

long sum = 0;

for (int row = 0; row < n; row++) {

sum = sum + (1 << row);

}

return sum;

}

public static void main(String[] args)

{

int n = 10;

System.out.println("Sum of all elements:"

+ calculateSum(n));

}}

Figure 5

Generated Python code of Figure 4

def calculateSum(n) :

sum = 0

for row in range(n):

sum = sum + (1 << row)

return sum

n = 10

print("Sum of all elements:", calculateSum(n))

The BLEU and CodeBLEU scores of the transformer and CodeBERT models obtained for

627 testing samples are shown in Table 3 (Java to Python) and Table 4 (Python to Java).

Table 3

BLEU, CodeBLEU, scores for Java to Python translation

NCCS Research Journal, Volume 3, No. 1 October 2024, ISSN NO: 2822-1605

30

Epoch Layers Model BLEU Code BLEU

50 6 Transformer 0.28 0.28

CodeBERT 0.13 0.21

12 Transformer 0.26 0.27

CodeBERT 0.10 0.19

100 6 Transformer 0.27 0.27

CodeBERT 0.15 0.22

12 Transformer 0.25 0.27

CodeBERT 0.11 0.17

Table 4

BLEU, CodeBLEU, scores for Python to Java translation

Epoch Layers Model BLEU Code BLEU

50 6 Transformer 0.39 0.40

CodeBERT 0.27 0.35

12 Transformer 0.37 0.38

CodeBERT 0.26 0.33

100 6 Transformer 0.39 0.40

CodeBERT 0.29 0.37

12 Transformer 0.37 0.38

CodeBERT 0.29 0.37

In order to choose the appropriate model for program translation, the study evaluates the

BLEU and CodeBLEU scores of the CodeBERT and the transformer models. The study uses

trained models to translate programs from the test dataset and compute BLEU and CodeBLEU

scores. It determines whether the Python to Java program translation models have equivalent

BLEU and .CodeBLEU scores to the Java to Python program translation models. The results

demonstrated that the transformer model with 6 encoder and 6 decoder layers, trained for 50 epochs

to translate from Java to Python, received the highest BLEU and CodeBLEU scores, with values

of 0.28 and 0.28, respectively. Similarly, the transformer model, trained for 100 epochs to translate

from Python to Java, achieved the highest BLEU (0.39) and CodeBLEU (0.40) scores.

NCCS Research Journal, Volume 3, No. 1 October 2024, ISSN NO: 2822-1605

31

Additionally, the results demonstrate that Python to Java translation models have higher BLEU

and CodeBLEU scores than Java to Python translation models. In this study, the transformer

models have performed better than the CodeBERT models in terms of BLEU and CodeBLEU

scores.

Conclusion

The purpose of this study was to compare the transformer and the CodeBERT model on

program translation tasks. The study used a 3133 Java Python parallel program dataset to translate

the programs written in the source language to the target language. 80% (2506) of the data was

used to train and 20% (672) of the data was used to test the transformer and the CodeBERT models.

Based on the BLEU and CodeBLEU scores of the models trained for different epochs, it can

be concluded that the transformer models performed better than the CodeBERT models on the test

dataset used in the study.

For the Java to Python program translation task, the transformer model with 6 encoder and 6

decoder layers trained for 50 epochs achieved the highest BLEU and Code BLEU scores, of 0.28

and 0.28, respectively.

Similarly, for the Python to Java program translation task, the transformer model with 6

encoder and 6 decoder layers trained for 100 epochs received the highest BLEU and CodeBLEU

scores, with values of 0.39 and 0.40, respectively. Furthermore, the scores of Java-to-Python

translation models differ from those of Python to Java translation models.

Future Enhancements

The study used the CodeBERT block on both the encoder and decoder side of the translation

model with shared weights. It is possible to use an autoregressive model on the decoder side.

Additionally, due to resource constraints, the experiment was run on a small set of data. It would

have been good if all of the datasets were used to train the models.

References

Aggarwal, K., Salameh, M., & Hindle, A. (2015). Using machine translation for converting

Python 2 to Python 3 code. PeerJPreprints.

NCCS Research Journal, Volume 3, No. 1 October 2024, ISSN NO: 2822-1605

32

Ahmad, W. U., Tushar, M. G., Chakraborty, S., & Chang, K.-W. (2023). AVATAR: A Parallel

Corpus for Java-Python Program Translation. arXiv:2108.11590v2.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding. arXiv:1810.04805v2.

Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., . . . Zhou, M. (2020). CodeBERT:

APre-Trained Model for Programming and Natural Languages. arXiv:2002.08155v4.

Lachaux, M.-A., Roziere, B., & Chanussot, L. (2020). Unsupervised Translation of

Programming Languages. arXiv:2006.03511v3.

Vaswani, A., M.Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., N.Gomez, A., . . . Polosukhin,

I. (2017). Attention is All you Need. Neural Information Processing.

Zhu, M., Suresh, K., & K.Reddy, C. (2022). Multilingual Code Snippets Training for Program

Translation. Association for the Advancement of Artificial Intelligence.

Acknowledgments

We are greatly thankful to Asst. Prof. Sarbin Sayami, Head of the Central Department of

Computer Science & Information Technology (CDCSIT), Kirtipur for providing valuable

suggestions, support, and inspiration to complete this task.

We are thankful to Prof. Dr. Shashidhar Ram Joshi, Prof. Dr. Subarna Shakya, Prof. Dr.

Bal Krishna Bal and Assoc. Prof. Nawaraj Paudel for their kind suggestions and inspiration during

this work.

