
1KEC Journal of Science and Engineering, Vol. 8 Issue 1, August 2024

Received Date: 19th March, 2024
Revision Date: 15th May, 2024
Accepted Date: 21st July, 2024

A Comprehensive Study on Implementation of Deep Learning on
Autonomous Vehicle for Steering Angle Prediction and Stability

Swodesh Sharma¹*, Puskar Neupane², Shashwot Shrestha³, Sushil Phuyal4, Sanjivan Satyal5

¹Dept of Electrical Engineering, Pulchowk Campus, Tribhuvan University, Email: xarmaswodesh@gmail.com
² Dept of Electrical Engineering, Pulchowk Campus, Tribhuvan University, Email: puskarneupane4321@gmail.com

³ Dept of Electrical Engineering, Pulchowk Campus, Tribhuvan University, Email: 076bel043.shashwot@pcampus.edu.np
4 Dept of Electrical Engineering, Pulchowk Campus, Tribhuvan University, Email: sushilphuyal.sp@gmail.com

 5Assoc. Professor, Dept of Electronics and Computer Engineering, Pulchowk Campus, Tribhuvan University,
Email: sanziwans@gmail.com

Abstract— The development of autonomous vehicles
has recently enhanced the transportation industry and
opened up a variety of opportunities and problems
that can be solved with the aid of current methods and
technology. In this study, three separate algorithms
were used to predict the steering angle with a track
image: Artificial Neural Network (ANN), Convolution
Neural Network (CNN), and a combination of CNN
and Long-Short Term Memory (CNN-LSTM). The PID
controller was employed for benchmarking, which takes
Cross-Track Error (CTE) provided by the simulation
to steer the vehicle. To achieve improved performance,
the standard NVIDIA CNN self-driving model was
slightly altered by feeding it with sequential frames. The
comparison analysis was conducted using the OpenAI
Gym Donkey Simulator.

Keywords— Self Driving Car, ANN, CNN, LSTM, CTE,
PID

Introduction

Humans strive to incorporate intelligence and learning
into every system with the intent of making it automatic.
An automated system has the benefit of being not only
affordable and simple to use but also safer. The use of
autonomous vehicles has also been on the rise recently in an
effort to prevent traffic accidents and driver fatigue.

The history of self-driving cars can be traced back to 1925
when Francis Houdini demonstrated a radio-controlled car
with no one inside [1]. Following that, various prototypes
are tested for various speeds and environments. Deep
learning frameworks have recently been used to make
significant progress in the development of self-driving cars.
The use of digital hardware in Electric Vehicles (EVs) is
gaining momentum, propelling them as one of the most
cutting-edge and energy-efficient ways of transportation.
Unlike internal combustion (IC) engines, which have a fuel
efficiency of just 40%, electric vehicles (EVs) use digital

computation to enhance performance. Because of the fast
integration of digital electronics, EVs now have great
opportunities to enter into the area of autonomous driving,
making them even more desirable in terms of transportation
safety and innovation. Many approaches were applied in the
course of developing autonomous EVs. Traditionally, these
approaches were based on a robotic-based approach that
split the autonomous driving task into subsequent models,
namely perception, planning, and control. These approaches
were difficult and needed more computational capacity. With
the advancement of chip manufacturing in recent decades
the traditional robotic-based approach is being replaced
by machine-learning approaches. These machine learning
approaches include the Artificial Neural Network Multilayer
Perceptron (ANN-MLP), Convolutional Neural Network
(CNN), Support Vector Machine (SVM), and Convolutional
Neural Network Long Short-Term Memory (CNN-LSTM).
Though different modern techniques are used for improving
the performance of autonomous vehicles, which require
high computational power, there has been ongoing research
on PID controllers to ensure the stability of vehicles in lanes.
Different optimization algorithms are also used in the PID
controller, which is proven to be efficient [2]. In this paper,
we have done a comparative study between the different deep
learning algorithms and validated their performance with
PID controllers that utilize CTE for path tracing. In Section
II, there is a review of numerous publications using various
self-driving vehicle techniques. Section III describes several
deep neural network techniques used in this experimental
study. whereas Section IV presents the PID implementation.
Section V describes the procedure used and the steps taken.
Comparative Study is demonstrated in Section VI and
concluding statements are in Section VII.
Literature review
Over the last two decades, research has been conducted
to make self-driving vehicles safer and more practical in
any situation. The different research papers are studied to

* Corresponding Author

2 KEC Journal of Science and Engineering, Vol. 8 Issue 1, August 2024

explore new and creative approaches. The steering control
is the major part of the control used to move vehicles along
the lane.
One of the major catalysts for the evolution of self-
driving cars was the Defense Advanced Research Projects
Agency (DARPA) challenge, aimed at accelerating the
development of autonomous vehicle technologies, which
took place in 2004 and 2005. The challenge was won by
Stanley, the autonomous vehicle developed by the Stanford
Racing Team. Stanley’s achievement demonstrated the
feasibility and potential of autonomous driving technology
as it successfully navigated a 175mile desert course without
human intervention in 6 hours and 53 minutes. This
remarkable feat was made possible by employing advanced
AI technologies such as machine learning and probabilistic
reasoning. The success of Stanley accelerated the world’s
move towards autonomous driving, showcasing the
immense potential of intelligent robots in tackling complex
environments [3].

Many rule-based as well as machine learning-based
approaches to self-driving cars have been developed. One
of the famous rule-based autonomous driving methods is
to detect lane features and mathematically formulate the
steering angle. For lane detection, the well-known Canny
edge detection algorithms are employed. These algorithms
open up a plethora of possibilities for feature extraction,
image analysis, and computer vision [4]. The computer
vision-based techniques help to formulate the path for
the vehicle and PID is then employed for the motion. The
majority of recent articles used deep learning for lane
recognition and PID controllers to regulate steering angle
stability. The measurements of yaw rate and lateral offset
are critical for adjusting the steering angle and keeping the
autonomous vehicle on course [5].

Emirler et al. proposed a parameter-space-based robust PID
steering controller that has been experimented with in real
prototype vehicles, which validates the theoretical data [6].
Various open platforms are also being developed to study
and design autonomous vehicle algorithms and test their
performance [7]. Achieving stability for a wide range and
different speeds of vehicles is also one of the problems that
are overcome by using an adaptive PID controller. Zhao et al.
have used an adaptive PID controller that gives us flexibility
and simplifies the system’s software and hardware [8]. The
tuning of the PID parameter is also crucial to eliminating
the error and moving along the path. For the best tuning
of parameters, different algorithms are being tested and
implemented. A new algorithm like” WAF tune” was also
introduced and proved to be the best among other algorithms
for different vehicle speeds [9]. PID and pure pursuit control
are also used for lane detection, using three different
methodologies: edge detection, Hough transformation, and
bird’s eye view [10].

Bojarski et al. presented a CNN-based approach that maps
pixel data of the car’s front camera image directly to
steering commands without the need for complex rule-based
decisions. The data were recorded by manually driving
the car under diverse weather conditions and were further
augmented. The results proved the CNN-based system to
be able to drive successfully on the track even without lane
markings [11].
Lade et al. conducted an extensive study on the simulation
of a self-driving car using the Udacity simulator. All the
data were recorded by manually driving the car, and later
balanced, augmented, and cropped to eliminate unnecessary
details. The authors performed a comparison of the replica
of the Nvidia model by increasing the CNN complexity and
found that the more complex architecture performed better
[12].
Gu et. al introduced an LSTM-based model designed to
imitate Waymo’s self-driving cars’ behavior using the
Waymo Dataset. The model predicts the acceleration and
steering angle of the car by utilizing sensor data and camera
images. Specifically, it processes ten sequential front images
of the car through ResnetV2. The output from ResnetV2,
along with twelve input features, is then passed into an
encoder-decoder structure with an LSTM model. The authors
conclude that their LSTM-based model, incorporating front
camera images, is an effective and efficient approach for
predicting acceleration [13].
Deep Neural Network
A. Artificial Neural Network (ANN)
 ANN Multi-Layer Perceptron (MLP) consists of different
nodes connected together, where each connection has its
own weights, and the information is passed from input
nodes to output nodes through a feed-forward network, and
the weights can be adjusted to minimize the error through
backpropagation. This is shown in Fig.1 where each node
produces output by summarizing the product of its weight
and input from another node, and the total sum is passed to
the activation function.
ANN MLP is highly effective in the task of classification,
where a large number of features have to be given as input.
The mathematical formula for the output of nodes can be
given by the equation (1).

 (1)

where σ is the activation function.

 (a) (b)
Fig. 1. (a) Perceptron (b) Multilayer Perceptron

3KEC Journal of Science and Engineering, Vol. 8 Issue 1, August 2024

B. Convolution Neural Network (CNN)

CNN is used for extracting features from the image.
Depending upon those features, items can be categorized.
CNN is based on the convolution function which can be
represented as

 (2)

Equation 2 simply shows that convolution is the combined
integration of two functions and shows how one function
modifies the other function. In the case of self-driving cars,
the first function is the input image and the second function
is the feature detector also called the filter or kernel. These
two functions generate convolved features also called
feature maps. This process is depicted in Fig. 2.

Fig. 2. Convolution Process

The feature map is activated by an activation function, e.g.,
ReLU, which increases non-linearity in the images. The
convolution step reduces the size of the input image as the
size of the feature map gets significantly smaller. The size
of the feature map can be further reduced by using a feature
of CNN known as” pooling.” Even though the size of the
feature map is reduced, the key features are preserved. The
output of the pooling process is converted into a 1D vector,
which is then fed into an ANN with dense layers, and finally,
the output is obtained.

C. Long Short-Term Memory

LSTM is a type of recurrent neural network (RNN)
architecture that is designed to process sequential data
because they have a hidden state that can retain information
from previous time steps and use it as context for predicting
the next step in the sequence. Unlike traditional RNN, LSTM
has a more sophisticated cell structure that incorporates
gating mechanisms. These gating mechanisms control the
flow of information within the LSTM cell, allowing it to
selectively remember or forget information at different time
steps [14]. LSTM networks can be employed to analyze and
understand temporal patterns within a sequence of images.
By treating each image as a time step in the sequence,
LSTMs can capture the dependencies and context between
consecutive frames.

Fig. 3. LSTM architecture [17]

LSTM has mainly three types of gates: Forget gate, Input
gate and Output gate as in Fig.3. The purpose of these gates
is to control information at various stages of the network.
The equation for the output of forget gate is:

ft = σ(Wf ∗ [ht−1,xt] + bf) (3)

where, [ht−1,xt] is the concatenation of input vector xt and
previous hidden state ht−1. The output of the input gate is

it = σ(Wi ∗ [ht−1,xt] + bf) (4)

This network selectively retains important information and
discards unimportant data. The output of new cell state with

candidate memory (Ce) using current state xt and previous
hidden state ht−1 is

Ct = Ct−1 ∗ ft + it ∗ Ct
’

where,
(5)

Ct
’ = tanh(WC ∗ [ht−1,xt] + bC)

To decide the portion of (Ct) to be passed to the
output, the input is passed to the sigmoid layer

(6)

ot = σ(Wo ∗ [ht−1,xt] + bo)
The final output of the cell will be,

(7)

ht = ot ∗ tanh(Ct) (8)
PID

The basic functional block diagram of the PID controller is
shown in Fig.4. The P, I, and D are the bias hyper-parameters
that are multiplied by the error obtained and then fed to the
process. The hyper-parameters were continuously updated
by the algorithm till the desired output is obtained.

Fig. 4. PID Controller

4 KEC Journal of Science and Engineering, Vol. 8 Issue 1, August 2024

A. P Controller

The output of the P controller is the product of error and
constant term(KP). The constant term KP is known as
the proportional gain constant. The output is directly
proportional to the proportional gain constant. So the output
can be controlled by controlling the value of kp. The output
equation of the P controller is given as in equation 9.

Output =KP ∗ error (9)

The response of the system after implementing the P
controller only is shown in Fig.5.

Fig. 5. Response of the car using only P controller

From Fig.5, it is seen that the P controller tries to converge to
the reference line but cannot align itself along the reference.
So, it overshoots and starts to oscillate around the reference
line.

B. PD Controller

To overcome the oscillation caused by the P controller,
another term is introduced which is known as Derivative(D).
The output of the D controller is the product of the slope of
error over time and derivative gain KD. D controller helps to
minimize the error by reducing overshoot and settling time.
The output equation of the PD controller is given as:

 (10)

Combining D with P eliminates the oscillation and our system
reaches a steady state within a short time. The response of
the system after using the PD Controller is shown in Fig.6.

As seen from Fig.6, despite following the reference line quite
nicely, the PD controller is not robust. When there is noise
or glitch in the system, then the derivative term amplifies the
noise and our system will oscillate far from our target path.

Fig. 6. Response of the car using PD controller

C. PID Controller

Proportional(P), Integral(I) and Derivative(D) combined
together to form a PID controller. PID controller is widely
used in industrial appliances. The output of the P and D
controller is already been discussed and the output of the
I controller is the sum of the instantaneous error over time.
The output equation of the PID Controller is given as:

 (11)

In an autonomous vehicle, P controls the direction of the
steering, D monitors the P and makes counter-steering to P
if required, and I check the whole path and error and makes
decisions according to it. The response of the system using
the PID controller is shown in Fig.7.

Fig. 7. Response of the car using PID controller

Fig. 7 shows that by using the properly tuned hyperparameters,
the car followed the reference line accurately with very less
error.

D. Twiddle Algorithm

Twiddle Algorithm [15] is a recent technique to tune the
hyper-parameters of the PID controller. Twiddle Algorithm

5KEC Journal of Science and Engineering, Vol. 8 Issue 1, August 2024

was used so as to minimize the average cross-track error
for the vehicle system. Its flowchart is shown in Fig.8. In
Twiddle, the set of hyperparameters is put in a matrix P, and
based on the following algorithm, updating the values of P
based on the average cross-track error obtained till the point
where the parameters of P start to converge. The final values
of P are the properly tuned parameters of the PID controller.

Fig. 8. Flowchart of Twiddle algorithm for tuning PID hyper-parameters

Methodology

A. Data Collection

For the data collection, an open-gym donkey car simulator
[16] was used as shown in Fig. 9. This simulator consists
of a car with a front camera, which is used by the simulator
to record the images of the track, at regular instant of time.
For the data collection, the inbuilt auto-driving mode of the
simulator was used. Here, in this mode, the car drove around
the track in constant throttle. The car was driven across three
different tracks and a total of 50000 images were recorded
and stored on the computer along with their corresponding
JSON files, which contain the key information of the images
like steering angle. The car being driven for three tracks
has more data with 0 as the steering angle as seen from the

graph in Fig. 10 which will make the model biased towards
predicting 0 so we balance the data. Now the balanced data
was split into two sets, training and validation sets.

B. Data Prprocessing and Augmentation

The data was augmented with the ’imgaug’ augmentation
library and applied only to the training data. The data
augmentation includes various techniques such as image
panning, brightness alteration, zooming, and flipping. These
techniques make the data more versatile, allowing the
model to generalize for various scenarios despite the limited
amount of data. Next, the unwanted features of the image
are removed through four preprocessing steps: cropping,
changing the color format, applying Gaussian

 (a) (b)

Fig. 9. (a) Donkey Simulator (b) Track Sample

(a) (b)

Fig. 10. (a) Before Balancing (b) After Balancing

blur, and normalizing the image. The primary purpose of
cropping is to eliminate unwanted portions of the image,
such as the sky portion. In the second preprocessing step,
the image format is changed from RGB to YUV. This
conversion helps to highlight the lane features of the track.
Subsequently, a Gaussian blur is applied, which smooths the
images and removes disturbances. The final steps in image
processing are resizing and normalization, which resizes the
image to the desired shape and translates data in the range [0,
1] helping speed up the training process. The resized image
frame (IN) with an intensity value in the range [0,255] is
normalized to an image frame (IN’) with intensity values in
the range [0,1] by the relation as given in the equation (12).

 (12)

Fig. 11 shows the difference between the original and

6 KEC Journal of Science and Engineering, Vol. 8 Issue 1, August 2024

the pre-processed image.

(a) (b)

Fig. 11. (a) front camera image (b) preprocessed image

E. Model Architecture

Three different algorithms were employed for behaviour
cloning. ANN architecture involved an input layer of fully
connected layers that accepts flattened image. Dropout
layers were added for regularization. The output layer had
one neuron for regression. Mean absolute error (MAE) was
the loss metric and the Adam optimizer was employed. Each
hidden layer had Exponential Linear Unit (ELU) activation.

Fig. 12. ANN Architecture

The CNN architecture used was the Nvidia Self Driving Car
CNN model [11], which architecture is shown in Fig.13.

Now, to improve the performance of the Nvidia model,
LSTM was incorporated. The proposed model architecture
consists of a Time Distributed CNN with ELU activation,
followed by a Time Distributed max-pooling layer with a
pool size of (2, 2). This pattern is then followed by increasing
the size of CNN filters to 32, 64, and 128, respectively. The
output of this stack is then flattened and fed to an LSTM
layer with 128 units. Additional Dense layers are applied
with ELU activation, containing 1000, 100, 50, and 10 units,
respectively. Finally, the last layer is a Dense layer with a
single unit to perform the regression task of predicting the
steering angle. The model architecture is as shown in Fig.14.
This comprehensive architecture aims to effectively capture
spatiotemporal features in the track frame sequence.

The total trainable parameters along with the time taken for
training (with 100 epochs with a batch size of 50 and 20
steps per epoch) in google collab is mentioned in table I.

F. PID Implementation

The PID controller is implemented to drive the car following
a central lane properly with some smooth left and right turns.
A good set of PID parameters enables our vehicle to stay in
the central portion of the lane and take a smooth left and
right

Fig. 13. CNN Architecture

Fig. 14. CNN + LSTM Architecture

TABLE I
TRAINING HISTORY OF DIFFERENT MODELS

SN Model Total Trainable
Parameters

Time for
training

1 ANN 1,446,037 1.2 Hours

2 CNN 220,219 0.5 hours

3 CNN + LSTM 7,471,855 1.7 Hours

turns accordingly without touching the extremities of the
lane. The simulation of PID implementation was done
in a donkey simulator as shown in Fig.9. The cross-track
error (CTE) is the error distance between the current lateral
position of the vehicle and the center of the lane. The CTE
was extracted from the default built-in function from the
simulator. With the following mathematical equation, the
CTE was used with hyperparameters of PID to finally obtain
the steering angle δ as in equation (13).

 (13)

7KEC Journal of Science and Engineering, Vol. 8 Issue 1, August 2024

 Comparative study

Fig. 15. Track for evaluation

After manually running the vehicle down the track to
collect training data, the algorithms were ran on the fresh
track which consists of two lanes and the car has to follow
the track by maintaining its position in the right lane. To
evaluate the model accuracy, the CTE was plotted and its
absolute mean was taken for the evaluation. The track on
which testing was done is shown in Fig.15.

After performing the simulation using all the models
described in the earlier sections, the final graphical
performance of all the models is shown in Fig.16.

Fig. 16. CTE vs time steps plot of Different models
TABLE II

MEAN CTE OF DIFFERENT MODELS

SN Model Mean Absolute CTE
1 ANN 2.99639
2 CNN 0.34638
3 CNN + LSTM 0.23837
4 PID 0.07438

From the observation of the Mean CTE table in Table II
and CTE plot in Fig.15, the following remarks can be put
forward.

a The ANN model has a mean CTE of 2.99, indicating
that it is not reliable and doesn’t capture the lane feature
accurately. Though it follows the road, it went outside
the desired lane.

b The CNN model shows an improvement with a mean
CTE of 0.34. It extracts the lane features from the
image and runs smoothly with little jerky motion when
lighting conditions vary.

c The combination of CNN and LSTM performs
significantly better with a mean CTE of 0.23. This
model aligns perfectly with the track, indicating a better
understanding of the track’s dynamics and accurate
positioning. There is a minor oscillation resulting from
the time it takes to predict the steering angle.

d The PID model achieves the lowest mean CTE of 0.07.
Since the simulation itself provides feedback, it is
expected to have less error. The PID model utilizes this
feedback effectively to achieve precise alignment with
the track. The tuning of PID was carried out through the
twiddle algorithm.

Conclusion

In this paper, tests, and comparisons of various algorithms
for automatic steering were conducted. The study utilized the
Gym Donkey Car simulator to gather data and evaluate the
trained models. The ANN failed to grasp the track features,
whereas the CNN did a good job in feature extraction but
lacked the temporal information from previous frames. The
CNN + LSTM model demonstrated the best performance
among the tested models, achieving accurate alignment
with the track. On the other hand, the PID model, though it
had low CTE, was used solely for benchmarking purposes
and proved challenging to utilize in real-life scenarios
due to the absence of direct CTE feedback, as obtained in
simulations. The findings suggest that combining CNN with
LSTM, where 10 frames are continuously fed, is optimal
for predicting the steering angle. This model effectively
captures track features and achieves precise alignment.
However, due to the model’s longer prediction duration,
minor oscillation was introduced which can be reduced with
higher processing power.

References

[1] R. Glon and S. Edelstein, “History of self-driving cars
milestones,” Jul 2020. [Online]. Available: https://
www.digitaltrends.com/cars/history-of-selfdriving-cars-
milestones/.

[2] K. Kobatake, T. Okazaki, and M. Arima, “Study on optimal
tuning of pid autopilot for autonomous surface vehicle,”
IFAC-PapersOnLine, vol. 52, pp. 335–340, 01 2019.

[3] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron,
J. Diebel, P. Fong, J. Gale, M. Halpenny, G. Hoffmann, K.
Lau, C. Oakley, M. Palatucci, V. Pratt, P. Stang, S. Strohband,
C. Dupont, L.-E. Jendrossek, C. Koelen, and P. Mahoney,
“Stanley: The robot that won the darpa grand challenge.” J.
Field Robotics, vol. 23, pp. 661–692, 01 2006.

8 KEC Journal of Science and Engineering, Vol. 8 Issue 1, August 2024

[4] J. Canny, “A computational approach to edge detection,”
Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. PAMI-8, pp. 679 – 698, 12 1986.

[5] R. Marino, S. Scalzi, and M. Netto, “Nested pid steering
control for lane keeping in autonomous vehicles,” Control
Engineering Practice, vol. 19, no. 12, pp. 1459–1467, 2011.

[6] M. T. Emirler, ˙I. M. C. Uygan, B. A. Guvenc¸, and L. G¨
uvenc¸, “Robust PID steering control in parameter space
for highly automated driving,”¨ International Journal
of Vehicular Technology, vol. 2014, pp. 1–8, Feb. 2014.
[Online]. Available: https://doi.org/10.1155/2014/259465

[7] S. Kato, E. Takeuchi, Y. Ishiguro, Y. Ninomiya, K. Takeda,
and T. Hamada, “An open approach to autonomous vehicles,”
IEEE Micro, vol. 35, no. 6, pp. 60–68, 2015.

[8] P. Zhao, J. Chen, Y. Song, X. Tao, T. Xu, and T. Mei, “Design
of a control system for an autonomous vehicle based on
adaptive-PID,” International Journal of Advanced Robotic
Systems, vol. 9, no. 2, p. 44, Jan. 2012. [Online]. Available:
https://doi.org/10.5772/51314

[9] W. Farag, “Complex trajectory tracking using PID control
for autonomous driving,” International Journal of Intelligent
Transportation Systems Research, vol. 18, no. 2, pp. 356–
366, Sep. 2019. [Online]. Available: https://doi.org/10.1007/
s13177-019-00204-2

[10] M. K. Diab, H. H. Ammar, and R. E. Shalaby, “Self-driving
car lane-keeping assist using PID and pure pursuit control,”
in 2020 International Conference on Innovation and
Intelligence for Informatics, Computing and Technologies
(3ICT). IEEE, Dec. 2020. [Online]. Available: https://doi.or
g/10.1109/3ict51146.2020.9311987

[11] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B.
Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J.
Zhang, X. Zhang, J. Zhao, and K. Zieba, “End to end learning
for self-driving cars,” 2016.

[12] S. Lade, P. Shrivastav, S. Waghmare, S. Hon, S. Waghmode,
and S. Teli, “Simulation of self driving car using deep
learning,” in 2021 International Conference on Emerging
Smart Computing and Informatics (ESCI), 2021, pp. 175–
180.

[13] Z. Gu, Z. Li, X. Di, and R. Shi, “An lstm-based autonomous
driving model using a waymo open dataset,” Applied
Sciences, vol. 10, no. 6, 2020. [Online]. Available: https://
www.mdpi.com/2076-3417/10/6/2046

[14] S. Hochreiter, J. Schmidhuber et al., “Long short-term
memory [j],” Neural computation, vol. 9, no. 8, pp. 1735–
1780, 1997.

[15] S. Thrun, “Cs373: Artificial intelligence for robotics. udacity,
san francisco, california,” 2018.

[16] T. Kramer, R. Sokolkov, and L. Johnson, “Openai gym
environments for donkey car,” Online, Jul. 2019. [Online].
Available: https://gym-donkeycar.readthedocs.io/en/
latest/?badge

[17] Yan Xu. Understand recurrent neural network with four
figures, Sep 2018.

