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Abstract— The development of autonomous vehicles 
has recently enhanced the transportation industry and 
opened up a variety of opportunities and problems 
that can be solved with the aid of current methods and 
technology. In this study, three separate algorithms 
were used to predict the steering angle with a track 
image: Artificial Neural Network (ANN), Convolution 
Neural Network (CNN), and a combination of CNN 
and Long-Short Term Memory (CNN-LSTM). The PID 
controller was employed for benchmarking, which takes 
Cross-Track Error (CTE) provided by the simulation 
to steer the vehicle. To achieve improved performance, 
the standard NVIDIA CNN self-driving model was 
slightly altered by feeding it with sequential frames. The 
comparison analysis was conducted using the OpenAI 
Gym Donkey Simulator.
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Introduction

Humans strive to incorporate intelligence and learning 
into every system with the intent of making it automatic. 
An automated system has the benefit of being not only 
affordable and simple to use but also safer. The use of 
autonomous vehicles has also been on the rise recently in an 
effort to prevent traffic accidents and driver fatigue.

The history of self-driving cars can be traced back to 1925 
when Francis Houdini demonstrated a radio-controlled car 
with no one inside [1]. Following that, various prototypes 
are tested for various speeds and environments. Deep 
learning frameworks have recently been used to make 
significant progress in the development of self-driving cars. 
The use of digital hardware in Electric Vehicles (EVs) is 
gaining momentum, propelling them as one of the most 
cutting-edge and energy-efficient ways of transportation. 
Unlike internal combustion (IC) engines, which have a fuel 
efficiency of just 40%, electric vehicles (EVs) use digital 

computation to enhance performance. Because of the fast 
integration of digital electronics, EVs now have great 
opportunities to enter into the area of autonomous driving, 
making them even more desirable in terms of transportation 
safety and innovation. Many approaches were applied in the 
course of developing autonomous EVs. Traditionally, these 
approaches were based on a robotic-based approach that 
split the autonomous driving task into subsequent models, 
namely perception, planning, and control. These approaches 
were difficult and needed more computational capacity. With 
the advancement of chip manufacturing in recent decades 
the traditional robotic-based approach is being replaced 
by machine-learning approaches. These machine learning 
approaches include the Artificial Neural Network Multilayer 
Perceptron (ANN-MLP), Convolutional Neural Network 
(CNN), Support Vector Machine (SVM), and Convolutional 
Neural Network Long Short-Term Memory (CNN-LSTM).
Though different modern techniques are used for improving 
the performance of autonomous vehicles, which require 
high computational power, there has been ongoing research 
on PID controllers to ensure the stability of vehicles in lanes. 
Different optimization algorithms are also used in the PID 
controller, which is proven to be efficient [2]. In this paper, 
we have done a comparative study between the different deep 
learning algorithms and validated their performance with 
PID controllers that utilize CTE for path tracing. In Section 
II, there is a review of numerous publications using various 
self-driving vehicle techniques. Section III describes several 
deep neural network techniques used in this experimental 
study. whereas Section IV presents the PID implementation. 
Section V describes the procedure used and the steps taken. 
Comparative Study is demonstrated in Section VI and 
concluding statements are in Section VII.
Literature review
Over the last two decades, research has been conducted 
to make self-driving vehicles safer and more practical in 
any situation. The different research papers are studied to 
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explore new and creative approaches. The steering control 
is the major part of the control used to move vehicles along 
the lane.
One of the major catalysts for the evolution of self-
driving cars was the Defense Advanced Research Projects 
Agency (DARPA) challenge, aimed at accelerating the 
development of autonomous vehicle technologies, which 
took place in 2004 and 2005. The challenge was won by 
Stanley, the autonomous vehicle developed by the Stanford 
Racing Team. Stanley’s achievement demonstrated the 
feasibility and potential of autonomous driving technology 
as it successfully navigated a 175mile desert course without 
human intervention in 6 hours and 53 minutes. This 
remarkable feat was made possible by employing advanced 
AI technologies such as machine learning and probabilistic 
reasoning. The success of Stanley accelerated the world’s 
move towards autonomous driving, showcasing the 
immense potential of intelligent robots in tackling complex 
environments [3].

Many rule-based as well as machine learning-based 
approaches to self-driving cars have been developed. One 
of the famous rule-based autonomous driving methods is 
to detect lane features and mathematically formulate the 
steering angle. For lane detection, the well-known Canny 
edge detection algorithms are employed. These algorithms 
open up a plethora of possibilities for feature extraction, 
image analysis, and computer vision [4]. The computer 
vision-based techniques help to formulate the path for 
the vehicle and PID is then employed for the motion. The 
majority of recent articles used deep learning for lane 
recognition and PID controllers to regulate steering angle 
stability. The measurements of yaw rate and lateral offset 
are critical for adjusting the steering angle and keeping the 
autonomous vehicle on course [5].

Emirler et al. proposed a parameter-space-based robust PID 
steering controller that has been experimented with in real 
prototype vehicles, which validates the theoretical data [6]. 
Various open platforms are also being developed to study 
and design autonomous vehicle algorithms and test their 
performance [7]. Achieving stability for a wide range and 
different speeds of vehicles is also one of the problems that 
are overcome by using an adaptive PID controller. Zhao et al. 
have used an adaptive PID controller that gives us flexibility 
and simplifies the system’s software and hardware [8]. The 
tuning of the PID parameter is also crucial to eliminating 
the error and moving along the path. For the best tuning 
of parameters, different algorithms are being tested and 
implemented. A new algorithm like” WAF tune” was also 
introduced and proved to be the best among other algorithms 
for different vehicle speeds [9]. PID and pure pursuit control 
are also used for lane detection, using three different 
methodologies: edge detection, Hough transformation, and 
bird’s eye view [10].

Bojarski et al. presented a CNN-based approach that maps 
pixel data of the car’s front camera image directly to 
steering commands without the need for complex rule-based 
decisions. The data were recorded by manually driving 
the car under diverse weather conditions and were further 
augmented. The results proved the CNN-based system to 
be able to drive successfully on the track even without lane 
markings [11].
Lade et al. conducted an extensive study on the simulation 
of a self-driving car using the Udacity simulator. All the 
data were recorded by manually driving the car, and later 
balanced, augmented, and cropped to eliminate unnecessary 
details. The authors performed a comparison of the replica 
of the Nvidia model by increasing the CNN complexity and 
found that the more complex architecture performed better 
[12].
Gu et. al introduced an LSTM-based model designed to 
imitate Waymo’s self-driving cars’ behavior using the 
Waymo Dataset. The model predicts the acceleration and 
steering angle of the car by utilizing sensor data and camera 
images. Specifically, it processes ten sequential front images 
of the car through ResnetV2. The output from ResnetV2, 
along with twelve input features, is then passed into an 
encoder-decoder structure with an LSTM model. The authors 
conclude that their LSTM-based model, incorporating front 
camera images, is an effective and efficient approach for 
predicting acceleration [13].
Deep Neural Network
A. Artificial Neural Network (ANN)
    ANN Multi-Layer Perceptron (MLP) consists of different 
nodes connected together, where each connection has its 
own weights, and the information is passed from input 
nodes to output nodes through a feed-forward network, and 
the weights can be adjusted to minimize the error through 
backpropagation. This is shown in Fig.1 where each node 
produces output by summarizing the product of its weight 
and input from another node, and the total sum is passed to 
the activation function.
ANN MLP is highly effective in the task of classification, 
where a large number of features have to be given as input. 
The mathematical formula for the output of nodes can be 
given by the equation (1).

                         (1)

where σ is the activation function.

 (a)                                                  (b)
Fig. 1. (a) Perceptron (b) Multilayer Perceptron
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B. Convolution Neural Network (CNN)

CNN is used for extracting features from the image. 
Depending upon those features, items can be categorized. 
CNN is based on the convolution function which can be 
represented as

                     (2)

Equation 2 simply shows that convolution is the combined 
integration of two functions and shows how one function 
modifies the other function. In the case of self-driving cars, 
the first function is the input image and the second function 
is the feature detector also called the filter or kernel. These 
two functions generate convolved features also called 
feature maps. This process is depicted in Fig. 2.

Fig. 2. Convolution Process

The feature map is activated by an activation function, e.g., 
ReLU, which increases non-linearity in the images. The 
convolution step reduces the size of the input image as the 
size of the feature map gets significantly smaller. The size 
of the feature map can be further reduced by using a feature 
of CNN known as” pooling.” Even though the size of the 
feature map is reduced, the key features are preserved. The 
output of the pooling process is converted into a 1D vector, 
which is then fed into an ANN with dense layers, and finally, 
the output is obtained.

C. Long Short-Term Memory

LSTM is a type of recurrent neural network (RNN) 
architecture that is designed to process sequential data 
because they have a hidden state that can retain information 
from previous time steps and use it as context for predicting 
the next step in the sequence. Unlike traditional RNN, LSTM 
has a more sophisticated cell structure that incorporates 
gating mechanisms. These gating mechanisms control the 
flow of information within the LSTM cell, allowing it to 
selectively remember or forget information at different time 
steps [14]. LSTM networks can be employed to analyze and 
understand temporal patterns within a sequence of images. 
By treating each image as a time step in the sequence, 
LSTMs can capture the dependencies and context between 
consecutive frames.

         

Fig. 3. LSTM architecture [17]

LSTM has mainly three types of gates: Forget gate, Input 
gate and Output gate as in Fig.3. The purpose of these gates 
is to control information at various stages of the network. 
The equation for the output of forget gate is:

ft = σ(Wf ∗ [ht−1,xt] + bf)                     (3)

where, [ht−1,xt] is the concatenation of input vector xt and 
previous hidden state ht−1. The output of the input gate is

it = σ(Wi ∗ [ht−1,xt] + bf)                     (4)

This network selectively retains important information and 
discards unimportant data. The output of new cell state with 

candidate memory (Ce) using current state xt and previous 
hidden state ht−1 is

Ct = Ct−1 ∗ ft + it ∗ Ct
’

where,
(5)

Ct
’ = tanh(WC ∗ [ht−1,xt] + bC)

To decide the portion of (Ct) to be passed to the 
output, the input is passed to the sigmoid layer

(6)

ot = σ(Wo ∗ [ht−1,xt] + bo)
The final output of the cell will be,

(7)

ht = ot ∗ tanh(Ct) (8)
PID

The basic functional block diagram of the PID controller is 
shown in Fig.4. The P, I, and D are the bias hyper-parameters 
that are multiplied by the error obtained and then fed to the 
process. The hyper-parameters were continuously updated 
by the algorithm till the desired output is obtained.

Fig. 4. PID Controller
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A. P Controller

The output of the P controller is the product of error and 
constant term(KP). The constant term KP is known as 
the proportional gain constant. The output is directly 
proportional to the proportional gain constant. So the output 
can be controlled by controlling the value of kp. The output 
equation of the P controller is given as in equation 9.

Output =KP ∗ error (9)

The response of the system after implementing the P 
controller only is shown in Fig.5.

Fig. 5. Response of the car using only P controller

From Fig.5, it is seen that the P controller tries to converge to 
the reference line but cannot align itself along the reference. 
So, it overshoots and starts to oscillate around the reference 
line.

B. PD Controller

To overcome the oscillation caused by the P controller, 
another term is introduced which is known as Derivative(D). 
The output of the D controller is the product of the slope of 
error over time and derivative gain KD. D controller helps to 
minimize the error by reducing overshoot and settling time. 
The output equation of the PD controller is given as:

 

   (10)

Combining D with P eliminates the oscillation and our system 
reaches a steady state within a short time. The response of 
the system after using the PD Controller is shown in Fig.6.

As seen from Fig.6, despite following the reference line quite 
nicely, the PD controller is not robust. When there is noise 
or glitch in the system, then the derivative term amplifies the 
noise and our system will oscillate far from our target path.

         
Fig. 6. Response of the car using PD controller

C. PID Controller

Proportional(P), Integral(I) and Derivative(D) combined 
together to form a PID controller. PID controller is widely 
used in industrial appliances. The output of the P and D 
controller is already been discussed and the output of the 
I controller is the sum of the instantaneous error over time. 
The output equation of the PID Controller is given as:

     (11)

In an autonomous vehicle, P controls the direction of the 
steering, D monitors the P and makes counter-steering to P 
if required, and I check the whole path and error and makes 
decisions according to it. The response of the system using 
the PID controller is shown in Fig.7.

Fig. 7. Response of the car using PID controller

Fig. 7 shows that by using the properly tuned hyperparameters, 
the car followed the reference line accurately with very less 
error.

D. Twiddle Algorithm

Twiddle Algorithm [15] is a recent technique to tune the 
hyper-parameters of the PID controller. Twiddle Algorithm 
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was used so as to minimize the average cross-track error 
for the vehicle system. Its flowchart is shown in Fig.8. In 
Twiddle, the set of hyperparameters is put in a matrix P, and 
based on the following algorithm, updating the values of P 
based on the average cross-track error obtained till the point 
where the parameters of P start to converge. The final values 
of P are the properly tuned parameters of the PID controller.

Fig. 8. Flowchart of Twiddle algorithm for tuning PID hyper-parameters

Methodology

A. Data Collection

For the data collection, an open-gym donkey car simulator 
[16] was used as shown in Fig. 9. This simulator consists 
of a car with a front camera, which is used by the simulator 
to record the images of the track, at regular instant of time. 
For the data collection, the inbuilt auto-driving mode of the 
simulator was used. Here, in this mode, the car drove around 
the track in constant throttle. The car was driven across three 
different tracks and a total of 50000 images were recorded 
and stored on the computer along with their corresponding 
JSON files, which contain the key information of the images 
like steering angle. The car being driven for three tracks 
has more data with 0 as the steering angle as seen from the 

graph in Fig. 10 which will make the model biased towards 
predicting 0 so we balance the data. Now the balanced data 
was split into two sets, training and validation sets.

B. Data Prprocessing and Augmentation    

The data was augmented with the ’imgaug’ augmentation 
library and applied only to the training data. The data 
augmentation includes various techniques such as image 
panning, brightness alteration, zooming, and flipping. These 
techniques make the data more versatile, allowing the 
model to generalize for various scenarios despite the limited 
amount of data. Next, the unwanted features of the image 
are removed through four preprocessing steps: cropping, 
changing the color format, applying Gaussian

 (a)                                       (b)

Fig. 9. (a) Donkey Simulator (b) Track Sample

 

(a)                                    (b)

Fig. 10. (a) Before Balancing (b) After Balancing

blur, and normalizing the image. The primary purpose of 
cropping is to eliminate unwanted portions of the image, 
such as the sky portion. In the second preprocessing step, 
the image format is changed from RGB to YUV. This 
conversion helps to highlight the lane features of the track. 
Subsequently, a Gaussian blur is applied, which smooths the 
images and removes disturbances. The final steps in image 
processing are resizing and normalization, which resizes the 
image to the desired shape and translates data in the range [0, 
1] helping speed up the training process. The resized image 
frame (IN) with an intensity value in the range [0,255] is 
normalized to an image frame (IN’) with intensity values in 
the range [0,1] by the relation as given in the equation (12).

        (12)

Fig. 11 shows the difference between the original and  
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the pre-processed image.

(a)                                              (b)

Fig. 11. (a) front camera image (b) preprocessed image

E. Model Architecture

Three different algorithms were employed for behaviour 
cloning. ANN architecture involved an input layer of fully 
connected layers that accepts flattened image. Dropout 
layers were added for regularization. The output layer had 
one neuron for regression. Mean absolute error (MAE) was 
the loss metric and the Adam optimizer was employed. Each 
hidden layer had Exponential Linear Unit (ELU) activation.

Fig. 12. ANN Architecture

The CNN architecture used was the Nvidia Self Driving Car 
CNN model [11], which architecture is shown in Fig.13.

Now, to improve the performance of the Nvidia model, 
LSTM was incorporated. The proposed model architecture 
consists of a Time Distributed CNN with ELU activation, 
followed by a Time Distributed max-pooling layer with a 
pool size of (2, 2). This pattern is then followed by increasing 
the size of CNN filters to 32, 64, and 128, respectively. The 
output of this stack is then flattened and fed to an LSTM 
layer with 128 units. Additional Dense layers are applied 
with ELU activation, containing 1000, 100, 50, and 10 units, 
respectively. Finally, the last layer is a Dense layer with a 
single unit to perform the regression task of predicting the 
steering angle. The model architecture is as shown in Fig.14. 
This comprehensive architecture aims to effectively capture 
spatiotemporal features in the track frame sequence.

The total trainable parameters along with the time taken for 
training (with 100 epochs with a batch size of 50 and 20 
steps per epoch) in google collab is mentioned in table I.

F. PID Implementation

The PID controller is implemented to drive the car following 
a central lane properly with some smooth left and right turns. 
A good set of PID parameters enables our vehicle to stay in 
the central portion of the lane and take a smooth left and 
right

Fig. 13. CNN Architecture

Fig. 14. CNN + LSTM Architecture

TABLE I 
TRAINING HISTORY OF DIFFERENT MODELS

SN Model Total Trainable 
Parameters

Time for 
training

1 ANN 1,446,037 1.2 Hours

2 CNN 220,219 0.5 hours

3 CNN + LSTM 7,471,855 1.7 Hours

turns accordingly without touching the extremities of the 
lane. The simulation of PID implementation was done 
in a donkey simulator as shown in Fig.9. The cross-track 
error (CTE) is the error distance between the current lateral 
position of the vehicle and the center of the lane. The CTE 
was extracted from the default built-in function from the 
simulator. With the following mathematical equation, the 
CTE was used with hyperparameters of PID to finally obtain 
the steering angle δ as in equation (13).

                       (13)
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 Comparative study

Fig. 15. Track for evaluation

After manually running the vehicle down the track to 
collect training data, the algorithms were ran on the fresh 
track which consists of two lanes and the car has to follow 
the track by maintaining its position in the right lane. To 
evaluate the model accuracy, the CTE was plotted and its 
absolute mean was taken for the evaluation. The track on 
which testing was done is shown in Fig.15.

After performing the simulation using all the models 
described in the earlier sections, the final graphical 
performance of all the models is shown in Fig.16.

Fig. 16. CTE vs time steps plot of Different models
TABLE II

MEAN CTE OF DIFFERENT MODELS

SN Model Mean Absolute CTE
1 ANN 2.99639
2 CNN 0.34638
3 CNN + LSTM 0.23837
4 PID 0.07438

From the observation of the Mean CTE table in Table II 
and CTE plot in Fig.15, the following remarks can be put 
forward.

a The ANN model has a mean CTE of 2.99, indicating 
that it is not reliable and doesn’t capture the lane feature 
accurately. Though it follows the road, it went outside 
the desired lane.

b The CNN model shows an improvement with a mean 
CTE of 0.34. It extracts the lane features from the 
image and runs smoothly with little jerky motion when 
lighting conditions vary.

c The combination of CNN and LSTM performs 
significantly better with a mean CTE of 0.23. This 
model aligns perfectly with the track, indicating a better 
understanding of the track’s dynamics and accurate 
positioning. There is a minor oscillation resulting from 
the time it takes to predict the steering angle.

d The PID model achieves the lowest mean CTE of 0.07. 
Since the simulation itself provides feedback, it is 
expected to have less error. The PID model utilizes this 
feedback effectively to achieve precise alignment with 
the track. The tuning of PID was carried out through the 
twiddle algorithm.

Conclusion

In this paper, tests, and comparisons of various algorithms 
for automatic steering were conducted. The study utilized the 
Gym Donkey Car simulator to gather data and evaluate the 
trained models. The ANN failed to grasp the track features, 
whereas the CNN did a good job in feature extraction but 
lacked the temporal information from previous frames. The 
CNN + LSTM model demonstrated the best performance 
among the tested models, achieving accurate alignment 
with the track. On the other hand, the PID model, though it 
had low CTE, was used solely for benchmarking purposes 
and proved challenging to utilize in real-life scenarios 
due to the absence of direct CTE feedback, as obtained in 
simulations. The findings suggest that combining CNN with 
LSTM, where 10 frames are continuously fed, is optimal 
for predicting the steering angle. This model effectively 
captures track features and achieves precise alignment. 
However, due to the model’s longer prediction duration, 
minor oscillation was introduced which can be reduced with 
higher processing power.
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