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ABSTRACT— In this study, we investigate the use of polynomial mode shape functions in the free 

vibration analysis of a cantilever Pelton turbine and compare it with the conventional transcendental 

mode shape function. The mathematical model is developed using the assumed mode method and 

Lagrange’s equation, incorporating rotational inertia and centrifugal effects. Variable mode shapes and 

critical frequencies are determined using both polynomial and transcendental functions, and are 

compared exclusively. The results show that polynomial mode shape functions closely approximate 

the first mode shape but the deviation increases in higher modes, with a critical frequency deviation of 

2.23% in the first mode and 14.58% in the second mode and 20.53% in the third mode. These findings 

suggest that while the polynomial mode shape functions offer computational simplicity, their accuracy 

decreases in complex rotor-dynamic systems. We can use polynomial mode shape function is case of 

simple dynamics and problems in which higher modes are negligible. Being the Cantilever Pelton 

Turbine complex, presently designed mathematical model and its outcomes are fully vowed to explain 

its vibrational consequences for first mode. The authors believe that the findings obtained through this 

theoretical work are applicable not only to Cantilever Pelton turbines but also to other rotor-dynamic 

systems with similar boundary conditions, such as turbine blades, flexible shafts, and cantilevered rotor 

structures in hydro and wind energy applications. 

 

KEYWORDS— Transcendental Mode Shape Function, Shaft-Disk System, Campbell Diagram, 
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1. INTRODUCTION 

Vibration analysis is important in rotor-

dynamics to ensure its operational reliability and 

performance relating to structural integrity, 

resonance avoidance, fatigue life, noise 

reduction, and overall efficiency of rotating 

machinery. The American Petroleum Institute 

(API) standard specifies that critical speeds of 

turbine should be at least 20% above the 

maximum operating speed or 15% below the 

minimum operating speed (Yong-Jun, 2009). If 

critical speed falls within this range, the 

excessive vibration can be observed. Excessive 

vibration can lead to detrimental effects 

including premature wear and tear on 

components, reduced efficiency, potential 

catastrophic failure of the rotating machinery,  

 

 

instability at critical speeds, increased noise 

levels etc. 

The vibration analysis starts with mathematical 

modeling, where governing equations of motion 

are derived generally using energy methods. For 

discrete system, these equations are in ordinary 

differential equations whereas, for continuous 

systems, these equations are in the form of 

partial differential equation (hereafter, PDE) or 

system of PDEs. Analytical solutions of these 

PDEs to obtain natural frequencies and mode 

shapes essential to understand critical speed is 

possible in simple and special cases. However, 

systems with complex geometries, material 

properties, or dynamic coupling frequently 

result in non-standard PDEs. In such cases, 

numerical methods, including the Rayleigh-Ritz 
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method (Storch, & Strang, 1988), Galerkin 

technique (Hutton, 1971), or finite element 

analysis can be used relying on predefined 

spatial shape functions that approximate the 

system’s mode shapes while satisfying 

geometric boundary conditions. 

The mode shape function should show 

deformation pattern specific to natural 

frequency. They should satisfy boundary 

conditions inclusive with orthogonality 

conditions. Hence, they are specific to boundary 

conditions like clamped-clamped, clamped-free 

or simply supported. For the simply supported 

beam, the sine function mode shape is accurate, 

which is relatively easier than clamped-free 

boundary condition in which the transcendental 

mode shape function is complex (SS Rao, 2011).  

Despite its complexity in calculation, research 

articles reported elsewhere (Egusquiza et. al., 

2017; Chaudhary et. al., 2024) have used 

transcendental mode shapes for the clamped-

free boundary condition. Using complex mode 

shape function has made calculations 

computationally intensive and verification with 

hand calculation unlikely. To solve this problem, 

researchers have developed polynomial mode 

shape function for different boundary conditions 

in case of rotating beam (Luintel, 2021; Chen 

and Griffith, 2022).  

In this paper, we compare the result of both 

mode shape functions in case of cantilever 

Pelton turbine. It can be assumed cantilever 

shaft with disk attached at its end. The rotary and 

centrifugal effects of disk is put in equation of 

motion using Dirac delta function. 

Figure 1. Pelton Turbine Assembly (Zhao et. 

al., 2021) 

2. MATHEMATICAL AND 

THEORETICAL DETAILS 

For this paper, the axes x, y and z are chosen so 

that y is along the shaft's transverse axis on the 

vertical plane, z is along the shaft's transverse 

axis on the horizontal plane and x is along the 

shaft's longitudinal axis.  

Figure 2. Cantilever Shaft-Disk 

Similar to this, each point on the shaft's 

transverse displacements in both the horizontal 

and vertical directions are v(x,t) and w(x,t), 

respectively. The y-axis of water jet force 

applies on the horizontal shaft Pelton turbine. In 

this study, disk and bearing are assumed as rigid 

and shaft as flexible. Total kinetic and potential 

energy is calculated for shaft-disk system and 

with the help of assumed mode method and 

Lagrange’s equation of motion, governing 

equation of motion is obtained which is second 

order coupled differential equation. 

 

2.1 Kinematics of Shaft-Disk System 

Velocity vector of any point on neutral axis of 

the flexible shaft is (Meirovitch, 2001)  

 

 vs = (u̇ − Ωv) j⃗ + (v̇ + Ωu) k⃗⃗   …(1) 

 

Angular velocity of disk is: 

 

 ωd = (Ω + v′ẇ′) i⃗ + (−Ωv′ −

ẇ′) j⃗ + (−Ω w′ +  v̇′ ) k⃗⃗  

 

…(2) 

 

2.2. Energy Method 

2.2.1 Total Kinetic Energy of Shaft-Disk 

System 

Kinetic energy of the shaft is sum of the 

translational and rotational kinetic energy which 

is given by following relation. 
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 Ts =
1

2
ρsA ∫ [(v̇ − Ωw)2 + (ẇ +

L

0

Ωv)2] dx +
1

2
ρsJs ∫ [(Ω +

L

0

v′ẇ′)2] dx +
1

2
ρsIs ∫ [(−Ωv′ −

L

0

ẇ′)2 + (−Ωw′ + v̇′)2] dx  

 

 

 

 

 

…(3) 

 

Kinetic energy of the disk is sum of the 

translational and rotational kinetic energy which 

is given by following relation (Meirovitch, 

2001). 

 

 Td = [
1

2
[md [(v̇ − (Ωw)2 +

(ẇ + Ωv)2]  +
1

2
ρdh Jd(Ω +

v′ẇ′)2 +
1

2
ρdh  Id(−Ωv′ −

ẇ′)2 +
1

2
ρdh Id(−Ωw′ +

v̇′)2)]|
x=L

  

…(4) 

 

Total kinetic energy of the shaft-disk system is 

sum of kinetic energy of the shaft and disk which 

is given by equation 5.  

 

 T = Ts + Td …(5) 

 

2.2.2 Total Potential Energy of Shaft-Disk 

System: 

Since the shaft of the turbine is shaft is assumed 

as flexible, the strain energy of the shaft due to 

bending is given by following relation [8]. 

 

 

Vs =  
1

2
EIs ∫[(v′′)2 + (w′′)2]dx

L

0

 

 

 

…(6) 

 

Since the disk is assumed as rigid, its potential 

energy of disk is zero.  

Mathematically, 𝑉𝑑 = 0, 
Total potential energy of the shaft-disk system is 

sum of the potential energy of the shaft and disk 

which is given by  

 

 V = Vs + Vd …(6) 

 

2.2.3 Assumed Mode Method  

Using the assumed mode method, displacement 

variable is (Karki et. al., 2017) 

 

 v = {ϕ(x)}T {V(t)} = {ϕ}T {V} 
 

w = {ϕ(x)}T {W(t)} = {ϕ}T{W} 

 

 

…(8) 

 

Total kinetic and potential energies and external 

work done are discretized using Eq. 6, then 

applied in Lagrange’s equation of motion. 

 

2.2.4 Lagrange’s Equation of Motion: 

Simplified equation of motion can be derived 

using Lagrange’s equation as:  

 

 d

dt
(

∂T

∂q̇
) −

∂T

∂q
+

∂V

∂q
= 0 

 

…(9) 

 

After simplification, we get following governing 

equation of motion: 

 

 MiV̈ + CiẆ + KiV = 0 

MiẄ − CiV̇ + KiW = 0 

 

 

…(10) 

 

Where, equivalent parameters are as follows: 

 

 Mi = ρsA ∫ [{ϕ}{ϕ}T]dx
L

0
+

ρsIs ∫ [{ϕ′}{ϕ′}T]dx
L

0
+

md[{ϕ}d{ϕ}d
T

]
x=L

+

ρdhId[{ϕ′}d{ϕ′}d
T

]
x=L

  

 

 

 

 

…(11) 

 

 Ci = 2ρsAΩ ∫ [{ϕ}{ϕ}T]dx
L

0
+

2ρsIsΩ ∫ [{ϕ′}{ϕ′}T]dx
L

0
+

2mdΩ[{ϕd}{ϕd}T}]x=L +

2ρdhIdΩ[{ϕ′}d{ϕ′}d
T

]
x=L

+

ρsJsΩ ∫ [{ϕ′}{ϕ′}T]dx
L

0
+

ρdhJdΩ[{ϕ′}d{ϕ′}d
T

]
x=L

  

 

 

 

 

 

 

 

…(12) 

 

 Ki = −ρsAΩ2 ∫ [{ϕ}{ϕ}T]dx
L

0
−

ρsIsΩ2 ∫ [{ϕ′}{ϕ′}T]dx
L

0
−

mdΩ2[{ϕ}d{ϕ}d
T

]
x=L

−

ρdhIdΩ2[{ϕ′}d{ϕ′}d
T

]
x=L

+

EIs ∫ [{ϕ′′}{ϕ′′}T]dx
L

0
  

 

 

 

 

 

…(13) 
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2.2.5 Whirl frequencies from Mathematical 

Model 

 

After putting values from Eqs. 11,12 and 13 into 

10, we get two values of angular speed. Let 𝜔𝑓 

be forward whirling frequency and 𝜔𝑏 be 

backward whirling frequency then,  

 

ωf =

√
1

2
[{(

Ci

Mi
)

2

+ 2
Ki

Mi
} + √(

Ci

Mi
)

4

+ 4 (
Ci

Mi
)

2 Ki

Mi
]  

 

ωb =

√
1

2
[{(

Ci

Mi
)

2

+ 2
Ki

Mi
} − √(

Ci

Mi
)

4

+ 4 (
Ci

Mi
)

2 Ki

Mi
]  

 

2.3. Development of Mode Shape Function 

 

Boundary conditions associated with the 

continuous shaft systems for different end 

conditions are given below: 

 

At 𝒙 = 𝟎, the displacement and slope are zero. 

 

𝐯(𝟎, 𝐭) = 𝟎; 𝐯′(𝟎, 𝐭) = 𝟎; 𝐰(𝟎, 𝐭) =
𝟎; 𝐰′𝟎 (𝟎, 𝐭)  = 𝟎  
 

At 𝒙 = 𝑳, the moment and shear force are zero. 

𝐯′′(𝐋, 𝐭) = 𝟎; 𝐯′′′(𝐋, 𝐭) = 𝟎;  𝐰′′(𝐋, 𝐭) =
𝟎; 𝐰′′′(𝐋, 𝐭)  = 𝟎  
 

2.3.1 Transcendental Mode Shape Function 

 

Transcendental mode shape functions are 

accurate analytical solution which we want to 

approximate using polynomial function (SS 

Rao, 2011). Frequency equations for the 

continuous shaft systems for fixed-free 

conditions is given below: 

 

𝐜𝐨𝐬 𝛃𝐢𝐥 𝐜𝐨𝐬𝐡 𝛃𝐢𝐥 =  −𝟏 
 

Then mode shape function is  

 

𝛟𝐢(𝐱) = 𝐂𝐢[𝐬𝐢𝐧 𝛃𝐢𝐱 −
𝐬𝐢𝐧𝐡 𝛃𝐢𝐱 −

(
𝐬𝐢𝐧 𝛃𝐢𝐋+𝐬𝐢𝐧𝐡 𝛃𝐢𝐋

𝐜𝐨𝐬 𝛃𝐢𝐋+𝐜𝐨𝐬𝐡 𝛃𝐢𝐋
) (𝐜𝐨𝐬 𝛃𝐢𝐱 −

 

 

 

…(14) 

𝐜𝐨𝐬𝐡 𝛃𝐢𝐱)]  
 

Where,  

𝛃𝟏𝐋 = 𝟏. 𝟖𝟕𝟓𝟏𝟎𝟒, 
 𝛃𝟐𝐋 =  𝟒. 𝟔𝟗𝟒𝟎𝟗𝟏, 
𝛃𝟑𝐋 =  𝟕. 𝟖𝟓𝟒𝟕𝟓𝟕 

 

2.3.2. Polynomial Mode Shape  

 

Since the highest order of derivative in the 

governing equation is four, the assumed 

polynomial mode shape function should have 

the order equal to or greater than 4. Hence for 

the first three modes, the mode shape functions 

can be assumed as:  

 

ϕ1 = x4 + A3x3 + A2x2 + A1x + A0 
 

ϕ2 = x5 + B4x4 + B3x3 + B2x2 + B1x + B0   
 

ϕ3  =  x6 + C5x5 + C4x4 + C3x3 + C2x2 +
C1x + C0  
 

2.3.2.1 First Mode Shape  

 

ϕ1 = x4 + A3x3 + A2x2 + A1x + A0  
 

All constants can be derived from boundary 

conditions alone. 

 

ϕi(0)  =  0; ϕi′ (0)  =  0; ϕi′′ (L)  
=  0; ϕi′′′ (L)  =  0 

 

From first condition: 

ϕ1(0)  =  0  

(x4 + A3x3 + A2x2 + A1x + A0)|𝑥=0 = 0   
x4 + A3(0)3 + A2(0)2 + A1(0) + A0 = 0  

 A0=0 

 

From second condition: 

(x4 + A3x3 + A2x2 + A1x + A0)′|x=0 = 0   
4x3 + 3A3(x)2 + 2A2x + A1 = 0  

 A1=0 

 

From third condition: 

ϕ1
′′(L) =  0  

(x4 + A3x3 + A2x2 + A1x + A0)′′|x=L = 0   
(12x2 + 6A3x + 2A2)′′|x=L = 0   
12𝐿2 + 6𝐴3𝐿 + 2𝐴2 = 0  
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From fourth condition: 

ϕ1′′′ (L)  =  0  

(x4 + A3x3 + A2x2 + A1x + A0)′′′|x=L = 0   
(24x + 6A3)|x=L = 0   
24 𝐿 +  6𝐴3 = 0  

𝐴3 =  −4𝐿  
 

Putting value of 𝐴3 = −4𝐿 in third condition; 

𝐴2 = 6𝐿2  
 

 ϕ1 = x4 − 4Lx3 + 6L2𝑥2 …(15) 

 

2.3.2.2 Second Mode Shape  

 

ϕ2 = x5 + B4x4 + B3x3 + B2x2 + B1x + B0  
 

Here are five unknowns namely 

𝐵0, 𝐵1, 𝐵2, 𝐵3 and 𝐵4. Four equations will be 

obtained from the boundary conditions and one 

equation will be obtained from the orthogonality 

condition of first and second mode shape 

functions.  

 

From first condition: 

ϕ1(0)  =  0  

(x5 + B4x4 + B3x3 + B2x2 + B1x + B0)|x=0 =
0   
 

 B0 = 0 …(16) 

 

From second condition: 

(x5 + B4x4 + B3x3 + B2x2 + B1x +
B0)′|x=0 = 0   
5x4 + 4B4(x)3 + 3B3x2 + 2B2x + B1 = 0  
 

 𝐵1 = 0 …(17) 

 

From third condition: 

ϕ1
′′(L) =  0  

(x5 + B4x4 + B3x3 + B2x2 + B1x +
B0)′′|x=L = 0   
(20x3 + 12 B4x2 + 6B3x + 2B2)′′|x=L = 0  
 

 20L3 + 12B4L2 + 6B3L +
2B2 = 0   

…(18) 

 

From fourth condition: 

ϕ1′′′ (L)  =  0  

(x5 + B4x4 + B3x3 + B2x2 + B1x +
B0)′′′|x=L = 0   
(60x2 + 24 B4x + 6B3)|x=L = 0   
60L2  +  24B4L + 6B3 = 0  
 

 60L2  +  24B4L + 6B3 = 0  …(19) 

 

From orthogonality condition 

 

∫ ϕ1ϕ2 dx = 0
L

0

 

 

∫ (x4 − 4Lx3 + 6L2x2)(x5 + B4x4 + B3x3
L

0

+ B2x2) dx 
 

 73

180
𝐿10  +

59

126
𝐿9𝐵4  +

31

56
𝐵3𝐿8  +

71

105
𝐿7𝐵2  = 0  

 

…(20) 

 

The values after solving Eqs. 16,17,18,19 and 20 

is: 

 

𝐵4  =  −
661

182
𝐿, 𝐵3  =

412

91
𝐿2, 𝐵2  =  −

163

91
𝐿3 

Hence, the mode shape function is: 

 

 ϕ2 = x5  −
661

182
Lx4  +

412

91
L2x3 −

163

91
L3x2  

 

 

…(21) 

 

2.3.2.3 Third Mode Shape  

 

ϕ3  =  x6 + C5x5 + C4x4 + C3x3 + C2x2 +
C1x + C0   
 

Four equations obtained from boundary 

conditions and two conditions obtained from 

orthogonality condition. 

 

∫ ϕ1ϕ3 dx = 0
L

0

 

And,  

∫ ϕ2ϕ3 dx = 0
L

0
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The third mode shape is calculated using Maple 

as: 

 

 ϕ3 = x6 −
9953

2608
Lx5 +

305815

57376
L2x4 −

5560

1793
L3x3 +

115

176
L4x2  

 

 

 

 

…(22) 

3. RESULTS AND DISCUSSIONS 

 

To have comparison of polynomial shape 

functions and the resulting critical frequencies 

with those for the classical transcendental shape 

functions for the shafts with different end 

conditions, different material and geometric 

properties of the shaft are taken as: shown in 

Table 1. 

 

Table 1. Parameters for Pelton Turbine Model 

Parameters Value 

Pitch diameter of disk (dd) 180 mm 

Rated angular speed (𝛺) 157 rad/s 

Diameter of shaft (ds) 40 mm 

Length of shaft (L) 135 mm 

Cross section area of shaft (A) 0.0008042 m2 

Density of shaft material (ρs) 7860 kg/m3 

Density of disc material (ρd) 8300 kg/m3 

Young’s Modulus of 

Elasticity of shaft (E) 

202 GPa 

Mass of rotating runner (md) 3.72 kg 

Thickness of runner (h) 0.018 m 

Area polar moment of inertia 

of shaft about z-z axis (Js) 

2.5133×10-7 m4 

Area moment of inertia of 

shaft about x-x or y-y axis (Is) 

1.2566×10-7 m4 

Area polar moment of inertia 

of disk about z-z axis (Jd) 

0.0001028 m4 

Area moment of inertia of 

disk about x-x or y-y axis (Id) 

5.14043×10-5m4 

 

3.1. Mode Shapes  

 

3.1.1 First Mode 

Putting 𝒙 =
𝒙

𝑳
 then, 

For transcendental mode shape function  

𝛟𝟏(𝐱)
= 𝐂𝟏[𝐬𝐢𝐧 𝟏. 𝟖𝟕𝟓𝟏𝟎𝟒 𝐱 − 𝐬𝐢𝐧𝐡 𝟏. 𝟖𝟕𝟓𝟏𝟎𝟒 𝐱

− (
𝐬𝐢𝐧 𝟏. 𝟖𝟕𝟓𝟏𝟎𝟒 + 𝐬𝐢𝐧𝐡 𝟏. 𝟖𝟕𝟓𝟏𝟎𝟒

𝐜𝐨𝐬 𝟏. 𝟖𝟕𝟓𝟏𝟎𝟒 + 𝐜𝐨𝐬𝐡 𝟏. 𝟖𝟕𝟓𝟏𝟎𝟒
)  

(𝐜𝐨𝐬 𝟏. 𝟖𝟕𝟓𝟏𝟎𝟒 𝐱 − 𝐜𝐨𝐬𝐡 𝟏. 𝟖𝟕𝟓𝟏𝟎𝟒 𝐱)] 
In the range of 0 to 1, its maximum absolute 

value is 2.7244186. 

So, normalized shape function is: 

 

 𝛟𝟏(𝐱) =
𝟏

𝟐.𝟕𝟐𝟒𝟒𝟏𝟖𝟔
[𝐬𝐢𝐧 𝟏. 𝟖𝟕𝟓𝟏𝟎𝟒 𝐱 −

𝐬𝐢𝐧𝐡 𝟏. 𝟖𝟕𝟓𝟏𝟎𝟒 𝐱 −

(
𝐬𝐢𝐧 𝟏.𝟖𝟕𝟓𝟏𝟎𝟒+𝐬𝐢𝐧𝐡 𝟏.𝟖𝟕𝟓𝟏𝟎𝟒

𝐜𝐨𝐬 𝟏.𝟖𝟕𝟓𝟏𝟎𝟒+𝐜𝐨𝐬𝐡 𝟏.𝟖𝟕𝟓𝟏𝟎𝟒
)  

(𝐜𝐨𝐬 𝟏. 𝟖𝟕𝟓𝟏𝟎𝟒 𝐱 −
𝐜𝐨𝐬𝐡 𝟏. 𝟖𝟕𝟓𝟏𝟎𝟒 𝐱)]  

 

 

 

 

 

 

…(23) 

 

For polynomial mode shape function  

𝛟𝟏(𝐱) = 𝐱𝟒 − 𝟒𝐱𝟑 + 𝟔𝐱𝟐 
In the range of 0 to 1, its maximum value is 3. 

So, normalized shape function is: 

 

 
𝛟𝟏(𝐱) =

𝟏

𝟑
[𝐱𝟒 − 𝟒𝐱𝟑 + 𝟔𝐱𝟐] 

 

…(24) 

 

Figure 3. First Mode Shapes (Transcendental 

and Polynomial (Eqs. 23 and 24)) 

3.1.2 Second Mode 

 

Putting 𝒙 =
𝒙

𝑳
 then, 

For transcendental mode shape function  

𝛟𝟐(𝐱) = 𝐂𝟐[𝐬𝐢𝐧 𝟒. 𝟔𝟗𝟒𝟎𝟗𝟏 𝐱 −
𝐬𝐢𝐧𝐡 𝟒. 𝟔𝟗𝟒𝟎𝟗𝟏 𝐱 −

(
𝐬𝐢𝐧 𝟒.𝟔𝟗𝟒𝟎𝟗𝟏+𝐬𝐢𝐧𝐡 𝟒.𝟔𝟗𝟒𝟎𝟗𝟏

𝐜𝐨𝐬 𝟒.𝟔𝟗𝟒𝟎𝟗𝟏+𝐜𝐨𝐬𝐡 𝟒.𝟔𝟗𝟒𝟎𝟗𝟏
)   

(𝐜𝐨𝐬 𝟒. 𝟔𝟗𝟒𝟎𝟗𝟏 𝐱 − 𝐜𝐨𝐬𝐡 𝟒. 𝟔𝟗𝟒𝟎𝟗𝟏 𝐱)]  
In the range of 0 to 1, its maximum absolute 

value is -1.4144. 
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So, normalized shape function is: 

 

 𝛟𝟐(𝐱) =
𝟏

𝟏.𝟒𝟏𝟒𝟒
[𝐬𝐢𝐧 𝟒. 𝟔𝟗𝟒𝟎𝟗𝟏 𝐱 −

𝐬𝐢𝐧𝐡 𝟒. 𝟔𝟗𝟒𝟎𝟗𝟏 𝐱 −

(
𝐬𝐢𝐧 𝟒.𝟔𝟗𝟒𝟎𝟗𝟏+𝐬𝐢𝐧𝐡 𝟒.𝟔𝟗𝟒𝟎𝟗𝟏

𝐜𝐨𝐬 𝟒.𝟔𝟗𝟒𝟎𝟗𝟏+𝐜𝐨𝐬𝐡 𝟒.𝟔𝟗𝟒𝟎𝟗𝟏
)   

(𝐜𝐨𝐬 𝟒. 𝟔𝟗𝟒𝟎𝟗𝟏 𝐱 −
𝐜𝐨𝐬𝐡 𝟒. 𝟔𝟗𝟒𝟎𝟗𝟏 𝐱)]  

 

 

 

 

 

 

…(25) 

 

For polynomial mode shape function  

𝛟𝟐(𝐱) = 𝐱𝟓  −
𝟔𝟔𝟏

𝟏𝟖𝟐
𝐱𝟒  +

𝟒𝟏𝟐

𝟗𝟏
𝐱𝟑 −

𝟏𝟔𝟑

𝟗𝟏
𝐱𝟐 

In the range of 0 to 1, its maximum value is 

0.08074. 

So, normalized shape function is: 

 𝛟𝟐(𝐱) =
𝟏

−𝟎.𝟎𝟖𝟎𝟕𝟒
[𝐱𝟓  −

𝟔𝟔𝟏

𝟏𝟖𝟐
𝐱𝟒  +

𝟒𝟏𝟐

𝟗𝟏
𝐱𝟑 −

𝟏𝟔𝟑

𝟗𝟏
𝐱𝟐]  

 

 

 

…(26) 

 

 
Figure 4. Second Mode Shapes (Transcendental 

and Polynomial (Eqs. 25 and 26)) 

3.1.3 Third Mode 

 

Putting 𝒙 =
𝒙

𝑳
 then, 

For transcendental mode shape function  

𝛟𝟐(𝐱) = 𝐂𝟐[𝐬𝐢𝐧 𝟕. 𝟖𝟓𝟒𝟕𝟓𝟕 𝐱 −
𝐬𝐢𝐧𝐡 𝟕. 𝟖𝟓𝟒𝟕𝟓𝟕 𝐱 −

(
𝐬𝐢𝐧 𝟕.𝟖𝟓𝟒𝟕𝟓𝟕+𝐬𝐢𝐧𝐡 𝟕.𝟖𝟓𝟒𝟕𝟓𝟕

𝐜𝐨𝐬 𝟕.𝟖𝟓𝟒𝟕𝟓𝟕+𝐜𝐨𝐬𝐡 𝟕.𝟖𝟓𝟒𝟕𝟓𝟕
)   

(𝐜𝐨𝐬 𝟕. 𝟖𝟓𝟒𝟕𝟓𝟕 𝐱 − 𝐜𝐨𝐬𝐡 𝟕. 𝟖𝟓𝟒𝟕𝟓𝟕 𝐱)]  

In the range of 0 to 1, its maximum absolute 

value is 2.0015513. 

So, normalized shape function is: 

 

 𝛟𝟐(𝐱) =
𝟏

𝟐.𝟎𝟎𝟏𝟓𝟓𝟏𝟑
[𝐬𝐢𝐧 𝟕. 𝟖𝟓𝟒𝟕𝟓𝟕 𝐱 −

𝐬𝐢𝐧𝐡 𝟕. 𝟖𝟓𝟒𝟕𝟓𝟕 𝐱 −

(
𝐬𝐢𝐧 𝟕.𝟖𝟓𝟒𝟕𝟓𝟕+𝐬𝐢𝐧𝐡 𝟕.𝟖𝟓𝟒𝟕𝟓𝟕

𝐜𝐨𝐬 𝟕.𝟖𝟓𝟒𝟕𝟓𝟕+𝐜𝐨𝐬𝐡 𝟕.𝟖𝟓𝟒𝟕𝟓𝟕
)   

(𝐜𝐨𝐬 𝟕. 𝟖𝟓𝟒𝟕𝟓𝟕 𝐱 −
𝐜𝐨𝐬𝐡 𝟕. 𝟖𝟓𝟒𝟕𝟓𝟕 𝐱)]   

 

 

 

 

 

 

…(27) 

 

For polynomial mode shape function 

ϕ3 = x6 −
9953

2608
Lx5 +

305815

57376
L2x4 −

5660

1793
L3x3 +

115

176
L4x2  

 

In the range of 0 to 1, its maximum absolute 

value is 0.010370. 

 

 ϕ3 =
1

0.010370
(x6 −

9953

2608
Lx5 +

305815

57376
L2x4 −

5660

1793
L3x3 +

115

176
L4x2)   

 

 

 

 

 

…(28) 

Figure 5. Third mode Shapes (Transcendental 

and Polynomial (Eqs. 27 and 28)) 

3.2 Campbell Diagram 

Campbell diagram is used to observe the 

variation of natural frequencies with speed of 

the rotor. In this case, it is particularly important 

to obtain critical frequency. 
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3.2.1 First Mode 

The critical frequency for first mode is 

calculated as: 

Transcendental Mode Shape = 1225.42 rad/s 

Polynomial Mode Shape = 1254.91 rad/s 

 

Figure 6. Campbell Diagram for First Mode Shape 

Figure 7. Campbell Diagram for Second Mode Shape 

3.2.2 Second Mode 

The critical frequency for second modes is: 

 

Polynomial Mode Shape = 4645.16 rad/s 

Transcendental Mode Shape = 4054.51 rad/s 
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Figure 8. Campbell Diagram for Third Mode Shape

3.2.3 Third Mode 

The critical frequency for third modes is: 

Polynomial Mode Shape = 9415 rad/s 

Transcendental Mode Shape = 7811 rad/s 

 

3.3 Discussions 

The mode shape function using transcendental 

and polynomial matches closely matches in the 

case of the first mode shape (Figure 3). 

However, the deviation increases in the second 

mode (Figure 4) and by the third mode (Figure 

5), the deviation further increases. Campbell 

diagram is drawn to find critical frequency, 

which should be avoided. Figures 6,7,8 shows 

the backward and forward whirling frequencies 

for polynomial and transcendental mode shapes.  

The critical frequency differs by 2.23% for the 

first mode shape, but this difference increases to 

14.58% for the second mode and further to 

20.53% for the third mode. The inability of 

polynomial mode shapes to approximate 

transcendental mode shapes for higher mode is 

shown by the difference of critical frequencies 

for higher modes in Campbell diagram. Since 

the transcendental mode shapes are direct 

analytical solution for free vibration of 

cantilever rotor disk, due to approximation of 

this function by polynomial and hence closeness 

in critical frequency shows the correctness of 

method. Both the transcendental mode shape 

and polynomial mode shape perfectly satisfy the 

boundary condition i.e., displacement and slope 

zero in fixed end and shear force and moment 

zero in free end.  

Gyroscopic and inertial forces are included in 

the equations of motion using Dirac delta 

function and hence, the boundary conditions are 

simplified and the usage is extended. 

For lower mode, polynomial mode shape 

functions are good. However, for more higher 

modes, it is recommended to use transcendental 

mode shapes. Since the designed Pelton turbine 

operates outside the critical frequency range, it 

can operate without any significant vibrational 

problems. Other than Pelton turbines, this 

formulation is valid for the vibration analysis of 

machines, cutting tools and turbines with a 

fixed-free support. For the other boundary 

conditions, like simply supported or fixed-fixed, 

the polynomial shape functions have to be 

derived.  

 

4. CONCLUSION 

This study investigated the application of 

polynomial mode shape functions in the free 

vibration analysis of a cantilever Pelton turbine 

and compared the results with the established 

transcendental mode shape functions. The 
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findings indicated that while polynomial mode 

shape functions can approximate the first mode 

shape with reasonable accuracy, discrepancies 

arise in higher modes. The critical frequency 

derived from polynomial mode shapes differed 

by 2.23% for the first mode but increased to 

14.58% for the second mode and 20.53% for the 

third mode. The results from the Campbell 

diagram further explained these differences 

suggesting that polynomial mode shapes are 

useful for simple cases but may not be reliable 

for complex rotating systems like the Pelton 

turbine. Given the increasing deviation in higher 

modes, transcendental mode shape functions are 

recommended for more accurate vibration 

analysis in such cases. In both the cases, the 

critical frequency is well above operating speed 

i.e., 157 rad/s. Hence, the Pelton turbine is safe 

to operate in this operating range. 

 

NOMENCLATURE 

E Modulus of elasticity  

md  Mass of disk 

L Length of shaft 

𝛺 Spin speed of shaft 

𝜌𝑠  Density of shaft  

𝜌𝑑   Density of disk 

A Cross section area of shaft  

v(t) Transverse(in-plane) displacement 

I Moment of inertia of shaft about Y/Z-

axis  

w(t) Transverse(out-of-plane) displacement 

J Polar Moment of Inertia of shaft about 

X-axis 

𝜙(𝑥) Mode Shape Function 

Jd Polar Moment of Inertia of disk about X-

axis 

Id Moment of inertia of disk about Y/Z-axis 
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