
JScE Vol 5, August 2018 Shiva Prasad Mahato 7

DYNAMIC CLUSTER MANAGEMENT AND RESOURCE UTILIZATION USING

JINI TECHNOLOGY

 Shiva Prasad Mahato

Department of Computer Engineering, Khwopa Engineering College

Abstract

With the commencement of Electronic Transaction Act, Nepal has taken further step in the field of information

and communication technology. With government offices nowadays starting to use computers; there lies ahead

many challenges to maximize the utilization of computing resources offered by each computer and minimize

the overall cost. With many computers, so many idle resources are being wasted unnecessarily. Jobs can be

distributed out to idle servers or even to idle desktops. Many of these resources remain idle during office hours

off or even during office hours with many users utilizing the computing as well as memory resources. The

proposed model not only utilizes resources to optimum but also makes the architecture more modular, adaptive

and then provides dynamic fail over recovery and linear scalability. This approach is useful in a place which

requires clusters to set up to perform resource intensive works like data processing or computing works. This

model can be realized using JINI/Java Space technology which is open source technology and hence, can be

cost effective as compared to other proprietary solutions. The motivating factor of this paper is to understand

and identify the architectural constraint in the existing distributed application.

Keywords: JINI, Java Space, Cluster, Space Based Architecture, Grid Computing, DCMRUJT

1. Introduction

As the size of organization increases, with it

increases the challenge of managing the diversity of

existing resources. A little foresightedness may

result saving huge cost for the organization.

Necessarily, a question arises regarding

management of computer clusters for carrying out

computational task with more efficiency. This paper

shall focus on the prototype cluster management and

resource utilization leveraging JINI. The research

intends to follow a new architectural design for

computational Grid.

The research also tries to setup a cluster

management system that performs resource sharing

effectively. Traditional architectures normally focus

on client-server or peer to peer interaction model but

the current research focus shall be upon a

*Corresponding author: Shiva Prasad Mahato

 Department of Computer Engineering, Khwopa Engineering

College,Libali-8, Bhaktapur, Nepal

 Email:shiv_mahato@yahoo.com

 (Received: Nov 20, 2017 Accepted: May 5, 2018)

completely new architecture “Space based

Architecture” (Nati Shalom, 1999).

The space based idea has several advantages

compared to its counterparts. Space based

architecture is said to be more robust because one

agent failing will not bring down the whole system

as the case with client-server model. Replication and

mirroring of persistent space permit communication

regardless of network failure. Communication

between peers is anonymous and asynchronous

which makes computers in the cluster to work

together to solve a problem collectively. These

attributes of space based architecture enables us to

make an adaptive cluster. The research will

particularly focus on managing clusters in an

adaptive manner, where the increase or decrease in

the number of peers won’t create any problem to the

overall space. The followed approach will be based

on one of the services of “JINI” (R. and S. Agrawal,

2002) the “Javaspace” (Batheja and Parashar, 2002,

Hawick and James, 1998).

JScE Vol 5, August 2018 Shiva Prasad Mahato 8

JINI technology is a service oriented architecture

that defines a programming model which both

exploits and extends the ability of java technology

to enable the creation of distributed systems

consisting of federations of well behaved networked

services and clients. JINI technology can be used to

build adaptive network systems that are scalable,

evolvable and flexible as typically required in

dynamic distributed systems. JINI enables

computers to find each other and use each other’s

services on the network without prior information

about each other or the protocols used. For the JINI

to be selfhealing, lease is utilized. Every resource

must be leased, that is, it must be periodically

conformed that the registered resource is alive or

that there is still interest in a resource. The JINI

technology has following advantages

 JINI is a distributed computing network

environment that offers, “Network plug and

play”

 It also supplies a middleware layer to link

services and clients from a variety of sources

 It is a set of APIs and network protocols that

can help us build and deploy distributed

systems that are organized as federations of

services

The JavaSpaces technology is a highlevel tool for

building distributed applications, and it can also be

used as a coordination tool. It is written in the Java

language and is a simple, fast and unified

mechanism for dynamic communication, co-

ordination and sharing of objects. A marked

departure from classic distributed models that rely

on message passing or RMI, the JavaSpaces model

views a distributed application as a collection of

processes that cooperate through the flow of objects

into and out of one or more spaces. The dominant

model of computation in distributed computing is

the ClientServer model. This model is based on the

assumption that local procedure calls are the same

as remote procedure calls. JavaSpace overcome the

problems of synchronization, latency and partial

failure, inherent in distributed systems, by providing

loosely coupled interactions between the

components of distributed systems. Communication

between processes on different physical machines is

asynchronous and free from the main limitation of

the traditional client/server model, when

client/server communication requires simultaneous

presence on network both parts client and server.

Sender and receiver in javaspace don't need to be

synchronized and can interact when network is

available. In a distributed application, javaspace

technology acts as a virtual space between providers

and requesters of network resources or objects. This

allows participants in a distributed solution to

exchange tasks, requests, and information in the

form of Java technology based objects (Rybicki,T.

and Domaszewicz, J. , 2005). The javaspace

transactional management and notify feature makes

it easier to build a dynamic cluster management

framework. In particular, it addresses the dynamic

cluster problem where nodes can depart and join the

cluster at any time.

2. Literature Review

Grid computing systems necessitate that services

running in same or different memory spaces or

potentially in different machine, are able to

interconnect and communicate to provide the real

time computation. For a basic communication

between services, Java language supports sockets,

which require the client and server to implement in

applications-level protocols to encode and decode

messages for exchange; unfortunately this kind of

mechanism and the design of such protocols is

awkward and error-prone.

Besides sockets, Microsoft had introduced a new

technology called COM which helped to inter relate

the distributed components, but COM also was not

capable of fulfilling the real demand of pervasive

computing because this technology basically relies

on Microsoft services. There are also some other

technologies such as CORBA, Salutation, and e-

Speak, but these also could not answer the current

demand of computation amongst service grids in the

business and scientific communities. EJB, J2EE and

also the .NET of Microsoft can be used in server-

side grids but are not fully exploited for universal

computing. As services grids come into widespread

use, more research is taking place to establish a

linkage for global grid services. Moreover, these

computational grids are being used to solve large-

scale problems in science and engineering; most of

JScE Vol 5, August 2018 Shiva Prasad Mahato 9

which are focused on defining low-level services.

Obviously, the future of scientific computing relies

not only on powerful processing power, a huge data

base, fast and advanced networks, but also on the

approach of service oriented computing. Recently,

Grid computing has started to impress Web service

technology to define the standard interface for

business purposes. This can be said an additional

progress in Grid computing. But this is just at the

starting phase of development, and there are a lot of

works yet to be completed to address the current

demands from e-business communities. Followings

are some issues that are yet to be resolved to achieve

the ultimate goal of Grid Computing.

i. Deployment Issue: Deploying the resource

(services) in Grid should be done easily.

ii. Accessibility issue: Grid resources should

not be complicated to access by the clients

or end users. Consumers don’t want to

configure the software while utilizing it.

This paper aims to overcome these shortcomings by

using the concept of service oriented approach.

There is no doubt about the capabilities of River

infrastructure for developing distributed

applications. This is one of the smartest

technologies in distributed computing. There are

some critics that river infrastructures (lookup

service, RMID etc) are hard to run. This paper sets

to explore easy way for development of river

services. Consequently, a new model of

programming is designed (Bishu Gautam, 2010).

This model is named as DCMRUJT model, and a

demo-system was implemented based on this model.

Computing resources have passed the series of

evolution which started from a tiny program

executing in the single computer to the large virtual

world so as to form the cloud computing resources

as of today. This evolution of computing

infrastructure implies that the increasing tendency of

resource utilization often change the generally

accepted notion of resource sharing and resource

allocation. Cloud computing, a new prototype for

solving complex and large-scale problems, is getting

diverse attention from varied fields of science and

technology recently. Though computational cloud

like services widely known as Grid services are

already being used to solve large-scale problems in

science and engineering, most of them have focused

on defining low-level services. These services have

high potential for implementing the service level

functionality which can be incorporated into a cloud

computing framework in order to leverage the

prevailing computing infrastructure in e-business

communities. It is obvious that the future of

scientific computing relies not only on powerful

processing power, a huge database, fast and

advanced networks, but also on the approach of

architecture in order to support the entire

infrastructure. Furthermore, the technological

impact in society and the market economy will be

another deciding factor for the sustainability of

cloud computing technology. These new computing

solutions are mostly service oriented. Service

oriented solution adopted in cloud computing

environments is not a new thing. Few years back,

Grid computing started to architect the solution in

service oriented architecture to impress Web service

technology and define the standard interface for

business purpose. However, the solution of grid

computing still requires lots of effort to meet the

demand of e-business in the market and the demand

of the end users. Furthermore, the service level

security in the cloud services is not carried out

sufficiently. This certainly put high risk for the

enterprises who do not want to sideline their clients

with security concerns.

Software development history has started from

1940s with no architectural concept, if not, with

very minimal architectural concept mainly targeted

to solve the numerical problem of military project

and the solutions implemented at that time were

relatively simple compared to the current large-scale

systems. Software architecture has got wide

attention only after 1990 as the complexities of the

software components tremendously increased within

the time. This section will discuss the complexity of

the software in order to deepen the discussion on the

significance of architectural style not only for

software architecture but also for the distributed

application.

3. Methodology

In order to perceive the essence of architectural

styles adopted in the distributed application and

JScE Vol 5, August 2018 Shiva Prasad Mahato 10

understand its inherent problems, this paper

analyzes and evaluates the prevalent styles from an

architectural perspective. For this purpose, the

research analyzes the widely used architectural style

in the field of distributed applications and further

deepens common understandings of internal

architecture of those applications. Rather than

advocating in any single style, the research utilizes

the multiple styles in order to form a hybrid style so

as to induce the most significant properties of the

architecture used in those styles. This research

advocates ‘space based architecture’ an architectural

style for the understanding of distributed application

that can be extended up to the architecture for

enterprise services and demonstrates how this style

can be used to enhance the architectural design of

simple distributed applications. A detailed literature

review about existing architectural style was done

during the whole research period and then an

application based on DCMRUJT infrastructure was

conceived in order to demonstrate the space based

architectural style for the enterprise services.

Though a lot of software architects often ignore how

the realization of their architecture will behave, this

research emphasizes the importance of prototyping

the instance as per the architectural style given by

the architect.

The domain of this research lies on architectural

design rather than source code structure though they

might be related; the research will not discuss,

except few major characteristics, the trivial

structural design of the whole system in the paper.

This research suggests that the architecture must

utilize the sound technological environment that

complies with the best practices, standard, smart and

must be guided with the simplicity and are within an

architectural principle. Furthermore, the style should

provide the guidance for future implementation so

that the contribution made by the research would be

utilized in the future endeavors too. The motivating

factor to undertake such initiatives is associated

with service-oriented concept. On the basis of

Service Oriented Architecture, an instance will be

created which is named DCMRUJT, and this will

demonstrate how a thorough research of

architectural style can be implemented to develop

space based application.

Further, a few DCMRUJT services will be

developed emphasizing on the scalability of

component and the reduction of dependencies

among the services. DCMRUJT maintains the

principle of encapsulating legacy system by

providing the simple methodology of interfacing the

underlying software components, and the way of

enhancing them should be the well defined service.

This well defined service is required to retain and be

within development principles which were practiced

during the development of DCMRUJT and

emphasize loose coupling of the components

thereby reducing the dependencies of the

components participated in the foundation for the

architecture. DCMRUJT does not only encapsulate

the legacy service but also utilize the resources

contributed by the previous architecture. The overall

architectural style presented by DCMRUJT never

tries to replace the prevalent architecture but tries to

leverage and show the guideline for the next

generation applications by utilizing hybrid

architecture style.

Today’s large diversity of network and computing

resources with heterogeneous resources could lead

to mismatch in network resources and volume of

data transferred. Traditional distributed file systems

like NFS, AFS, and Coda fail to address this issue.

Hence this work tries to address this shortcoming by

modeling data into persistent distributed objects

(Kumar, et.al, 2000). The core to the solution

approach would be the tuple space, servers and

clients consuming exposed service. The approach

will work to potentially maximize the consumption

of resources to optimum in the service cluster

leveraging a javaspace cluster.

3.1 DCMRUJT Framework

In this section, the application framework

DCMRUJT and its design decision on the basis of

architectural qualities presented in the previous part

shall be portrayed. In order to choose the

appropriate style, goals and requirement are set as a

precondition. The research has followed a goal

based approach so that it will assist the design

decision. The research application should have

following properties:

 The framework should allow seamless

distribution of storage and computation

 It should provide real time cluster adaptability

JScE Vol 5, August 2018 Shiva Prasad Mahato 11

 The framework should be highly fault tolerant

 The resources in the cluster should be highly

available

 The master and the nodes communication

should occur in a seamless manner

 Data should be replicated throughout the cluster

 The framework should provide linear scalability

for overall system.

3.2. JavaSpace Architecture and Self

Sufficiency

Further improvement to the architecture can be

achieved by appending space based architectural

node or element in the hybrid architecture style.

Space based style supports architecture to be

composed of shared memory space by providing

self-sufficient node which increases the scalability

of the system. Instead of further layering the system,

the research provides self-sufficient node such that

each client can interact with available node. In this

architecture same program code will instantiate

multiple times on the same machine or on multiple

machines dynamically which will increase end-to-

end performance of the system. System that is

entirely constructed on layered based architecture

often restrict knowledge of neighboring layer which

decrease the visibility of deep rooted layer from

developer perspective. The research does not

prohibit layer based architecture fully in case it

requires encapsulating of legacy services and

communication with cross-organizational services.

In such a case, the framework should implement a

wrapper for the legacy service in order to utilize the

legacy resource, however, by limiting layer and

providing space based architecture, the framework

does not require additional data layer as required in

layered based traditional architecture. Further, these

layers can be virtualized by grouping the application

logic and business logic together into a single

computational unit that is supported with space

based architecture thereby virtualizing the

underlying tires. Scaling can be achieved by running

multiple instances of such units on multiple

machines. Self sufficient instance of javaspace

running in different nodes of the network form the

backbone of DCMRUJT architecture.

Fig 1 JavaSpace Architecture.

3.3. Distributed Data Structure in JavaSpace

Using JavaSpace it is also possible to organize

objects in form of a tree structure. Since remote

processes may access these structures concurrently,

they are called distributed data structures. A channel

in javaspace terminology is a distributed data

structure that organizes messages in a queue.

Several processes can write messages to the end of

the channel, and several processes can read or take

messages from the beginning of it (Charles, E.Hughes,

et.al., 1999). A channel is made up of two pointer

objects, the head and the tail, which contain the

numbers of the first and the last entry in the channel

.It is possible to use several such channels, giving

all Actors associated with a space the possibility to

handle messages in a FIFO fair manner. Channels

may also be bounded, meaning that an upper limit

can be set for how many messages a channel may

contain.

Fig 2 Channel

Client

 Client

Transaction

JavaSpace

Services

JavaSpace

Services

Event

Catcher

JavaSpace

Services

Identities

Read

Write

WriteEvent

Write

Take

Write

4 3 2 1

4 3

tail head

JavaSpace

Actor

Actor
Actor

Actor

Notify

JScE Vol 5, August 2018 Shiva Prasad Mahato 12

Fig 3 JavaSpace & Distributed Data Structure

3.4. Master Worker pattern

The Master-Worker Pattern (sometimes called

Master-Slave pattern) is used for parallel processing

and is the basis pattern to work with javaspace. It

follows a simple approach that allows applications

to perform simultaneous processing across multiple

machines or processes via a Master and multiple

Workers. The Master distributes out pieces of work

to the javaspace", and these works are read,

processed and written back to the javaspace by the

end workers. In a typical javaspace environment

there are several "spaces", several masters and

several workers; these workers are normally

designed to work in a generic way, i.e. they can take

any unit of work from the javaspace and process it.

4. Experimented Results

As shown in this fig 4, experimental result of object

querying latency with single javaspace instance, as

latency decreases as the number of object increases

in the space. This result has been taken from the

experiment of DCMRUJT framework within the

standalone computer.

 L

at
en

cy
(m

s)

 Number of objects

Fig 4 Object querying latency with single JavaSpace instance

Space

Pool of

tasks

Master

- Create tasks

- Put in space

- Wait for results

Worker 1

- Collect tasks

- Execute

- Returns Results

Worker 2

- Collect tasks

- Execute

- Returns Results

Worker 3

- Collect tasks

- Execute

- Returns

Results

JScE Vol 5, August 2018 Shiva Prasad Mahato 13

L
at

en
cy

(m
s)

 Number of objects

Fig 5 Object querying latency with multiple javaSpace

Instance

 As shown in above Fig 5, experimental results of

object querying latency with multiple javaspace

instance, as latency decreases as the number of

object increases in the multiple instance of

javaspace. This result also showed that multiple

instance of javaspace decreases the latency. This

result has been taken while experiment DCMRUJT

framework in two computers.

Table 1 DCMRUJT framework

Qualities (DCMRUJT) Evaluation

Performance H

Portability M

Reusability H

Reliability H

Self-Healing Ability M

Scalability H

Simplicity H

Transparency or Visibility H

Integrability H

Latency L

Varaibility M

Sub-setability H

Feasibility H

Business Applicability H

This Table 1 shows the concluded result of

DCMRUJT framework whose architectural

properties like performance shows that as the

multiple instance of javaspace increases the

performance of DCMRUJT framework increases.

5. Conclusion and Recommendation

In order to achieve the success and improvements of

distributed application, an understanding of the

architectural elements and the key principles of the

architecture is vital. Without identifying the

architectural constraints, application developed on

ad-hoc basis often violates the architectural

principles which may deviate from the targeted goal

in long term.

This work of designing DCMRUJT application was

motivated to propose a model which shows how an

improved architectural style can be derived and how

to apply that style to identify the new and broken

features of the application. The DCMRUJT

application framework is developed after analyzing

the architectural constraints of distributed

applications. Hence the overall results so far are

quite convincing that DCMRUJT has achieved its

objectives in developing a modular distributed

framework.

Recommendation

Since the JCMRU model uses lookup service for

communication between client and services making

it a centralized model hampering the scale. It is one

of the inherent limitations in the model that it has

followed, which has to be mitigated to make the

framework scale for bigger systems as well. One of

the areas in this framework which still needs to be

addressed is the security. Kerberos based security

could be a possible integration to the framework in

future. An application or tool is needed to be

developed on top of this framework which could

help manage the overall resources with Graphical

User Interface.

References

[1] A classification and comparison framework for software

architecture description languages (2000). IEEE

Transactions on software engineering, VOL.26, NO.1.

[2] Ahmar Abbas (2003). Grid Computing: A Practical

Guide To Technology And Applications. Charles River

Media publisher.

[3] Arvind Kumar, et.al. (2002). Object oriented

Framework for Adaption in a DFS. Java/JINI

JScE Vol 5, August 2018 Shiva Prasad Mahato 14

Technologies and High-performance computing (vol :

4863):101-104.

[4] Bass et.al. , L. Clements & Kazman (2003). R.software

architecture in Practice. Addison-wesley.

[5] Bishnu Prasad Gautam (2010). A model for the

development of Universal Browser for proper utilization

of computer resources available in service cloud over

secure Network. , IMECS, Hongkong.

[6] Cameron laird (1999). Javaspace promises distributed

computing breakthrough.

[7] Charles, E.Hughes, et.al. Space-based middleware for

loosely coupled distributed systems. JAVA/JINI

technologies and high performance pervasive

computing (vol: 4863):70-78.

[8] Complexities of Software. Retrieved August 30, 2017

from http://www.dwheeler.com/sloc/redhat71-

v1/redhat71sloc.html

[9] Gang Chen; Zhonghua Yang; Hao He; Kiah Mok

Goh (2002); Coordinating multi-agents using

JavaSpaces. Sch. of Electr. & Electron. Eng., Nanyang

Technol. Univ., Singapore.

[10] Gupta, R.; Talwar, S.; Agrawal, D.P. (2002). Jini home

networking: a step toward pervasive computing.

Volume: 35, Issue: 8, 34 – 40

[11] Juan Joses Sanchez Penas (2006). From software

architecture to formal verification of a distributed

system. PHD Thesis, University of A Coruna.

[12] Jyothi batheja and Manish Parashar (2003). A

framework for adaptive cluster computing using

Javaspace. Volume 6, Issue 3, 201–213

[13] K.A. Hawick and H.A. James (2002). Dynamic Cluster

configuration and Management using javaspace.

Proceeding CLUSTER '01 Proceedings of the 3rd IEEE

International Conference on Cluster Computing.

[14] Matt Bishop (2002). Computer Security: Art and

Science. Addison Wesley Professional.

[15] Nati Shalon (2007). Space based architecture and the

end of tier based computing. Gigaspaces Technologies.

[16] R.S. Sandhu (1993). Lattice-based access control

models. IEEE Computer, 26(11):9-19

[17] Rybicki, T., Domaszewicz, J. (2005). MobileSpaces -

JavaSpaces for Mobile Devices. Inst. of Telecommun.

Warsaw Univ. of Technol.

[18] Sutedja, I.E.; Vun, N.; Hsu Wen Jing; Fasbender

(2000).Applications of Jini technology in wireless

mobile computing environment. IEEE, Conference:

TENCON 2000. Proceedings, Volume: 2

.

http://www.dwheeler.com/sloc/redhat71-v1/redhat71sloc.html
http://www.dwheeler.com/sloc/redhat71-v1/redhat71sloc.html

