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Abstract 

Studies have shown that urbanization has caused severe traffic jamming and that technology needs to be 

incorporated into the conventional transport industry. “Smart City Traffic Systems” (SCTS) applying the 

“Internet of Things” (IoT) provide potential answers for efficient traffic management in cities. Cloud computing 

involves the IoT using microelectronic sensors and wireless communication to gather real time data and optimize 

traffic. The perception layer deals with data acquisition in an IoT-based SCTS. The Ant Colony Optimization 

(ACO) method is an example of an advanced algorithm that also takes into account current traffic conditions, 

delays at junctions and one-way streets. Combining pheromone models with local search improves the efficiency 

of ACO. Simulation also shows better traffic distribution and movement and fewer congestions and best routes 

selected. Security is essential to deal with the huge data being created through encryption and communication 

security protocols.  
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Introduction 

Due to the progressive urbanization and the magnitude of urban residents, cities are facing the challenges 

of solid traffic congestion. To assist science in reducing these obstacles and, at the same time, ease the 

livelihood of urban cohabitants, technology should be incorporated into the traditional transport systems. 

One of the most promising approaches to the issue of traffic congestion is the deployment of "Smart City 

Traffic System" (SCTS). The "Internet of Things" (IoT) provides urban traffic management and 

optimization. The notion that a SCTS should be replaced is a well-proven theory. Even though this is the 

case, the constantly increasing expectations for smart city transportation planning have led to 

circumstances where there is a demand for new solutions. The incorporation of “big data analytics” 

(BDA) leads to improved performance, as it involves processing real-time data and making the best 

decisions (Silva et al., 2017). This development presses the need for the smart integration of 

sophisticated Internet technologies to ensure the design of urban transportation systems. Consequently, 

better quality transportation services can be delivered to the population. Increasing the intelligence of the 

traffic system in a smart city requires connecting the IoT, which embeds some of the high technological 

tools like microelectronic sensors and wireless communication. According to Evans (2011), the IoT 

ensures technology is undergoing massive transformation. By employing the IoT technology, urban 

traffic systems would be able to collect and detect data with broader coverage that is essential for the 

smart economy. 

Currently, urban traffic management largely depends on collective awareness and fixed sets of rules with 

traffic lights and signs. These measures need to contain more specifications and be sharp enough to 

provide clear instructions for dynamic road networks. The intelligent traffic system of the smart city, 

with the help of IoT devices, can accommodate all-encompassing information about the roads and 

vehicles throughout the city. The algorithm takes this information into account and, in real time, 

calculates the optimal routes, which in turn allows for controlled and structured traffic development. It is 

an IoT application that must be key when it comes to the enhancement of traffic command and 

scheduling. It will be possible with the use of IoT in traffic management not to have large-scale traffic 

jams, which will assist travelers in moving without congestion. For example, when managing traffic, the 

SCTS can have real-time data processing and control over the traffic signals, as well as direct the 

vehicles' movements through perception in a direct way, thus achieving vehicle regulation on the roads. 
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Through electronic tags, RFID technology is capable of collecting vehicle data even though vehicles are 

able to perform at high speeds. Such a feature makes it possible to manage vehicles correctly, which 

leads to accurate traffic flow prediction and then a better traffic management system. 

Objectives 

 To enhance traffic command and scheduling with IoT 

 To promote sustainable urban design and resource management 

 To display real-time traffic situations and avoid congestion 

Literature Review 

The “European Union” has made substantial progress in the development and implementation of the IoT. 

To maintain its leadership in IoT development, facility operators have actively pursued technology and 

application advancements in “machine-to-machine” (M2M) communication. This effort encompasses 

various sectors, including smart healthcare, where IoT applications enhance drug safety by using 

sequence code products to prevent the distribution of unsafe or counterfeit drugs. In traditional industries 

like logistics and retail, IoT applications facilitate timely information exchange, meeting diverse 

information needs, reducing information flow, and improving information use efficiency (Silva, Khan, & 

Han, 2017). Al-Kodmany (2015) acknowledges IoT functions for enhancing resource management and 

lowering environmental impact as part of sustainable urban design and eco-towers. In pursuit of the two 

fundamental goals – driving safety and comfort – the city's smart traffic system is designed to provide 

maximum convenience. Information IoT technology will, however, be a smart vehicle terminal that uses 

navigation systems for GNSS and real-time internet data transmission to display actual traffic situations, 

and avoid traffic congestion. IoT applications have also permeated everyday life. For example, recipes 

can be downloaded via mobile phones, and food inventory can be monitored remotely through 

refrigerator cameras. IoT-enabled devices can automate specific activities based on preset schedules, 

providing timely information services anywhere and anytime. Establishing information standards and 

creating a networked society in the IoT era are essential to addressing social issues, such as an aging 

population, and ensuring efficient information dissemination (Evans, 2011). However, the rapid 

development of IoT faces challenges such as the lack of national standards, weak enterprise research 

capabilities, high RFID tag costs, and privacy concerns. Addressing these issues is crucial for the 

continued expansion and efficacy of IoT-related industries (Nadeem et al., 2021). 

Urban intelligent traffic systems have become a focal point in contemporary research, given the 

increasing urbanization and the resultant traffic pressures. Many cities are still in the nascent stages of 

developing intelligent urban traffic systems. Guided by national frameworks, these systems aim to 

enhance safety, comfort, efficiency, and environmental protection. The goal is to advance traffic 

management and operational competence but also to provide high-quality, convenient, and safe 

transportation services. This involves offering timely, accurate, and comprehensive information to traffic 

management departments and related enterprises, thereby supporting intelligent decision-making (Deakin 

& Al Waer, 2011). Several scholars have actively contributed to the development of urban smart city 

transportation systems. Early research in this field has led to the advancement of technologies such as 

intelligent control systems for traffic lights, which help reduce congestion. These systems enable network 

intercommunication, real-time traffic information dissemination, and prompt traffic failure responses. 

The bus priority control system ensures efficient and safe bus operations. Collaboration between 

enterprises and research institutions is encouraged to foster the development and application of smart city 

transportation technologies (Al-Kodmany, 2015). 

Technological advancements such as RFID and advanced monitoring systems have enabled the automatic 

identification of vehicles and the imposition of congestion taxes, reducing traffic flow and congestion by 

significant margins. For instance, such measures have been shown to increase road facility by 80%, and 

decrease traffic jamming by 25%. Additionally, smart city transportation architectures have achieved 
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environmental protection and pollution prevention benefits. Sensors and road probes enable timely 

reporting and prediction of traffic jams, facilitating smoother road usage (Nadeem et al., 2021). Real-

time assessment of traffic bridges using various sensors helps monitor vehicle numbers, weights, and 

pollution levels. Exceeding set limits triggers alarms to traffic management departments, prompting 

timely interventions. Establishing intelligent urban traffic cloud platforms and information portals, along 

with traffic hotlines, provides travelers with real-time traffic information, enhancing travel convenience 

and efficiency. Integrated traffic information systems offer comprehensive traffic incident and road 

construction updates, improving overall traffic management (Silva, Khan, & Han, 2017). Although 

progress has been made, most efforts are still in the early stages. The integration of IoT and cloud 

computing technologies promises further advancements in this field. Continued research and 

development are essential for realizing the full potential of smart city transportation systems (Deakin & 

Al Waer, 2011). 

Methods and Materials 

The occurrence of severe traffic issues becomes a determining factor in this phenomenon. The problem 

calls for the cooperation of the stakeholders and the development of an innovative and more efficient 

traffic system. It is a matter of government providing new equipment as well as spending more money on 

infrastructure and traffic facilities' structural organization. Smart city transportation encompasses 

solutions that can address practical problems and ensure a comfortable user experience, giving 

information on traffic conditions, inquiry service, reassuring safety guidance, and service guidelines (Al-

Kodmany, 2015). The proposed method for SCTS utilises the IoT to enhance the efficiency of urban 

traffic management. The method is organised into multiple layers, each with unique roles and 

responsibilities, ensuring a holistic approach to managing traffic congestion. 

Perception Layer and IoT 

The perception layer employs sensor networks, RFID, real-time positioning technologies, and wireless 

communication to promptly determine and deliver accurate data to the managing entity. It is a ubiquitous 

sensor network, including M2M terminals and sensors, gathering real-time traffic information to be used 

in further data transmission and applications (Nadeem et al., 2021). The perception layer, which provides 

the supporting basis of the IoT-based smart city traffic network is the one that divides the SCTS on an 

IoT basis. Its distinctive performances are to give information in real time by some sensors that are found 

on roads, vehicles, and traffic lights. RFID tags serve as identity and tracking instruments for motors, and 

sensors are detectors of the environmental conditions and traffic congestion. In addition to real-time 

positioning (e.g., GPS), may provide data for dynamic traffic management. Formally, the data acquisition 

process can be described by 

∂𝐷𝑖 = 𝑆 𝑡 𝑑𝑡 
t

0
 ----------------------------------------------------------------------- (1) 

Where Di represents the data acquired, and S(t) - sensor data function over time. 
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Figure 1 Proposed Methodology 

The Internet of Things Network Differentiation Layer 

The packet forwarding sublayer, or middle layer, also known as the network layer, moves data forward. It 

processes the results from mobile networks of perception layer that are obtained from the information 

collection. The processed data then goes to a data centre where it is analysed and stored for a timely 

response and scientific analysis that should inform traffic management decisions (Silva et al., 2017). 

Network layer is the integration point from where information produced at the perception layer. Such 

technologies consist of mobile networks, Wi-Fi, satellite communications, and the Internet. Its main 

purpose is to avoid data disruptions during transmission and set the necessary processing conditions for 

filtering and singling out information. In the network layer, the data processing can be signified by  

Δ𝐹=  
Di

n
 

𝑛

𝐼=1
 ----------------------------------------------------------------------- (2) 

where ΔF is the flow of processed information, and Di represents individual data points. 

IoT Application Layer 

The application layer dynamically creates and rolls out storage resources due to high processing, cloud 

computing, management systems, and databases. It incorporates an operation support platform and 

Application System, which acts as a repository of information that helps in decision-making, providing 

services, and business development (Deakin & Al Waer, 2011). The layer of the Smart city architecture 

uses cloud computing for data storage and processing so that data is accessible for applications like 

traffic management, urban planning, and emergency response. The employing of superior algorithms and 

extensive data analytics helps the application layer act as predictive analytics, real-time traffic 

monitoring, and automatic control of the traffic lights. The efficiency of information processing in the 

application layer can be modeled by 
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𝜂 =
1

1+e−(α+βx)
 ----------------------------------------------------------------------- (3) 

where η is the efficiency, α and β are constants, and �x represents the data volume. 

Dynamic and Intelligent Traffic System 

The development of an intelligent traffic management system for cities should enable it to have a 

feedback nature, capture real-time information about traffic, and provide practical information 

acquisition and response. The system must incorporate such cases and some app functions into one 

system in order to prevent the wastage of resources. Intelligence is the essence of efficient transportation 

because it relies on high-level IoT technologies to achieve complete control of traffic patterns and flows 

(Nadeem et al., 2021). Smart cities traffic system is adaptive in a sense that it monitors and makes 

adjustment to changing circumstances. Instances could be mentioned like adaptive signal timing 

according to actual traffic state, dynamic guidance creating a possibility for drivers to choose their 

driving routes and predictive traffic congestion before it happens. The system must also work during 

such widely varying hours of the day, including peak periods, accidents and traffic jams due to 

construction work. 

Data Security in SCTSs 

Safety however is a key foundation of smart city traffic management. Providing security should be a task 

that is performed across the entire area of application systems, system vulnerabilities, network data, and 

application data. Several methods may be involved, such as access control, data encryption, protocol 

alteration and operating dedicated data storage platform (Nathali et al., 2017). Data security is regarded 

as a critical component of smart city traffic facilities, as the systems have huge amounts of highly 

confidential data. It also includes the user’s location information, real-time traffic data, and traffic 

management commands. Security of it should be ensured by giving some mighty security measures like 

encryption, secure communication protocols, and access controls. 

System Composition 

At the diversion locations, the crucial traffic signal control is integrated with the urban traffic routing 

system. It deals with devices like gate access control node, bridge stress sensors, network transmission 

platform, traffic signal control nodes, ZigBee-Wifi gateway, web application software and data 

acquisition service software. Through such an integrated system the traffic information, control signals, 

police direction and the public traffic services are managed, thus it envisage real-time control of traffic 

flow (Al-Kodmany, 2015). 

Traffic Control and Its Implementation 

Graph theory can describe the extent or degree of connection and control in the intelligent city traffic 

system network. Random selection of nodes can be modeled by 

∂Ti

∂t
=   

m−t−1

m+t
 𝑇 ----------------------------------------------------------------------- (4) 

Table 1. Components and Functions of Multiple Layers of Traffic System (Source: Al-Kodmany, 2015) 

Component Function 

Perception Layer Data acquisition and collection through real-time monitoring of 

traffic information 

Network Layer Ensuring seamless data flow and initial data processing 

Application Layer Parallel processing and optimization of data, dynamic 

configuration of resources 

Dynamic Traffic System Real-time traffic information capture, effective information 

collection, and response 
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Data Security Protecting application systems, system vulnerabilities, network 

data, and application data 

Integrated Traffic Management Combining subsystems for enhanced traffic efficiency and safety 

Integrated Traffic Management 

Integrated Traffic Information Management 

It gathers and scrutinizes live traffic data in order to offer tips on getting to a particular place. This 

approach applies traffic planning concepts to provide rational transport Ment without considering actual 

traffic conditions (Deakin & Al Waer, 2011). 

Signal Control System 

This system manages traffic infrastructure by providing information that helps track car traffic and traffic 

jams in real-time. It regulates traffic lights to achieve maximum road traffic flow, maintaining an equal 

level of congestion (Nadeem et al., 2021). 

Police Command System  

It responds to emergencies in traffic flows by acquiring a section of the road and its conditions through 

traffic facilities. This involves dealing with the information in a timely manner and taking steps to 

mitigate the effects of traffic accidents. 

Public Transport Service System  

This system assumes a role as a source of real-time data for travelers on travel routes, traffic locations, 

and other non-related information. It ensures that travelers plan their transportation conveniently and 

carry around different modes of transport to best serve their activities. 

Table 2: Outcomes of Subsystems of Traffic System 

Subsystem Description Outcome 

Integrated Traffic 

Information 

Management 

Collects and analyzes real-time traffic data to 

provide travel suggestions 

Improved travel planning and 

decision-making 

Signal Control System Manages traffic flow and congestion 

information, controls traffic signals to 

optimize road traffic flow 

Reduced traffic congestion 

and improved flow 

Police Command 

System 

Handles traffic emergencies, disseminates 

information, and takes measures to mitigate 

traffic impacts 

Enhanced emergency 

response and traffic 

management 

Public Transport 

Service System 

Provides real-time travel route information 

and transportation mode suggestions 

Improved public transport 

efficiency and user 

satisfaction 

Security Dimensions 

In constructing a SCTS, security is paramount. The security management system is built around four key 

dimensions: 

Application Security: Emphasizes protecting system users' information via techniques like access 

reassignment, data encryption, and protocol redesign. 

System Security: It emphasizes the fortification of the basic security software layer, such as databases 

and operating systems, to address any security deficiencies. 



JOETP, August 2024, Volume 5, Number 1, 71-83                                  Rohit Kumar Bisht 

ISSN 2717-4638 

77 
 

Network Security: Ensures that the data is made secure by encoding IoT and transmitted securely through 

the Internet. Security of data transmission and data fusion functions in the intelligent system are 

implemented by means of secure transmissions. 

Data Security: Develops specific spaces where software deployment and data storage are carried out 

securely and in an orderly manner, thereby maintaining the integrity of the application data. 

Smart City Traffic Scheduling Optimization Algorithm  

Real-time traffic flow matters in route optimization. Congestion occurs when traffic exceeds its capacity 

on the road segment, forcing road lines to assume routes that accommodate those adjustments. Traffic 

congestion levels can be quantified based on the average travel speed of vehicles and categorized into 

four degrees: graduated, dense, congested, mild, and severe congestion. Instantaneous assessments of 

traffic flow should provide the basis for the path-planning algorithms to be effective and reliable (Evans, 

2011). The relationship between traffic flow (T) and congestion levels (C) can be expressed as 

𝐶=
T

Cmax
 ----------------------------------------------------------------------- (5) 

Where Cmax is the maximum carrying capacity of the path.  

 

Besides the traffic lights and other conditions at the intersections, road users experience considerable 

delays. Hence, the scheduling algorithm must take into consideration these delays. Among the delay 

times at intersections, this weight is significant in the determination of the optimal traffic route, which 

leads to the placement of this factor in the algorithms for path optimization (Al-Kodmany, 2015).The 

delay time (D) at an intersection can be modeled as D=  n
i=1 di, where di represents the delay at each 

traffic light or condition at the intersection n.  

One-way traffic restrictions are installed in order to make the most of the traffic jams that happen on 

some roads. In contrast to the classic route algorithms that have assumed the travel between nodes as 

bidirectional, which clearly is not possible in the presence of one-way streets. Hence, to come up with 

realistic and practical route planning without the one-way traffic factor, the path optimization algorithm 

must integrate this factor (Nadeem et al., 2021). The directionality constraint (Δ) can be represented as  

Δ=∑j=1mδj ----------------------------------------------------------------------- (6) 

Where δj represents the directionality restriction for each road segment. 

The fundamental ant colony method has an excessively long search time and a higher likelihood of 

convergence to less-than-ideal solutions. The algorithm's efficiency can be increased while still offering 

directional indications and the use of preferred traversal paths (Deakin & Al Waer, 2011). 

Pheromones are extremely significant in laying down pathways. Every ant will deposit pheromones in 

the start and end points respectively, the amount of which will diminish with the increase in distance. 

The excess concentration of pheromones on some routes and the maintaining of the diversity of the 

routes chosen can be accomplished by using local pheromone updates (Evans 2011). The local 

pheromone update (λjk) is given by 

λjk=λjk−Δλjk ----------------------------------------------------------------------- (7) 

In which Δλjk symbolizes the decreased pheromone. A minimum pheromone concentration threshold 

(λmin) ensures that paths do not become neglected: λjk=max(λjk,λmin) 

Data collection and Processing 

The data collection process for analyzing urban traffic networks involves multiple stages and the 

integration of various technologies to ensure accurate and comprehensive data acquisition. Data 
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Parameters collected are monitoring points or locations, road segments or paths, Network Diameter, 

Average Degree, Group Coefficient, Mean Traffic Metrics, Average Traffic Flow, Peak Traffic 

Congestion Index, Average Delay at Intersections, and Total Travel Time Reduction. At first, physical 

devices are deployed on roads, cars, and traffic signals to constantly gather traffic information. These 

include speed sensors which gauge vehicle speed as well as traffic volume and road conditions sensors. 

These sensors monitor factors like weather and visibility that influence traffic and safety.  

RFID tags are attached to vehicles and can be used to collect vehicle data like identification, speed, and 

travel direction even at high speeds. This data is captured by the RFID readers that are strategically 

mounted along roadsides. Cars rely on the GPS/GNSS systems to deliver their geolocation information in 

real-time. It assists in monitoring the movement of vehicles and traffic distribution. Mobile networks and 

Wi-Fi then relay the collected data to central processing units. This eliminates gaps in data transmission 

and makes it instantly accessible for processing.  

Traffic cameras are mounted strategically at intersections and along highways to record video streams in 

real time. This involves analyzing this footage to understand traffic density, detect incidents, and cross-

check sensor data. The mobile applications used by drivers and passengers also offer additional data 

points. Drivers can update information on traffic, incidents, and obstructions, providing better coverage. 

Cloud computing offers the ability to manage extensive quantities of data with ease and efficiency. Data 

centers do an initial analysis of big data to remove unnecessary data before conducting further analysis. 

These centers also help to maintain the data integrity and getting ready to use in real time applications. 

Traffic signals and other control systems are connected to the IoT network for traffic management. This 

enables centralized or distributed control and online regulation according to the feedback information. 

Algorithm Steps 

1. Libraries and Dependencies: We install and import necessary libraries: numpy, matplotlib, and 

networkx. 

2. Graph Creation: The graph starts as a simple directed graph, in which the edges are assigned a 

weight. This graph represents the urban traffic network. 

3. Ant Colony Optimization (ACO) Algorithm: The class AntColony is to be used when invoking the 

ACO algorithm. It includes such steps as calculating transition probabilities, building solutions, 

choosing which nodes to select, pheromone spreading and calculating path-cost. 

4. Running the ACO Algorithm: A new AntColony object of type class is instantiated and the 

algorithm is executed between the starting node (0) and the final node. 

5. Visualization: The graph is visualised just before and after executing the algorithm and points out the 

shortest path that is discovered by ACO. 

Results and Discussion 

The modified heuristic is concerned with the directionality of the move used for visiting a node in the 

graph, the number of pheromones deposited and the local updating of pheromones. This approach 

employs a positive feedback mechanism; thus, generating trench diversification among various corridors 

to escape path congestions and overexploitation, which eventually ensembles the functionality of the 

algorithm.  
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Table 3: Descriptive Statistics of Main Variables 

Variable Standard Deviation Mean 

GDP 499.45 597.5 

TP 748.23 228.48 

STE 0.016 0.017 

FDI 0.005 0.003 

EDU 409.30 470.44 

Ind 11.90 50.01 

BUS 113.5525 119.4722 

POP 0.10 0.102 

EMP 84.4 38.8 

INN 55.7 12.4 

TRA 5.7 8.3 

TECH 1.9 2.3 

HLT 21.3 74.6 

INV 13.7 25.5 

The descriptive statistics table shows the socio-economic variables across regions. GDP demonstrates 

significant fluctuations with the average value of 597.5, which suggests various levels of economic 

productions. Trade Policy also shows wide variation as indicated by its Standard Deviation of 748.23 

with a mean of 228.48. On the other hand, Standardized Test Scores (STE) are low and do not differ 

much from one another. FDI is lower and fluctuates; EDU is higher but has significant disparities.  

The industrial sector (Ind) and business activity (BUS) also show variability due to different industrial 

and business conditions. Population density, employment, and innovation vary significantly and indicate 

discrepancies in terms of development and economic activity. There are moderate differences in mean 

values of Transportation (TRA) and technology (TECH) adoption. Health (HLT) service and INV levels 

also vary substantially, highlighting disparities in regional priorities and resources.  

 

Figure 2 Network Parameters 
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Table 4 Network Parameters 

Data Cities 

1 2 3 4 

No. of sites 180 230 140 100 

No.of lines 14 16 9 7 

Network diameter 6 6 3 3 

Average degree 22.73 26.39 22.21 25.64 

Group coefficient 0.9125 0.9078 0.8224 0.8471 

Mean  2.478 2.654 2.294 1.792 

Average traffic flow (vehicles/hour) 472.1 510.4 335.7 298.5 

Peak traffic congestion index 0.87 0.88 0.79 0.83 

Average delay at intersections (seconds) 47.3 49.1 40.6 43.7 

Total travel time reduction (%) 16.8 17.9 13.2 15.1 

Each city’s traffic network exhibits specific strengths and weaknesses. Cities 1 and 2 have more 

extensive and interconnected networks, which manage higher traffic flows but face greater congestion 

and delays. Cities 3 and 4 have more compact networks with lower traffic flows and less congestion, but 

they achieve different levels of efficiency in reducing travel time. The data underscores the importance of 

tailored traffic management strategies to address unique urban traffic challenges effectively. 

We implemented traffic scheduling on cities by using ACO algorithm and a simulated urban traffic 

network to evaluate the effects. The model utilises the main structural parameters along with four cities’ 

quantitative characteristics as the inputs, the results are then compared with the observational data and 

the model’s effectiveness can be determined. Focus of research was on some selected network 

parameters and characteristics like number of sites, network diameter, number of lines, clustering 

coefficient mean distance and average degree for each city. The main variables' descriptive statistics 

supported the urban traffic systems and their related factors comprehension. 

In descriptive statistics Table, some of the main variables are GPD, foreign direct investment, strategic 

trade policy, education levels, population, business activity, innovation, employment, and technology. 

Learning the factors controlling the traffic situation is important for the assessment of their impacts on 

traffic flow and optimization.  

Chart 1 compiles the modeling parameters simulated data from the network model, including the network 

parameters as well as characteristic quantities for the four cities being examined. The graph model was 

visually depicted by means of NetworkX and Matplotlib library, which presented the directed graph of 

the city traffic network. The simulation results showed consistent agreement with the data, thus 

demonstrating the model's accuracy. The circular data curves represented in the graphs show the 

accumulation degree distribution that was simulated for the transport network within the city, and it was 

found to be in agreement with the conclusions of the empirical analysis. This may indicate that the 

machine learning model for the IoT-based smart city traffic scheduling network is sophisticated enough 

to portray the complexity of urban traffic systems.  

Network robustness simulation with different random attacks scenarios was carried out and network 

resilience was analyzed. In spite of occasional logic bomb, the law of network evolution didn't change 

drastically. Its average path length over time was little larger but with more stations per route due to 

fewer paths between them. This is a demonstration of the ability of the network to deal with chaos and 
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subsequent disruptions efficiently. The evaluation of an algorithms performance using IoT 

communication was done. The algorithm quickly determined the best route, the sum of which is the least 

when it comes to travel time and the traffic flow efficiency. The visualization of the searching progress 

of the scheduling algorithm was provided in each search round, and the optimal path length was found 

out.  

The ACO algorithm was greatly enhanced by introducing an addition of directional guidance and 

preferred paths that were traversed, hence improving the algorithm’s efficiency. Additionally, pheromone 

dynamics and local updates prevented overloads of pheromonas and ensured that different routes were 

used. Local pheromone updates were governed by λjk=λjk−Δλjk ensuring the diversity of path choices and 

preventing local optima. 

Conclusion  

The improved ACO algorithm has been shown to be able to reach to the optimal route, balancing the 

exploration with the exploitation nicely. This led to substantial time savings, as well as better traffic 

congestion relief in every city under the pilot study program. The study reveals what can be done with 

SCTSs based on IoT to manage urban traffic. The consumption of real-time data will usher in substantial 

changes in the manner traffic flows with decreased congestion, which in turn will result in a rise in the 

overall transportation efficiency. The long-term urban growth will be greatly dependent on the continued 

development and application of these technologies, since they will be essential in solving the complex 

issues arising from urbanization. 

Limitations and Future Work 

The primary limitations include potential data privacy concerns, high implementation costs, and the need 

for robust infrastructure. Future work should focus on enhancing data security, reducing costs through 

technological advancements, and improving scalability. Additionally, integrating artificial intelligence 

for predictive analytics and real-time decision-making can further optimize urban traffic management 

systems. 

References 

Al-Kodmany, K. (2015). Eco-towers: Sustainable cities in the sky. WIT Press, Billerica. 

Azar, A. T., Koubaa, A., Ali, M. N., Ibrahim, H. A., Ibrahim, Z. F., Kazim, M., Ammar, A., Benjdira, B., Khamis, 

A. M., & Hameed, I. A. et al. (2021). Drone deep reinforcement learning: A review. Electronics, 10(9), 999. 

Bhusari, S., Patil, S., Kalbhor, M. (2015). Traffic control system using Raspberry-Pi. Global Journal of Advanced 

Engineering and Technology, 4(4), 413–415.  

Brown, E. (2016). Who needs the internet of things? Linux.com. 

Caruana, R., & Niculescu-Mizil, A. (2006). An empirical comparison of supervised learning algorithms. In 

Proceedings of the 23rd international conference on Machine learning (pp. 161–168). 

Chou, J.-S., & Ngo, N.-T. (2016). Time series analytics using sliding window metaheuristic optimization-based 

machine learning system for identifying building energy consumption patterns. Applied Energy, 177, 751–770. 

da Silva, W. M., Alvaro, A., Tomas, G. H. R. P., Afonso, R. A., Dias, K. L., & Garcia, V. C. (2013). Smart cities 

software architectures: A survey. In Proceedings of the 28th annual ACM symposium on applied computing 

(pp. 1722–1727). 

Deakin, M., & Al Waer, H. (2011). From intelligent to smart cities. Intelligent Buildings International, 3(3), 140–

152. 

Deng, L., & Yu, D. (2011). Deep convex net: A scalable architecture for speech pattern classification. In Twelfth 

annual conference of the international speech communication association. 

Djordjevic, V., Stojanovic, V., Tao, H., Song, X., He, S., & Gao, W. (2022). Data-driven control of hydraulic servo 

actuator based on adaptive dynamic programming. Discrete & Continuous Dynamical Systems - Series S, 

15(7). 

Dong, Y., Jiang, Z., Shen, H., Pan, W. D., Williams, L. A., Reddy, V. V. B., Benjamin, W. H., & Bryan, A. W. 

(2017). Evaluations of deep convolutional neural networks for automatic identification of malaria infected 



JOETP, August 2024, Volume 5, Number 1, 71-83                                  Rohit Kumar Bisht 

ISSN 2717-4638 

82 
 

cells. In 2017 IEEE EMBS international conference on biomedical and health informatics (BHI) (pp. 101–

104). IEEE. 

El Baz, D., & Bourgeois, J. (2016). Smart cities in Europe and the ALMA Logistics Project. ZTE Communications, 

13(4), 10–15. 

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level 

classification of skin cancer with deep neural networks. Nature, 542(7639), 115–118. 

Evans, D. (2011). The internet of things: How the next evolution of the internet is changing everything. CISCO 

White Paper, 1(2011), 1–11. 

Fernandez-Anez, V. (2016). Stakeholders approach to smart cities: A survey on smart city definitions. In 

International conference on smart cities (pp. 157–167). Springer. 

Gale, W., Oakden-Rayner, L., Carneiro, G., Bradley, A. P., & Palmer, L. J. (2017). Detecting hip fractures with 

radiologist-level performance using deep neural networks. arXiv preprint arXiv:1711.06504. 

Gharaibeh, A., Salahuddin, M. A., Hussini, S. J., Khreishah, A., Khalil, I., Guizani, M., & Al-Fuqaha, A. (2017). 

Smart cities: A survey on data management, security, and enabling technologies. IEEE Communications 

Surveys & Tutorials, 19(4), 2456–2501. 

Guerrero, L. A., Maas, G., & Hogland, W. (2013). Solid waste management challenges for cities in developing 

countries. Waste Management, 33(1), 220–232. 

Hao, X., & Zhang, G. (2017). Deep learning. Encyclopedia of Semantic Computing and Robotics, 1(01), 1630018. 

He, J., Baxter, S. L., Xu, J., Zhou, X., & Zhang, K. (2019). The practical implementation of artificial intelligence 

technologies in medicine. Nature Medicine, 25(1), 30–36. 

Huijboom, N., & Van den Broek, T. (2011). Open data: An international comparison of strategies. European 

Journal of ePractice, 12(1), 4–16. 

Jacobsson, A., Boldt, M., & Carlsson, B. (2016). A risk analysis of a smart home automation system. Future 

Generation Computer Systems, 56, 719–733. 

Jin, D., Hannon, C., Li, Z., Cortes, P., Ramaraju, S., Burgess, P., Buch, N., & Shahidehpour, M. (2016). Smart street 

lighting system: A platform for innovative smart city applications and a new frontier for cybersecurity. The 

Electricity Journal, 29(10), 28–35. 

Karpiriski, M., Senart, A., & Cahill, V. (2006). Sensor networks for smart roads. In Fourth annual IEEE 

international conference on pervasive computing and communications workshops (PERCOMW'06) (p. 5). 

IEEE. 

Kumar, S., Tiwari, P., & Zymbler, M. (2019). Internet of things is a revolutionary approach for future technology 

enhancement: A review. Journal of Big Data, 6(1), 1–21. 

Lavric, A., Popa, V., Finis, I., & Simion, D. (2012). The design and implementation of an energy efficient street 

lighting monitoring and control system. Przeglad Elektrotechniczny, 88(11), 312–316. 

Li, Y., Dai, W., Ming, Z., & Qiu, M. (2015). Privacy protection for preventing data over-collection in smart city. 

IEEE Transactions on Computers, 65(5), 1339–1350. 

Lieman-Sifry, J., Le, M., Lau, F., Sall, S., & Golden, D. (2017). FastVentricle: Cardiac segmentation with ENet. In 

International conference on functional imaging and modeling of the heart (pp. 127–138). Springer. 

Liu, F., Xie, L., Xia, Y., Fishman, E., & Yuille, A. (2019). Joint shape representation and classification for detecting 

PDAC. In International workshop on machine learning in medical imaging (pp. 212–220). Springer. 

Ma, C. (2021). Smart city and cyber-security; technologies used, leading challenges and future recommendations. 

Energy Reports, 7, 7999–8012. 

Madani, A., Arnaout, R., Mofrad, M., & Arnaout, R. (2018). Fast and accurate view classification of 

echocardiograms using deep learning. NPJ Digital Medicine, 1(1), 1–8. 

Mishra, B., & Kertesz, A. (2020). The use of MQTT in M2M and IoT systems: A survey. IEEE Access, 8, 201071–

201086. 

Nadeem, L., Amin, Y., Loo, J., Azam, M. A., & Chai, K. K. (2021). Efficient resource allocation using distributed 

edge computing in D2D-based 5G-HCN with network slicing. IEEE Access, 9, 134148–134162. 

Naphade, M., Banavar, G., Harrison, C., Paraszczak, J., & Morris, R. (2011). Smarter cities and their innovation 

challenges. Computer, 44(6), 32–39. 

Nathali Silva, B., Khan, M., & Han, K. (2017). Big data analytics embedded smart city architecture for performance 

enhancement through real-time data processing and decision-making. Wireless Communications and Mobile 

Computing. 

Omar, A., AlMaeeni, S., Attia, H., Takruri, M., Altunaiji, A., Sanduleanu, M., Shubair, R., Ashhab, M. S., Al Ali, 

M., & Al Hebsi, G. et al. (2022). Smart city: Recent advances in intelligent street lighting systems based on 

IoT. Journal of Sensors. 



JOETP, August 2024, Volume 5, Number 1, 71-83                                  Rohit Kumar Bisht 

ISSN 2717-4638 

83 
 

Orsino, A., Araniti, G., Militano, L., Alonso-Zarate, J., Molinaro, A., & Iera, A. (2016). Energy efficient IoT data 

collection in smart cities exploiting D2D communications. Sensors, 16(6), 836. 

Pengfei, L. Y., Wang, J. H., Lihua, W. Y., Tian, T. Z., Li, T., & Li, J. (2016). High-performance personalized 

heartbeat classification model for long-term ECG signal. IEEE Transactions on Biomedical Engineering, 

64(1), 78–86. 

Perera, C., Qin, Y., Estrella, J. C., Reiff-Marganiec, S., & Vasilakos, A. V. (2017). Fog computing for sustainable 

smart cities: A survey. ACM Computing Surveys (CSUR), 50(3), 1–43. 

Petrolo, R., Loscri, V., & Mitton, N. (2017). Towards a smart city based on cloud of things, a survey on the smart 

city vision and paradigms. Transactions on Emerging Telecommunications Technologies, 28(1), e2931. 

Qayyum, A., Anwar, S. M., Awais, M., & Majid, M. (2017). Medical image retrieval using deep convolutional 

neural network. Neurocomputing, 266, 8–20. 

Rajpurkar, P., Irvin, J., Bagul, A., Ding, D., Duan, T., Mehta, H., Yang, B., Zhu, K., Laird, D., Ball, R. L., et al. 

(2017). Mura: large dataset for abnormality detection in musculoskeletal radiographs. arXiv preprint 

arXiv:1712.06957. 

Rau, H. H., Hsu, C. Y., Lin, Y. A., Atique, S., Fuad, A., Wei, L. M., & Hsu, M. H. (2016). Development of a web-

based liver cancer prediction model for type II diabetes patients by using an artificial neural network. 

Computer Methods and Programs in Biomedicine, 125, 58–65. 

Saidi, S. M., Mellah, R., Fekik, A., & Azar, A. T. (2022). Real-time fuzzy-PID for mobile robot control and vision-

based obstacle avoidance. International Journal of Service Science, Management, Engineering, and 

Technology (IJSSMET), 13(1), 1–32. 

Santur, Y., & Santur, S. G. (2016). Knowledge mining approach for healthy monitoring from pregnancy data with 

big volumes. International Journal of Intelligent Systems and Applications in Engineering, 4, 141–145. 

Shu, W. T., Pasquale, L. R., Campbell, J. P., Lee, A. Y., Raman, R., Schmetterer, L., Keane, P. A., & Wong, T. Y. 

(2019). Artificial intelligence and deep learning in ophthalmology. British Journal of Ophthalmology, 103(2), 

167–175. 

Silva, B. N., Khan, M., & Han, K. (2017). Big data analytics embedded smart city architecture for performance 

enhancement through real-time data processing and decision-making. Wireless Communications and Mobile 

Computing, 1–10. 

Solanas, A., Patsakis, C., Conti, M., Vlachos, I. S., Ramos, V., Falcone, F., Postolache, O., Perez-Martinez, P. A., Di 

Pietro, R., Perrea, D. N., et al. (2014). Smart health: a context-aware health paradigm within smart cities. IEEE 

Communications Magazine, 52(8), 74–81. 

Soomro, K., Bhutta, M. N. M., Khan, Z., & Tahir, M. A. (2019). Smart city big data analytics: an advanced review. 

Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9(5), e1319. 

Topol, E. J. (2019). High-performance medicine: the convergence of human and artificial intelligence. Nature 

Medicine, 25(1), 44–56. 

Ullah, Z., Al-Turjman, F., Mostarda, L., & Gagliardi, R. (2020). Applications of artificial intelligence and machine 

learning in smart cities. Computer Communications, 154, 313–323. 

Yan, G., Yang, W., Rawat, D. B., & Olariu, S. (2011). Smartparking: a secure and intelligent parking system. IEEE 

Intelligent Transportation Systems Magazine, 3(1), 18–30. 

Zhang, N., Chen, H., Chen, X., & Chen, J. (2016). Semantic framework of internet of things for smart cities: case 

studies. Sensors, 16(9), 1501. 

 


