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1. Introduction
Flooding is a major concern in numerous regions around the globe (Blanchard-Boehm et al., 2001; Horritt & 
Bates, 2002; Kundzewicz et al., 2014). The detrimental effects of  floods include direct fatalities and illnesses, 
alongside indirect repercussions such as displacement and extensive destruction of  crops, infrastructure, and 
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Abstract
Flood loss functions convert damage and loss of  function into economic losses, providing critical 
information on expected damages from future floods. This article presents the outcomes of  a 
study assessing the economic impacts of  an extreme flood event in Gaur Municipality, Nepal, 
utilizing flood simulation results from a hydrodynamic model. A detailed questionnaire survey was 
conducted covering all parts of  the municipality to collect data to assess the economic impacts of  
flooding on different types of  buildings (e.g., adobe, masonry, and RCC frame) and agricultural 
lands. Subsequent statistical analysis considering building plinth height, number of  stories, 
building age, etc., showed flood depth and duration to be the most sensitive parameters for the 
damage. Sets of  linear and logarithmic depth-damage functions were generated and compared 
to predict damages for different buildings and crops. The study revealed a significant economic 
burden on the municipality from potential extreme floods, with estimated structural damage to 
residential and commercial buildings reaching NRs 225 million (US$ 3.21 million). This figure 
is expected to rise with time due to urbanization growth and subsequent wealth accumulation 
within the municipality area. The developed flood damage functions predict damages, while the 
flood loss map, highlighting regional vulnerability, aids in planning development activities within 
the municipality and provides economic justification for long-term investments in flood protection 
measures. This study is intended to serve as a decision support tool that could pave the way for 
informed and resilient urban development.
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property (Carroll et al., 2010; Khushi et al., 2024). Accurate flood impact estimates are crucial for evaluating 
mitigation measures' cost-effectiveness, facilitating land use planning, and guiding infrastructure development 
(Dottori et al., 2023; Zeleňáková et al., 2020). Moreover, flood loss maps assist stakeholders in prioritizing 
investments and empower authorities and communities to prepare for disasters (Percival et al., 2020). 

Annually, floods and landslides in Nepal contribute to over 175 fatalities on average, accompanied by economic 
losses surpassing USD 140 million (Marsh, 2020). A total of  4160 floods were documented in Nepal between 
1971 and 2016, resulting in human casualties and significant damage to infrastructure (Chidi et al., 2022). 
Latest data for the first six months of  the year 2024 shows 181 disaster related deaths and estimated loss of  
NPR 2 billion (https://bipadportal.gov.np/damage-and-loss/). Furthermore, Nepal ranks tenth globally in 
relative physical exposure to flooding, indicating potential damage to physical assets equivalent to 1.4% of  
its GDP (Luo et al., 2015). Among 200 countries, Nepal ranks 4th, 11th, and 30th in relative vulnerability to 
climate change, earthquake, and flood hazards, respectively (Khanal, 2020). In addition to the loss of  lives and 
property damage, psychological distress, a sense of  insecurity, and intangible losses inflict profound anguish 
and suffering upon individuals residing in flood-prone areas.

Many studies and analyses have shown that damage reductions due to forecast improvements can range 
from a few percentage points to as much as 35% of  annual flood damages (Dale et al., 2014; Meyerson, 
2004). Furthermore, allocating funds for relief  and rehabilitation frequently competes with developmental 
initiatives. Cannon et al. (2000) emphasize the importance of  comprehending the interaction between hazards 
and the vulnerability of  the elements at risk, suggesting that natural disasters stem from the convergence of  
natural hazards and the susceptibility of  individuals and property (Cannon, 2022). 

Recent flood events have highlighted the significance of  maximum water levels during slowly rising river 
floods in causing damage. In these cases, the gradient of  the flood wave is slight, so there are no damaging 
effects due to flow velocity impacts (Büchele et al., 2006). The primary cause of  damage observed in many 
studies stemmed from the gradual rise of  water levels (Adams & Pagano, 2016). Building surveyors in the 
UK found flow velocity to be the least influential factor in assessing flood damage among various flood 
characteristics (Soetanto & Proverbs, 2004). Flow velocity emerged as the least influential factor in their 
assessment of  various flood characteristics' impact on damage. Flood water depth, duration, and velocity 
govern the damage characteristics and depth is the governing parameter for damage to urban buildings 
(Dutta et al., 2003). Hence, Depth-damage functions are the standard urban flood damage assessment method 
for various building types (Gnan et al., 2022; Smith, 1994). However, in Nepal, the assessment and selection 
of  investment alternatives for flood damage mitigation often require comprehensive economic and financial 
analyses, primarily due to the absence of  systematic data on flood damages.

In Nepal, early flood warning systems are one of  the most effective ways to minimize the loss of  life and 
property (Bajracharya et al., 2017). The nation faces a critical challenge with its susceptibility to seasonal 
monsoon floods, necessitating urgent measures to mitigate the potential loss of  life and property damage 
(Dewan & Extremes, 2015). This paper presents an output of  a study conducted to assess the economic 
impacts of  an extreme flood event in Gaur Municipality (21.53 sq. km), located on the right bank of  the 
Bagmati River in central Terai of  Nepal (Figure 1). While various factors influence flood damage, our analysis 
in this study, including flood depth, duration, building plinth height, number of  stories, and building age, 
identifies flood depth as the primary determinant of  the damage. Furthermore, flood simulation results from 
a hydrodynamic model, considering flood depth as a hazard indicator, were utilized to develop depth-damage 
functions assessing structural damage across various building types, subsequently applied to compute damage 
and generate flood loss maps for the municipality based on a 50-year return period flood event.
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2. Study Area
The Bagmati River originates in the Mahabharat range of  mountains about 16 km Northeast of  Kathmandu, 
Nepal's capital city. As the river emerges from the hills, it enters the Terai region and flows as a divide 
between the Sarlahi and Rautahat districts. It drains out of  Nepal across the Indian state of  Bihar to join the 
Ganges. Its total length is 597 km, of  which 195 km lie in Nepal and the remaining portion in India.

The river's floodplain comprises about half  of  the total area (2302 sq. km.) of  the Rautahat and Sarlahi 
districts, comprising rural and urban settlements and agricultural land (Figure 1). Several settlements on 
both riverbanks in the study area are usually flooded during the rainy season. Flooding is mainly caused by 
the intense rainfall over its extensive catchment and generating high volumes of  run-off  that spills out of  
the riverbanks. The river's catchment area at Karmaiya and Indo-Nepal border are computed to be 2800 sq. 
km. and 3670 sq. km. respectively. 

Gaur Municipality is located in the southernmost part of  the Bagmati floodplain in Nepal. According to 
census 2021, it is spread across 21.53 sq. km., has 7235 households, and a population of  39,846 (https://
censusnepal.cbs.gov.np/, accessed on June 20, 2024). Land use within the municipality can be mainly classified 
as agricultural, residential, commercial, water bodies and others. The municipality suffers from recurrent 
flooding owing to its relatively lower elevation and obstruction to gravity flow from north to south by a bund 
(insufficient drainage openings in the bund and channel capacity) running east-west immediately in the south 
of  the municipality. In addition, runoff  from surrounding areas during a heavy storm accumulates in low-
lying areas of  the municipality, increasing the duration of  flooding and consequential damages. 

Figure 1: Location of  the study area
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3. Data and Methods
In this study, direct damage to residential and commercial buildings was considered. Vector data and 
orthophotos of  the area were obtained from Nepal's Survey Department. River discharge data was obtained 
from the Department of  Hydrology and Meteorology. Population data was obtained from Nepal's Central 
Bureau of  Statistics. Data on flood damage was collected through a community-based survey. 

The overall methodology integrates hydrologic/hydraulic modelling, vulnerability assessment of  buildings, 
generation of  depth damage functions and economic impact assessment. This study used the flood map 
produced by hydraulic modelling of  a 50-year Bagmati river flood (11250 cumecs) event in a separate study 
(Kafle et al., 2007). The hydrologic model HEC-HMS, in combination with Geospatial Hydrologic Modeling 
Extension HEC-GeoHMS, was used to convert the precipitation excess to overland flow and channel runoff. 
The simulation spanned four months (June-September), encompassing the entirety of  the 2004 rainy season. 
The predicted hydrograph was calibrated against the observed one, and the model parameters were manually 
optimized for good simulation. 

Using rain gauge data, the predicted peak discharge was close to the observed value, and the smaller discharges 
followed the observed trend. The model framework developed in the previous study considered the spatial 
variation in the runoff  response of  the watershed by using curve numbers based on soil type, land use, and 
the spatial distribution of  the rainfall in the watershed. The peak flow of  the derived hydrograph was used as 
an input in the hydraulic model (HEC-RAS) for producing flood maps, forming the basis for inundation area 
extent and flood depths for this study. 

3.1 Validation of  model results

Validation of  hydrodynamic model results is based on the comparison of  modelled flood depths with observed 
depths and is shown in Figure 2. The results of  hydrologic simulation are shown in Figure 3. Both the results 
are adopted from Kafle et al. (2007).

           Figure 2: Observed and modelled flood depths	 Figure 3: Hydrologic Simulation Results

The normalized peak error (NPE), defined as follows was computed to be – 0.018.

NPE = (Qpmax - Qomax)/Qomax

Where Qpmax is the predicted peak discharge and Qomax is the observed peak discharge. The peak resembled 
well but the lower discharges need further refinement.
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3.2 Generating building database

Buildings, classified into adobe, brick masonry (BM), and reinforced cement concrete (RCC), digitized on 
Orthophoto of  1999 combined with the surveyed data were utilized to construct a comprehensive building 
database. MS Excel and SPSS software were used to analyze the data. Table 1 gives a statistical summary of  
the building data.

Table 1: Summary of  building data

S.N. Variables Unit Min Max. Mean Range

1 Building types Adobe = 276, Brick Masonry (BM) = 188 and RCC frame = 26

2 Building age year 2 53 15.77 51

3 Building plinth area sq. m 20 338.72 121.56 318.72

4 Number of  stories levels 1 3 1.11 2

5 Plinth height m 0.1 2 0.35 1.9

6 Height of  1st floor m 2 3.15 2.89 1.15

7
Present replacement value of  
building structure

NRs. (‘000) 21.53 6458 632 436.87

8 Maximum flood height m 0.1 3 0.9563 2.9

9 Flood duration day 0.25 7 2.024 6.75

10
Cost of  damage to building 
structure

NRs. 500 50000 8560 49500

11
Cost of  damage to building 
contents

NRs. 200 50000 8505 49800

12
Cost of  damage to outside 
facilities

NRs. 100 12000 2126.5 11900

Nepalese Rupees (1 USD = 70.00 NRs.) (exchange rate as per 2007)

Figure 4 shows the distribution of  buildings in the study area.
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Figure 4: Distribution of  building types in the study area

3.3 Community survey

Davis et al. (2013) have emphasized the need to integrate data from different sectors, e.g. social, technical, 
economic, and environmental, in assessing social vulnerability (Davis, 2013). In December 2006, a 
questionnaire survey was conducted on 490 flooding cases in 257 buildings, 6.5 percent of  total buildings, of  
different types (20 RCC frame, 106 BM, and 131 Adobe) were sampled from various parts of  the municipality 
to collect firsthand information on damages caused by floods in other years in the past to buildings and their 
contents. The survey consisted of  interviewing residents of  257 households in the flood-prone area of  Gaur 
Municipality to develop a database characterizing the building types, flood depth, flood duration, building 
age, plinth height, no. of  stories and the damage caused to building structures, etc. The deterioration in 
monetary terms was estimated from the cost incurred in the repair/restoration of  the damage. The survey 
was carried out with the help of  engineers, junior engineers and supervisors of  the Water Induced Disaster 
Prevention Office, Division No. 3, Bara, who were given prior orientation

3.4 Statistical analysis

Statistical analyses were carried out to generate a correlation matrix to identify the most sensitive parameters 
responsible for the damage. Regression analysis was performed to generate flood damage functions. The 
depth–damage curves were developed from data analysis on structural damage to residential and commercial 
buildings obtained through a questionnaire survey in the flood-affected areas of  the municipality. Separate 
depth-damage curves were developed for different types of  buildings based on the age of  the buildings and 
flood duration. 
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3.5 Model integration

The flood events in the study area in 1993, 2000, 2002, and 2004 were used as the reference floods for the 
survey. Out of  these, the 1993 flood was devastating, with a peak discharge of  16000 cumes and a return 
period of  more than 100 years. The total loss due to this flood in terms of  physical destruction was estimated 
to be Rs. 5 billion. It was estimated that the floods of  1993 retarded the country's development performance 
by at least two decades (Pradhan, 2007). The peak discharge of  the 2004 event almost equalled a value 
corresponding to a 50-year return period in which flood depths in some parts of  the municipality exceeded 3 
meters, and the duration was more than three days. It caused inundation in about 72% of  the municipality's 
total area (Kafle et al., 2007).

In conjunction with flood mapping, building inventory, and damage functions, this database was integrated into 
a GIS environment to create a flood loss map and evaluate the economic ramifications for Gaur Municipality. 
The methodological framework is depicted in Figure 5.

Figure 5: Methodological framework

4. Results and Discussion 

4.1 Inundation area extent and flood depth

The inundation area extent and flood depths corresponding to a 50-year return period flood obtained from 
the hydrodynamic model formed the basis of  flood depth in a given building location (Figure 6). The water 
depth inside the building was computed by deducting the plinth height.
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Figure 6: Gaur municipality flood depth map

The depth is found to be as high as 3 m. Considering the relatively inferior building materials, low height 
of  roads and possibility to crop damage 1 m is considered as the critical depth beyond which the floodwater 
becomes more damaging. The municipality could refer to the flood depths in a given location for fixing plinth 
height to minimize submergence in extreme flood events. It could be inferred from the results that instead 
of  constructing a single storied building with large plinth area, multiple storied building with reduced plinth 
area is desirable from the point of  view of  reducing damage, especially to the building contents. 

4.2 Depth-damage functions

The depth damage data were analyzed for different scenarios, and best-fitted damage curves and functions 
were generated. The various damage functions are summarized in Table 2. The total damage within the 
municipality for a 50-year return period flood event was computed as NRs. 225 million. This shows the 
severity of  the economic impact that a flood event with an annual exceedance probability of  2% might have 
on the municipality. 
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Table 2: Summary of  flood depth - damage functions

S.N.
Building 
type

Flood duration 
(days)

Building age 
(years)

Depth - damage function R²

1 RCC frame All data y = 1.4687ln(x) +1.8713 0.73

2 BM All data y = 4.1053ln(x) +5.227 0.86

3 Adobe All data y = 15.161ln(x) +17.502 0.91

4 RCC frame < 1   y = 1.2072ln(x) +1.6003 0.67

5 RCC frame 1 - 2   y = 1.5329ln(x) +2.0749 0.75

6 RCC frame > 2   insufficient data

7 BM < 1   y = 3.139ln(x) +4.3717 0.70

8 BM 1 - 2   y = 4.7372ln(x) +6.0769 0.86

9 BM > 2   y = 5.024ln(x) +6.5435 0.92

10 Adobe < 1   y = 9.6035ln(x) + 9.9697 0.73

11 Adobe 1 - 2   y = 16.5832ln(x) +15.7870 0.89

12 Adobe >2   y = 18.6550ln(x) + 18.2377 0.94

13 RCC frame   <= 10 y = 1.2782ln(x) + 1.7115 0.74

14 RCC frame   >10 y = 1.9398ln(x) + 2.5856 0.92

15 BM   <= 10 y = 2.6159ln(x) + 3.6630 0.77

16 BM   >10 y = 4.3259ln(x) + 5.5564 0.86

17 Adobe   <= 10 y = 17.8337ln(x) + 15.7129 0.87

18 Adobe   >10 y = 14.6778ln(x) + 12.9990 0.83

19
Crops 
damage

    y = 21.766ln(x) + 62.646 0.33

y = percent damage, x = depth of  flood (m)

The depth-damage curves for some analysis scenarios are given in Figures 7 to 10.
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Figure 7: General depth-damage curves considering buildings of  all ages and floods of  all duration

Figure 8: Depth-damage curves for brick masonry (BM) buildings
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Figure 9: Depth-damage curves for buildings aged more than ten years

Figure 10: Depth-damage curves for RCC buildings based on age

The results indicate that in terms of  percentage damage, RCC suffered the least and adobe the most for the 
same depth and duration of  flood considering buildings of  all ages and floods of  all durations. Accordingly, 
the cost of  repair for flood damage was found to be the lowest for RCC buildings as a fraction of  the initial 
cost. Regarding the age of  the building, newer buildings suffered less damage. Also, the longer the duration 
and greater the depth, the higher the damage. Hence maintaining local drains to reduce the depth and 
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duration of  flood is important. The total damage for each type of  building was computed. The values were 
reclassified, and the number of  houses falling under each class is shown in Table 3 in terms of  replacement 
value.

Table 3: Distribution of  houses by replacement value

Replacement Value (NRs) Number of  houses

0 – 5,000 739

5,000 – 15,000 1083

15,000 – 25,000 827

25,000 – 50,000 1222

50,000 – 100,000 1040

>100,000 474

From the above table, it can be deduced that 8.8% of  the houses require more than NRs. 100,000 to restore 
the flood damages and for some 20% of  the houses, such cost ranged from NRs. 50,000 to 100,000. Such 
information could be of  use to the municipality for guiding investment in flood protection works. 

4.3 Critical parameters for building vulnerability

The linear multiple regression model results carried out using a set of  independent variables for each type of  
building to establish a relationship with structural damage are given below in equations (1) to (4).

For Adobe houses,

Y = -1.12 + 0.033X1 – 0.1X2 + 14.8X3 + 0.52X4						     (1)

N = 276, R2 = 0.923

For BM houses,

Y = 1.3 – 0.003X1 – 1X2 + 5X3 – 0.01X4 – 8X5						      (2) 

N = 188, R2 = 0.763

For RCC houses,

Y = 0.44 – 0.009X1 – 0.144 X2 + 2.35X3 – 0.22 X4 – 0.184 X5				    (3) 

N = 26, R2 = 0.903

Where,

Y = Percentage damage 

X1 = Age of  building (year)

X2 = Plinth height (m)

X3 = Flood depth (m)
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X4 = Flood duration (days)

X5 = No. of  stories

Figure 11(a and b) show the scatter plots for regression standardized predicted values for Adobe and RCC 
buildings.

Figure 11-a: Generated structural damage functions - Adobe houses

Figure 11- b: Generated structural damage functions - RCC buildings
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Notable findings include a positive correlation between building age and damage costs to the structure, 
suggesting that older buildings may be more vulnerable. SPSS for descriptive statistics analysis was used 
to find the bivariate correlation of  all types of  houses for different variables: percentage damage, building 
age, plinth height, flood depth, flood duration and number of  storeys of  the houses surveyed. The heat map 
(Figure 12) shows the Pearson correlation coefficients between variables.

Figure 12: Pearson correlation matrix

The colors intensity represents the strength and direction of  correlations, with warmer colors indicating 
positive correlations and cooler colours indicating negative correlations. The numeric values within each cell 
denote the correlation coefficient, ranging from -1 to 1. The matrix shows that the correlation coefficients 
of  percentage damage with flood depth and duration are comparatively higher, at 0.75 and 0.42, respectively. 
At the same time, the correlation coefficient of  percentage damage with building age, plinth height, and 
number of  stories is relatively low. Thus, it can be concluded that flood depth and duration contribute most 
to structural building damage compared to other variables.

Positive correlations, such as the one between building age and damage costs, suggest potential vulnerabilities. 
Negative correlations, for instance, between plinth height and flood depth, indicate trade-offs or mitigating 
factors. The heat-map serves as a visual guide for identifying patterns and informing targeted interventions 
for building resilience. 
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4.4 Economic impact of  flooding

The developed damage functions were used to estimate and generate flood loss maps. The study results 
showed that the municipality would have to bear the burden of  substantial economic impacts due to potential 
extreme floods. The total structural damage to residential and commercial buildings alone was considered 
NRs. 225 million. The fact that this figure would rise, with time due to growth in urbanization and subsequent 
wealth accumulation, shows the severity of  the economic impact of  potential flooding within the municipality 
area and other municipalities in similar geographical settings. Figure 13 shows a flood loss map (distribution 
of  structural damage to buildings within the municipality) corresponding to a 50-year return period Bagmati 
River flood. 

Figure 13: Flood loss map (Distribution of  structural damage to buildings)

5. Conclusions
Depth-damage functions are the standard urban flood damage assessment method for buildings, central to 
flood damage estimation and serving as essential tools in quantifying the impact of  floods on both lives and 
property. While flood depth and duration are notably sensitive factors affecting flood damage, their impact is 
also influenced by additional factors such as building age, plinth height, and the number of  stories, further 
complicating flood damage assessment. The study gives the flexibility of  selecting and applying appropriate 
damage functions for estimating flood damage. The generated functions for structural damage of  buildings 
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have R-square values from 0.67 to 0.94. The R-square value of  0.33 for crop damage could be attributed to 
people’s uncertainty about damage in the context of  crops. The developed flood damage functions, predicted 
damages, and the flood loss map showing the vulnerability of  the different areas could help plan resilient 
urban development activities within the municipality and provide guidance for decision making in long-term 
investments in flood protection and drainage improvement measures. 

Policymakers and urban planners can leverage the results to prioritize interventions based on identified 
correlations. The positive correlation between building age and damage costs underscores the need for 
proactive retrofitting strategies for older structures. Similarly, strong negative correlation between plinth 
height and damage suggests that plinth level of  buildings be decided considering the potential flood depth 
in a given location, especially, in the low-lying areas of  the municipality. It is expected that the findings of  
the study could contribute to the broader understanding of  building vulnerabilities and can inform targeted 
interventions for enhancing disaster resilience.

While this study offers valuable insights of  relationship within the dataset focusing on direct tangible 
damages, further research including intangible losses may make the study more comprehensive. Study using 
2D hydrodynamic model may improve the accuracy of  the findings. Future studies should consider alternative 
validation of  the inundation area extent using satellite images capturing peak floods.

Acknowledgements

The authors thank Department of  Water Induced Disaster Prevention, Department of  Hydrology and 
Meteorology and Survey Department of  Nepal for providing data for this study. We appreciate the support 
and cooperation of  Er. B. K. Singh and Er. Y. Mahato of  the then Water Induced Disaster Prevention Office 
- Division No. 3, Bara, for conducting the questionnaire survey. The first author gratefully acknowledges 
the financial support for field works provided by the Japan Aerospace Exploration Agency (JAXA), through 
Geoinformatics Centre, Asian Institute of  Technology, Bangkok.

Conflicts of  Interest

The authors declare that they have no financial or personal relationships that may have inappropriately 
influenced them in authoring this article.

References
Adams, T. E., & Pagano, T. C. (2016). Flood forecasting: A global perspective. Academic Press. 
Bajracharya, S., Shrestha, M., & Shrestha, A. J. J. o. F. R. M. (2017). Assessment of  high‐resolution satellite rainfall estimation 

products in a streamflow model for flood prediction in the Bagmati basin, Nepal. 10(1), 5-16. 
Blanchard-Boehm, R. D., Berry, K., & Showalter, P. S. J. A. G. (2001). Should flood insurance be mandatory? Insights in the 

wake of  the 1997 New Year’s Day flood in Reno–Sparks, Nevada. 21(3), 199-221. 
Büchele, B., Kreibich, H., Kron, A., Thieken, A., Ihringer, J., Oberle, P., Nestmann, F. (2006). Flood-risk mapping: contributions 

towards an enhanced assessment of  extreme events and associated risks. Nat. Hazards Earth Syst. Sci., 6(4), 485-503. 
https://doi.org/10.5194/nhess-6-485-2006 

Cannon, T. (2022). What must be done to rescue the concept of  vulnerability? In Why Vulnerability Still Matters (pp. 68-87). 
Routledge. 

Carroll, B., Balogh, R., Morbey, H., & Araoz, G. (2010). Health and social impacts of  a flood disaster: responding to needs and 
implications for practice. Disasters, 34(4), 1045-1063. https://doi.org/10.1111/j.1467-7717.2010.01182.x 

Chidi, C. L., Shrestha, B. R., & Sapkota, L. J. G. J. o. N. (2022). Flood risk mapping and analysis: A case study of  Andheri Khola 
catchment, Sindhuli district, Nepal. 103-118. 



118

Journal of Engineering Issues and Solutions 3 (1): 102-118 [2024] Kafle et al.

Dale, M., Wicks, J., Mylne, K., Pappenberger, F., Laeger, S., & Taylor, S. J. N. h. (2014). Probabilistic flood forecasting and 
decision-making: an innovative risk-based approach. 70, 159-172. 

Davis, I. (2013). Progress in analysis of  social vulnerability and capacity. In Mapping vulnerability (pp. 128-144). Routledge. 
Dewan, T. H. J. W., & Extremes, C. (2015). Societal impacts and vulnerability to floods in Bangladesh and Nepal. 7, 36-42. 
Dottori, F., Mentaschi, L., Bianchi, A., Alfieri, L., & Feyen, L. J. N. C. C. (2023). Cost-effective adaptation strategies to rising 

river flood risk in Europe. 13(2), 196-202. 
Dutta, D., Herath, S., & Musiake, K. (2003). A mathematical model for flood loss estimation. Journal of  Hydrology, 277(1), 24-

49. https://doi.org/https://doi.org/10.1016/S0022-1694(03)00084-2 
Gnan, E., Friedland, C. J., Rahim, M. A., Mostafiz, R. B., Rohli, R. V., Orooji, F., McElwee, J. J. F. i. W. (2022). Improved 

building-specific flood risk assessment and implications of  depth-damage function selection. 4, 919726. 
Horritt, M., & Bates, P. J. J. o. h. (2002). Evaluation of  1D and 2D numerical models for predicting river flood inundation. 

268(1-4), 87-99. 
Kafle, T., Hazarika, M., Karki, S., Shrestha, R., Sharma, S., & Samarakoon, L. (2007). Basin scale rainfall-runoff  modelling for 

flood forecasts. Proceedings of  the 5th Annual Mekong Flood Forum, Ho Chi Minh City, Vietnam. 
Khanal, B. N. J. M. o. H. A., Government of  Nepal. (2020). Nepal: A brief  country profile on Disaster Risk Reduction and 

Management. 1-34. 
Khushi, S. R., Khoso, A. R., Bhutto, S., Narejo, A. A. J. J. o. E., & Economics, E. (2024). The long-term health impacts of  

repeated flood events: A Review. 3(1), 11-19. 
Kundzewicz, Z. W., Kanae, S., Seneviratne, S. I., Handmer, J., Nicholls, N., Peduzzi, P., . . . Mach, K. J. H. S. J. (2014). Flood risk 

and climate change: global and regional perspectives. 59(1), 1-28. 
Luo, T., Maddocks, A., Iceland, C., Ward, P., & Winsemius, H. J. W. r. i. (2015). World’s 15 countries with the most people 

exposed to river floods. 5. 
Marsh, S. (2020). Nepal: Priority River Basins Flood Risk Management Project. 
Meyerson, N. (2004). Guidelines for reducing flood losses. Diane Publishing Company. 
Pradhan, B. K. (2007). Disaster preparedness for natural hazards: current status in Nepal. International Centre for Integrated 

Mountain Development (ICIMOD). 
Smith, D. I. J. W. S. (1994). Flood damage estimation-A review of  urban stage-damage curves and loss functions. 20(3), 231-

238. 
Soetanto, R., & Proverbs, D. G. J. S. S. (2004). Impact of  flood characteristics on damage caused to UK domestic properties: 

the perceptions of  building surveyors. 22(2), 95-104. 
Zeleňáková, M., Gaňová, L., & Diaconu, D. C. (2020). Flood damage assessment and management (Vol. 94). Springer.


