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1 Introduction

The following fundamental inequality:

x+
1

x
≥ 2, (1)

for x > 0, with equality at x = 1, finds many applications in various branches of mathematics. An elegant
proof is based on the following elementary inequality: [

√
x− 1/

√
x]2 ≥ 0. It also plays a central role in the

theory of inequalities, including the determination of power and power-exponential functions. For recent
advances in this area, see [1, 3, 6].

In particular, Bagul and Dhaigude [1] gave two generalizations of the inequality in (1). They obtained the
result below, which involves a power parameter α that can be tuned.

Proposition 1. [1, Proposition 2] Let α > 1.

� If x ≥ 1, then we have

αx+
1

xα
≤ xα +

α

x
.

� If x ∈ (0, 1], then we have

αx+
1

xα
≥ xα +

α

x
.

These two inequalities are reversed if α ∈ (0, 1), respectively, i.e.,

� If x ≥ 1, then we have

αx+
1

xα
≥ xα +

α

x
.

� If x ∈ (0, 1], then we have

αx+
1

xα
≤ xα +

α

x
.

The proof in [1, Proposition 2] is based on differentiation, whereas the proof we propose here is completely
different, based on the hyperbolic sine function and its associated series expansion. We will see later that
our new approach allows for greater flexibility, allowing us to improve on [1, Proposition 2].

Proof of Proposition 1. Let α > 1.
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� If x ≥ 1, the desired inequality can be reformulated as

α

(
x− 1

x

)
≤ xα − 1

xα
.

Based on this, we reconfigure this inequality by introducing y = log(x), so that y is well defined, with
y ≥ 0 and x = ey. The inequality above is thus rewritten as α (ey − e−y) ≤ eαy − e−αy. Then, by
dividing by 2 and introducing the hyperbolic sine function, i.e., sinh(t) = (et − e−t)/2, t ∈ R, we
obtain the following equivalent inequality:

α sinh(y) ≤ sinh(αy).

Taking this new form into account, let us prove it using the classical series expansion of the hyperbolic
sine function, i.e., sinh(t) =

∑∞
k=0 t

2k+1/(2k + 1)!, t ∈ R. We immediately have

sinh(αy) =

∞∑
k=0

(αy)2k+1

(2k + 1)!
=

∞∑
k=0

α2k+1y2k+1

(2k + 1)!
.

Since α > 1, for any integer k ≥ 0, we have α2k+1 > α, and since y ≥ 0, we have α2k+1y2k+1 ≥ αy2k+1.
Thus, we get

sinh(αy) ≥ α

∞∑
k=0

y2k+1

(2k + 1)!
= α sinh(y).

This demonstrates the desired inequality.

� For the case x ∈ (0, 1], let us set z = 1/x. Then we have z ≥ 1, and we can apply the previous result,
so

αz +
1

zα
≤ zα +

α

z
.

This is equivalent to

αx+
1

xα
≥ xα +

α

x
,

which is the desired inequality.

Let us consider the case α ∈ (0, 1], which uses the same mathematical arguments, i.e., the introduction of
the sine hyperbolic function and the associated series expansion.

� For x ≥ 1, by setting y = log(x) (so y ≥ 0), the stated inequality

αx+
1

xα
≥ xα +

α

x
,

can be reformulated as

α sinh(y) ≥ sinh(αy).

With this new form in mind, let us prove it using the classical series expansion of the hyperbolic sine
function. We have

sinh(αy) =

∞∑
k=0

(αy)2k+1

(2k + 1)!
=

∞∑
k=0

α2k+1y2k+1

(2k + 1)!
.

Since α ∈ (0, 1], for any integer k ≥ 0, we have α2k+1 ≤ α, and since y ≥ 0, we have α2k+1y2k+1 ≤
αy2k+1. Thus, we get

sinh(αy) ≤ α

∞∑
k=0

y2k+1

(2k + 1)!
= α sinh(y).

The desired inequality is demonstrated.
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� For the case x ∈ (0, 1], let us set z = 1/x. Then we have z ≥ 1, and we can apply the previous result,
so

αz +
1

zα
≥ zα +

α

z
.

By substitution, we get

αx+
1

xα
≤ xα +

α

x
,

which is the desired inequality.

This ends the proof.

This proof is really different from the one in [1], and opens up some room for improvement. The rest of
the paper emphasizes this.

2 A Refinement

A refinement of Proposition 1 is possible, due to the new hyperbolic sine approach, as shown below.

Proposition 2. Let α > 1. Then

� If x ≥ 1, we have

xα − 1

xα
− α

(
x− 1

x

)
≥ α(α2 − 1)

[(
x− 1

x

)
− 2 log(x)

]
≥ 0.

� If x ∈ (0, 1], we have

xα − 1

xα
− α

(
x− 1

x

)
≤ α(α2 − 1)

[(
x− 1

x

)
− 2 log(x)

]
≤ 0.

Let α ∈ (0, 1]. Then

� If x ≥ 1, we have

xα − 1

xα
− α

(
x− 1

x

)
≤ α(α2 − 1)

[(
x− 1

x

)
− 2 log(x)

]
≤ 0.

� If x ∈ (0, 1], we have

xα − 1

xα
− α

(
x− 1

x

)
≥ α(α2 − 1)

[(
x− 1

x

)
− 2 log(x)

]
≥ 0.

Proof. Let α > 1.

� Let us consider the case x ≥ 1. We start with a general hyperbolic sine inequality. Based on the
hyperbolic sine series expansion, for α > 1 and y ≥ 0, we have

sinh(αy) =

∞∑
k=0

(αy)2k+1

(2k + 1)!
= αy +

∞∑
k=1

α2k+1y2k+1

(2k + 1)!

≥ αy + α3
∞∑
k=1

y2k+1

(2k + 1)!
= αy + α3

[ ∞∑
k=0

y2k+1

(2k + 1)!
− y

]
= αy + α3[sinh(y)− y] = α(1− α2)y + α3 sinh(y).

By taking y = log(x) with x ≥ 1, we get

xα − 1

xα
≥ 2α(1− α2) log(x) + α3

(
x− 1

x

)
.
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Therefore, we have

xα − 1

xα
− α

(
x− 1

x

)
≥ α(α2 − 1)

[(
x− 1

x

)
− 2 log(x)

]
.

By using the well-known logarithmic upper bound [4], [9], log(t) ≤ (t − 1)/
√
t, t ≥ 1, for x ≥ 1, we

get

2 log(x) = log(x2) ≤ x2 − 1

x
= x− 1

x
.

Therefore, we have x − 1/x ≥ 2 log(x). Since α > 1, we also have α(α2 − 1) > 0, and these results
give

xα − 1

xα
− α

(
x− 1

x

)
≥ α(α2 − 1)

[(
x− 1

x

)
− 2 log(x)

]
≥ 0.

� For the case x ∈ (0, 1], let us set z = 1/x. Then we have z ≥ 1, and we can apply the previous result,
so

zα − 1

zα
− α

(
z − 1

z

)
≥ α(α2 − 1)

[(
z − 1

z

)
− 2 log(z)

]
≥ 0.

Substituting and rearranging (using log(z) = − log(x)), we get

−
[
xα − 1

xα
− α

(
x− 1

x

)]
≥ −

{
α(α2 − 1)

[(
x− 1

x

)
− 2 log(x)

]}
≥ 0,

which is the desired inequality after multiplying both sides by −1.

Let us consider the case α ∈ (0, 1], which uses the same mathematical arguments, i.e., the introduction of
the sine hyperbolic function, the associated series expansion, and a logarithmic inequality.

� Let x ≥ 1. Based on the hyperbolic sine series expansion, for α ∈ (0, 1] and y ≥ 0, we have

sinh(αy) =

∞∑
k=0

(αy)2k+1

(2k + 1)!
= αy +

∞∑
k=1

α2k+1y2k+1

(2k + 1)!

≤ αy + α3
∞∑
k=1

y2k+1

(2k + 1)!
= αy + α3

[ ∞∑
k=0

y2k+1

(2k + 1)!
− y

]
= αy + α3[sinh(y)− y] = α(1− α2)y + α3 sinh(y).

By taking y = log(x) with x ≥ 1, we get

xα − 1

xα
≤ 2α(1− α2) log(x) + α3

(
x− 1

x

)
,

which implies that

xα − 1

xα
− α

(
x− 1

x

)
≤ α(α2 − 1)

[(
x− 1

x

)
− 2 log(x)

]
.

With the same arguments as those in the case x ≥ 1, the term in the square bracket is positive, and
α(α2 − 1) ≤ 0. Therefore, we have

xα − 1

xα
− α

(
x− 1

x

)
≤ α(α2 − 1)

[(
x− 1

x

)
− 2 log(x)

]
≤ 0.

� For the case x ∈ (0, 1], let us set z = 1/x. Then we have z ≥ 1, and we can apply the previous result,
so

zα − 1

zα
− α

(
z − 1

z

)
≤ α(α2 − 1)

[(
z − 1

z

)
− 2 log(z)

]
≤ 0.
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Substituting and rearranging (again using log(z) = − log(x)), we get

−
[
xα − 1

xα
− α

(
x− 1

x

)]
≤ −

{
α(α2 − 1)

[(
x− 1

x

)
− 2 log(x)

]}
≤ 0,

which is the desired inequality after multiplying both sides by −1.

This ends the proof.

Proposition 2 is a clear improvement over Proposition 1, mainly due to the intermediate term α(α2 −
1) [(x− 1/x)− 2 log(x)] that governs the sign of the main term at the heart of the inequalities, i.e., xα −
1/xα − α(x− 1/x).
Let us now illustrate this proposition. Figure 1 displays the following difference function:

m(x) = xα − 1

xα
− α

(
x− 1

x

)
− α(α2 − 1)

[(
x− 1

x

)
− 2 log(x)

]
,

for x ∈ (0.3, 4), and α = 1.5 on the one hand, and α = 0.5 on the other hand.

1 2 3 4

−
0
.2

0
.0

0
.2

0
.4

x

m(x)

1 2 3 4

−
0
.0

0
8

−
0
.0

0
4

0
.0

0
0

0
.0

0
4

x

m(x)

Figure 1: Illustration of m(x) for x ∈ (0.3, 4) and α = 1.5 (left) and α = 0.5 (right)

This figure fully illustrates the fact that, for the setting under consideration, we have m(x) ≥ 0 or m(x) ≤ 0,
depending on whether x ∈ (0, 1) or x ≥ 1, under the rigorous conditions of Proposition 2.
In fact, this result can be applied in many mathematical circumstances. In the remainder of the paper, we
support this claim by improving one of the most famous trigonometric inequalities in the literature.

3 Application to Huygens-Type Inequality

The Huygens inequality [2, 5, 8, 10] is known as

2
sin(x)

x
+

tan(x)

x
> 3,

for x ∈ (0, π/2). In 2010, this inequality was refined by Neuman and Sándor [8] as follows:

2
sin(x)

x
+

tan(x)

x
> 2

x

sin(x)
+

x

tan(x)
> 3, (2)

for x ∈ (0, π/2). We call these inequalities Huygens-type inequalities. In the result below, we propose a
refinement of the left inequality of (2).
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Proposition 3. If x ∈ (0, π/2), we have

2
sin(x)

x
+

tan(x)

x
> 2

x

sin(x)
+

x

tan(x)
+ 6

{
x

sin(x)
− sin(x)

x
+ 2 log

[
sin(x)

x

]}
> 2

x

sin(x)
+

x

tan(x)
> 3.

Proof. It is well known that 0 < sin(x)/x < 1 if x ∈ (0, π/2). Therefore, for α = 2, replacing x by sin(x)/x

in the second inequality of Proposition 2 and using the inequality [x/ sin(x)]
2
< tan(x)/x (see [7]), we get[

sin(x)

x

]2
+ 2

x

sin(x)
≤

[
x

sin(x)

]2
+ 2

sin(x)

x
+ 6

{
sin(x)

x
− x

sin(x)
− 2 log

[
sin(x)

x

]}
<

tan(x)

x
+ 2

sin(x)

x
+ 6

{
sin(x)

x
− x

sin(x)
− 2 log

[
sin(x)

x

]}
.

Using the inequality [x/ sin(x)]
2
< tan(x)/x once again and rearranging the terms, we find that

2
sin(x)

x
+

tan(x)

x
> 2

x

sin(x)
+

x

tan(x)
− 6

{
sin(x)

x
− x

sin(x)
− 2 log

[
sin(x)

x

]}
.

This gives the desired inequality. Note that the term x/ sin(x)−sin(x)/x+2 log[sin(x)/x] can also be shown
to be positive by using well-known geometric mean-logarithmic mean inequality

√
y1y2 ≤ (y1−y2)/[log(y1)−

log(y2)], by setting y1 = sin(x)/x and y2 = x/ sin(x). The desired inequalities are obtained.

Proposition 3 is a clear improvement of double inequality (2). The appearance of the logarithmic term can
be seen as surprising, but it makes a strong positive difference with Equation (2). Thus, this enhances our
understanding of this notable inequality and how it can be improved.

Let us now illustrate it. Figure 2 displays the following difference function:

n(x) = 2
sin(x)

x
+

tan(x)

x
−
[
2

x

sin(x)
+

x

tan(x)
+ 6

{
x

sin(x)
− sin(x)

x
+ 2 log

[
sin(x)

x

]}]
,

for x ∈ (0.1, 0.8) for zoom reasons on the one hand, and x ∈ (0.1, 1.5) for a global view on the other hand.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0
.0

0
0
.0

2
0
.0

4
0
.0

6

x

n(x)

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0
2

4
6

x

n(x)

Figure 2: Illustration of n(x) for x ∈ (0.1, 0.8) (left) and x ∈ (0.1, 1.5) (right)

It is obvious that, in the considered setting, n(x) > 0. Furthermore, a closer look at the y axis of the case
x ∈ (0.1, 0.8) reveals that the obtained inequality is “very sharp” for small and reasonable values of x.
This trigonometric inequality is just one example of the application of Proposition 2. We believe that
this will lay the foundation for more, in various mathematical fields, beyond the scope of the inequality
framework.
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4 Conclusion

In this paper, we derived several novel inequalities involving power functions by employing series expansion
techniques They extend and refine two generic inequalities due to Bagul and Dhaigude in 2022. Huygens-
type inequalities are derived, as a notable application. A graphical analysis is performed to support the
theoretical results. We believe that some of the techniques used may be of independent interest for other
inequalities, which we leave for a future work.
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