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Abstract: There are many probability models describing the time related events data. In this study, the
exponential distribution is modified by adding one more parameter to get more flexible probability model
called Extended Kumaraswamy Exponential (EKwE) distribution using the New Kw-G family (NKwG) of
distributions. We have studied some of the statistical characteristics of the model, such as its reliability
function, hazard rate function, and quantile function. For testing the applicability of the model, a real data
set based on COVID-19 data is taken. The Cramer-von Mises (CVM) approach, Least Square Estimation
(LSE), and Maximum Likelihood Estimation (MLE) are used to estimate the model’s parameters. Validity
of the model is checked by using P -P plot and Q-Q plot. Akaike Information Criterion (AIC), Corrected
Akaike Information Criterion (CAIC), Bayesian Information Criterion (BIC) and Hannan-Quinn Infor-
mation Criterion (HQIC) are also used for model comparison. Goodness of fit of the proposed model is
tested using Kolmogrov-Smirnov (KS), Cramer-Von Mises (CVM) and Anderson-Darling (An) test statis-
tics along with respective p-values. All the analysis of the study is performed by using R programming.
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1 Introduction

There are different probability models in existing literature that describes the time related data. In recent
time, we can find some data that can be explained and analyzed adequately using the classical probability
models. One of the important aspects of the research is to explore the existing knowledge as well as getting
some new potentiality of the data. New probability models become essential for analyzing the recent
data more precisely. In literature, we can get various methods of formulating new probability model that
explains data with more precise results. Addition of some extra parameters to the existing probability
model, modifying the existing probability models, inversing the variables used in models and using some
family of probability models are the main techniques of defining new probability models. Modification
of exponential distribution was done by Kus [12] to get a new lifetime model having decreasing hazard
function. According to Barreto-Souza and Cribari-Neto [5], a new lifetime distribution is generalized by
adding a power parameter creating a new distribution known as ”A generalization of the Exponential-
Poisson distribution”. There are various exponentiated models such as the exponentiated generalized
class of distributions by Cordeiro and Ortega [9], exponentiated Weibull distribution by Nadarajah et al.
[15] and exponentiated distributions by Al-Hussaini and Ahsanullah [2] etc. Telee et al. [23] introduced
exponentiated generalized exponential geometric distribution using Beta Exponential family by Alzaatreh
et al. [3]. Chaudhary and Kumar [7] introduced the logistic NHE distribution using the extension of
exponential distribution by Nadarajah and Haghighi [16]. Chaudhary and Kumar [8] have also developed
new model called half-Cauchy modified exponential distribution using half-Cauchy family of distribution
by Ristić and Balakrishnan [19]. There are many modified distributions. Weibull distribution [10] was
modified to introduce modified Weibull distribution by Sarhan and Zaindin [20]. Modified inverse Rayleigh
distribution by Khan [11] is the modified form of the Weibull distribution [10].

In this study, we have used new Kumaraswamy generalized family of distributions by Tahir et al. [21]
to introduce the new probability model called extended Kumaraswamy exponential (EKwE) distribution.
Proposed model has two parameters defined on single continuous variable. The cumulative distribution
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function of the new Kw-G family (NKwG) is given by equation (1)

F (x; η, β, θ) = 1−
(
1−

(
1− Ḡ(x; η)

G(x;η)
)β)θ

;x ≥ 0, (η, β, θ) ≥ 0. (1)

We have set a parameter θ = 1 to get the special case of new Kw-G family (NKwG) as equation(2)

F (x; η, β) =
(
1− Ḡ(x; η)

G(x;η)
)β

;x ≥ 0, (η, β) ≥ 0. (2)

The cumulative distribution function of the exponential distribution which is taken as the base function is
given by(3)

G(x;λ) = 1− e−λx;x ≥ 0, λ > 0, (3)

and

Ḡ(x;λ) = e−λx;x ≥ 0, λ > 0.

Substituting the G(x;λ) and Ḡ(x,λ) in eq. (2), we get the CDF of the proposed model EKwE given by
expression(4)

F (x;λ, β) =

(
1−

(
e−λx

)(1−e−λx)
)β

;x ≥ 0, (λ, β) > 0. (4)

2 Model Analysis

The probability density function (pdf) of the proposed model EKwE is given by expression(5) as

f(x;λ, β) = λβ
(
e−λx

)(1−e−λx) (
1−

(
e−λx

)
+ λx

(
e−λx

))(
1−

(
e−λx

)(1−e−λx)
)β−1

;x ≥ 0, (λ, β) > 0. (5)

The probability density curves for some values of the parameters are displayed here. It is clear that the
probability curve is flexible depending upon the values of the parameter indicating that the distribution
will fit different set of data adequately.
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Figure 1: Probability density function

The Figure 1 represent probability density curves of EKwE.
Some of the properties of the model is mentioned below
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2.1 Survival function (S(x))

The survival function(6) of the probability model is complementary of the cdf and is given by,

S(x) = 1− F (x;λ, β) = 1−
(
1−

(
e−λx

)(1−e−λx)
)β

;x ≥ 0, (λ, β) > 0. (6)

2.2 Hazard rate function (h(x))

Hazard rate function (7)of the proposed model is defined as

h(x) = λβ
(
e−λx

)(1−e−λx) (
1−

(
e−λx

)
+ λx

(
e−λx

))(
1−

(
e−λx

)(1−e−λx)
)β−1

(
1−

(
1−

(
e−λx

)(1−e−λx)
)β
)−1

(7)
The failure rate curves of the proposed model for numerous values of parameters are exhibited in figure [2].
It is found that the hazard curve is of different shape depending upon the values of parameters. The curve
is increasing-decreasing, and inverted bathtub shaped.

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

 

x

pd
f f

(x
)

λ = 0.20, β = 0.05
λ = 0.30, β = 0.07
λ = 0.40, β = 0.90
λ = 0.50, β = 1.11
λ = 0.60, β = 1.50
λ = 0.80, β = 3.50

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

 

x

pd
f f

(x
)

λ = 0.25, β = 3.50
λ = 0.35, β = 3.75
λ = 0.45, β = 4.00
λ = 0.55, β = 4.75
λ = 0.65, β = 5.50
λ = 0.75, β = 5.75

Figure 2: Hazard rate function

The Figure 2 represent hazard rate curves of EKwE.

2.3 Reverse hazard function

We can define reverse hazard function as(8)

hrev(x) = β
(
e−λx

)(1−e−λx) (
1−

(
e−λx

)
+ λx

(
e−λx

))(
1−

(
e−λx

)(1−e−λx)
)−1

;x > 0, (λ, β) > 0. (8)

2.4 Cumulative hazard rate function (H(x))

The cumulative hazard rate function H(x) is given by expression(9) as

H(x) = − lnS(x) = − ln

[
1−

(
1−

(
e−λx

)(1−e−λx)
)β
]
. (9)
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2.5 Quantile function

Quantile function of the model is an alternative of the distribution function that helps more study different
characteristic such as central tendency, dispersion and moments etc. Quantile function of the model is
given by equation(10)

log(1− p1/β) + λx(1− e−λx) = 0; 0 ≤ p ≤ 1. (10)

2.6 Asymptotic properties of the Model

Asymptotic properties of the density function can be found by verifying that lim
x→0

f(x) = lim
x→∞

f(x). If model

satisfies the asymptotic properties, then mode of the model will exist. Taking limiting at end points

lim
x→0

f(x) = lim
x→0

λβ
(
e−λx

)(1−e−λx) (
1−

(
e−λx

)
+ λx

(
e−λx

))(
1−

(
e−λx

)(1−e−λx)
)β−1

= 0; (11)

lim
x→∞

f(x) = lim
x→∞

λβ
(
e−λx

)(1−e−λx) (
1−

(
e−λx

)
+ λx

(
e−λx

))(
1−

(
e−λx

)(1−e−λx)
)β−1

= 0. (12)

Here, lim
x→0

f(x) = lim
x→∞

f(x) so modal value of the proposed model will exist.

2.7 Skewness and kurtosis

Skewness describes about the consistency of the data. Here we have used Bowley’s coefficient of skewness
by Al-saiary et al. [1] based on quantiles as

SK (B) =
Q (0.75)+Q (0.25) -2*Q (0.50)

Q(0.75)-Q(0.25)
.

Coefficient of Octiles Kurtosis by Moors [14] and Al-saiary et al. [1] can be calculated using relation

Ku=
Q(0.375)-Q(0.625)-Q (0.125)+Q (0.875)

Q (0.75)-Q(0.25)
.

3 Methods of Parameters Estimation

Parameters can be estimated applying different methods. We have applied following methods.

3.1 Methods of Maximum Likelihood Estimation (MLE)

We define the log likelihood function for the proposed model in equation (13). Let x
−

= (x1, . . . , xn) be a

random sample of size n from EKwE then the log likelihood function can be written as

ℓ(λ, β|x) = n log(λβ) + (β − 1)
n∑

i=1

log

[
1−

(
e−λxi

)(1−e−λxi)
]

−λ

n∑
i=1

xi

(
1− e−λxi

)
+

n∑
i=1

log
(
1− e−λxi + λxie

−λxi
)
. (13)

After differentiating (13) with respect to λ and β, we can get the first order and second order partial
derivatives of log likelihood function as

∂ℓ
∂λ = (β − 1)

n∑
i=1

xie
−λxi

(
1− e−λxi

) (
1− e−λxi + xie

−λxi
)[
1−

(
e−λxi

)(1−e−λxi)
]−1

+
n

λ
−

n∑
i=1

xi

(
1− e−λxi + λxie

−λxi
)
+ xie

−λxi (2− xi)
(
1− e−λxi + λxie

−λxi
)−1

; (14)
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∂ℓ

∂β
=

n

β
+

n∑
i=1

log

[
1−

(
e−λxi

)(1−e−λxi)
]
. (15)

Solving above first order derivatives setting to zero, parameters of the proposed model can be estimated.
Solution of above equation is not possible so computer programming can be used. Let Θ̂ = (λ̂, β̂) and
Θ = (λ, β), are estimated constants and parameter vector respectively then resulting asymptotic normality

will be
(
Θ̂−Θ

)
→ N3

[
0, (I (Θ))

−1
]
.

The Fisher’s information matrix I (Θ) can be given by,

I (Θ) = −

 E
(

∂2l
∂λ2

)
E
(

∂2l
∂λ∂β

)
E
(

∂2l
∂β.∂λ

)
E
(

∂2l
∂β2

)  .

Asymptotic variance (I (Θ))
−1

of MLE is worthless because Θ cannot be obtained. Let O(̂Θ) be the observed

fisher information matrix. Estimate O(̂Θ̂) of I (Θ) Hessian matrix H can be obtained as

O(̂Θ̂) = −

 ( ∂2l
∂λ2

) (
∂2l

∂λ∂β

)(
∂2l

∂β.∂λ

) (
∂2l
∂β2

)  = −H(Θ)|
(Θ=

̂̂
Θ)

. (16)

Variance covariance matrix is[
−H(Θ)|

(Θ=
̂̂
Θ)

]−1

=

[
V ar(λ̂) Cov.(λ̂, β̂)

Cov(β̂, λ̂) V ar(β̂)

]
. (17)

Here, 100(1-γ)% C. I. for λ and β are

λ̂± Zγ/2

√
V ar(λ̂)&β̂ ± Zγ/2

√
V ar(β̂)

3.2 Method of Least Square (LSE)

Let X(1) < X(2) < . . . < X(n) is ordered random variables and a random sample {X1, X2, . . . , Xn} of
size n is taken from a distribution function F (·). We define a function A using F (X(i)) as CDF of ordered
statistics by equation (18)

A (x;λ, β) =

n∑
i=1

[
F (X(i))−

i

n+ 1

]2
=

n∑
i=1

[{
1−

(
e−λx(i)

)(1−e
−λx(i)

)}β

− i

n+ 1

]2
. (18)

Minimizing the function (18), the parameters of proposed model EKwE can be obtained. For minimization
of (18), getting partial derivatives of A with respect to parameters as

∂A
∂λ = 2β

n∑
i=1

x(i)

[
1−

(
e−λx(i)

)(1−e
−λx(i)

)]β−1(
e−λx(i)

)(1−e
−λx(i)

)

(
1− e−λx(i) + x(i)e

−λx(i)
) [

F (X(i))−
i

n+ 1

]
;

∂A
∂β = 2

n∑
i=1

[
1−

(
e−λx(i)

)(1−e
−λx(i)

)]β
log

[
1−

(
e−λx(i)

)(1−e
−λx(i)

)] [
F (X(i))− i

n+1

]
.

Parameters can be also obtained by weighted LSE minimizing the function D in (19)

D (X;λ, β) =

n∑
i=1

wi

[
F (X(i))−

i

n+ 1

]2
=

n∑
i=1

wi

[{
1−

(
e−λx(i)

)(1−e
−λx(i)

)}β

− i

n+ 1

]2
, (19)

where

wi =
1

V ar(X(i))
=

(n+ 1)
2
(n+ 2)

i (n− i+ 1)
.

5



Extended Kumaraswamy Exponential Distribution with Application to COVID-19 Data set

Using the CDF of the order statistics and weight wi in above expression and by differentiating (20) with
respect to λ and β, we can get weighted least square estimates

D (X;λ, β) =

n∑
i=1

(n+ 1)
2
(n+ 2)

i (n− i+ 1)

[{
1−

(
e−λx(i)

)(1−e
−λx(i)

)}β

− i

n+ 1

]2
. (20)

3.3 Cramers-Von Mises method of estimation

Using this method, parameters λ and β can be estimated by minimizing the function (21)

Z (X;λ, β) =
1

12n
+

n∑
i=1

[
F (xi:n|λ, β)−

2i− 1

2n

]2
=

1

12n
+

n∑
i=1

[{
1−

(
e−λx(i)

)(1−e
−λx(i)

)}β

− 2i− 1

2n

]2
. (21)

Differentiating (21) with respect to λ and β, we can get the first and second order partial derivatives of
function Z as

∂Z

∂λ
= 2β

n∑
i=1

x(i)

[
1−

(
e−λx(i)

)(1−e
−λx(i)

)]β−1(
e−λx(i)

)(1−e
−λx(i)

)

(
1− e−λx(i) + x(i)e

−λx(i)
) [

F (X(i))−
2i− 1

2n

]
; (22)

∂Z

∂β
= 2

n∑
i=1

[
1−

(
e−λx(i)

)(1−e
−λx(i)

)]β
log

[
1−

(
e−λx(i)

)(1−e
−λx(i)

)] [
F (X(i))−

2i− 1

2n

]
. (23)

Solving ∂Z
∂λ= 0 and ∂Z

∂β = 0, CVM estimates can be obtained.

4 Estimation and Analysis

For testing the applicability of the proposed model, we have applied the model on a real data set. The
data set consist of mortality rate of 106 patients during COVID-19 pandemic in Mexico during the period
between March 4, 2020 to July 20, 2020 by Bantan et al. [4]. For simplicity, the rate is divided by five.
The set is as follows:
1.7652, 1.2210, 1.8782, 2.9942, 2.0766, 1.4534, 2.6440, 3.2996, 2.3330, 1.2030, 2.1710, 1.2244, 1.3312, 0.6880, 1.1708,

2.1370, 2.0070, 1.0484, 0.8668, 1.0286, 1.5260, 2.9208, 1.5806, 1.2740, 0.7074, 1.2654, 0.9460, 0.6430, 1.8568, 2.5756,

1.7626, 2.0086, 1.4520, 1.1970, 1.2824, 0.6790, 0.8848, 1.9870, 1.5680, 1.9100, 0.6998, 0.7502, 1.3936, 0.6572, 2.0316,

1.6216, 1.3394, 1.4302, 1.3120, 0.4154, 0.7556, 0.5976, 0.6672, 1.3628, 1.5708, 1.6650, 1.7120, 0.6456, 1.4972, 1.3250,

1.2280, 0.9818, 0.9322, 1.0784, 2.4084, 1.7392, 0.3630, 0.6654,1.0812, 1.2364, 0.2082, 0.3600, 0.9898, 0.8178, 0.6718,

0.4140, 0.6596, 1.0634, 1.0884, 0.9114, 0.8584, 0.5000, 1.3070, 0.9296, 0.9394, 1.0918, 0.8240, 0.7884, 0.6438, 0.2804,

0.4876, 0.6514, 0.7264, 0.6466, 0.6054, 0.4704, 0.2410, 0.6436, 0.5852, 0.5202, 0.4130, 0.6058, 0.4116, 0.4652, 0.5052,

0.3846.

Figure[3] displays the boxplot and the TTT plot of the data taken in consideration. Boxplot shows that
the data is positively skewed and non normal in nature. Similarly the nature of the TTT curve is concave
indicating that there is increasing failure rate.

Table [1] shows the descriptive measures of the data illustrated. It is found from measure that the data set
is positively skewed with non-normality.

Table 1: Descriptive statistics of the data.
Min Q1 Median Mean Q3 Sd Skewness Kurtosis Max

0.2082 0.6578 1.0559 1.1646 1.5188 0.6499868 0.9736882 3.667506 3.2996

Parameters of the model are estimated using MLE, LSE and CVME methods using optim() function of
R software R Core Team 2022 [18] is used. In table [2], the estimated parameters and standard error of
estimates (SE) are listed
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Figure 3: Box plot (Left) and TTT plot (Right).

Table 2: Estimated Parameters and SE.
Methods Lambda Beta
MLE 1.4987(0.1576) 1.9135(0.3502)
LSE 1.3266(0.6827) 1.5349(1.4204)

CVME 1.3503(0.6918) 1.5861(1.4801)

Figure [4] displays the histogram of the illustrated data versus the fitted density curve using MLE. It also
contains the empirical cumulative distribution function (ecdf) versus the fitted distribution curve.
In addition, we have determined the Log likelihood values and various information criterion values, includ-
ing the AIC, BIC, CAIC, and HQIC values, for parameters estimated using each of the three methods of
estimation displayed in table[3].

Table 3: Log likelihood (LL), AIC, BIC, CAIC and HQIC.
Model LL AIC BIC CAIC HQIC
MLE -91.4946 186.9892 192.3161 187.1057 189.1482
LSE -92.2444 188.4888 193.8157 188.6053 190.6478
CVM -92.0404 188.0809 193.4078 188.1974 190.2399

For testing the validity of the model, we have also plotted the P -P plot and Q-Q plots of the proposed
model and are displayed in figure [5].

Table[4] represents the test statistics values of goodness of fit using Kolmgorove-Smirnov (KS), Cramer–von
Mises (W) and Anderson-Darling (A2) along with respective p-values for different methods of estimations.

Table 4: KS, W, and (A2) statistics with corresponding p-values.
Methods KS(p-value) W(p-value) A2(p-value) CAIC HQIC
MLE 0.0648(0.7648) 0.0627(0.7982) 0.3428(0.9027) 187.1057 189.1482
LSE 0.0513(0.9429) 0.0422(0.9221) 0.3359(0.9088) 188.6053 190.6478

CVME 0.0539(0.9178) 0.0416(0.9256) 0.3088(0.9313) 188.1974 190.2399
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Figure 4: Histogram vs Pdf (Left) and Emperical CDF vs ECDF (Right).

Figure 5: P -P plot (left) and Q-Q plot (Right) of EKwE.

For model comparison, we have considered five already published probability models. The models consid-
ered are Odd Lomax Exponential (OLE) distribution by Ogunsanya et al. [17], Logistic Inverse Exponential
(LIE) Distribution by Chaudhary and Kumar [6], Lindely Generalized Inverted Exponential(LGIE) distri-
bution by Telee and Kumar [24], Weibull Extension (WE) distribution by Tang et al. [22] and Modified
Weibull (MW) distribution by Lai et al. [13]. Parameters of the considered models are estimated using
MLE and are tabulated in table [5]. This table also represents the SE for all the distributions considered.
Table [6] contains the LL, AIC, BIC, CAIC and HQIC for EKwE along with considered models. Since the
information criteria values for proposed model is less than the considered model indicating that the data
fits proposed model better compared to the considered models.
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Table 5: Estimated parameters and their SE for EKwE along with considered models.
Model Alpha Beta Theta Lambda HQIC
EKwE - 1.9135(0.3502) - 1.4987(0.1576) 189.1482
OLE 0.1479(0.0603) 0.0119(0.0126) - 0.1059(0.0355) 190.6478
LGIE 7.7120(7.1960) - 0.6487(0.6326) 1.4727(0.2671) 190.2399
WE 20.2560(54.2696) 1.9589(0.2467) - 10.3291(32.3227)
MW 0.5718(0.1698 ) 1.8937(0.3440) - 0.0225(0.2355)
LIE 2.0429(2.0429) - - 0.6717(0.6717)

Table 6: Log likelihood (LL), AIC, BIC, CAIC, and HQIC.
Model LL AIC BIC CAIC HQIC
EKwE -91.4946 186.9892 192.3161 187.1057 189.1482
OLE -92.4894 190.9788 198.9691 191.2141 194.2173
LGIE -93.1517 192.3033 200.2937 192.5386 195.5419
WE -93.7893 193.5786 201.5689 193.8139 196.8171
MW -93.8558 193.7115 201.7018 193.9468 196.9500
LIE -96.3881 196.7763 202.1032 196.8928 198.9353

5 Conclusion

In this study, we have presented a two-parameter continuous probability model called extended Ku-
maraswamy exponential (EKwE) distribution using new Kumaraswamy generalized family of distribution.
Parameters of the model are estimated using Maximum Likelihood, Cramer–von Mises and Least Square
Methods. Different statistical properties like survival, hazard, and quantile functions etc. of the novel
model are analyzed. For testing the applicability testing of the model, a real data set based on COVID-19
data is considered. To find the nature of the data, boxplot and TTT plot are plotted. We have also men-
tioned the exploratory measure of the data. For model validation, different curve like P -P plot and Q-Q
plots are displayed. We have also analyzed Log Likelihood values, Akaike information criterion, Bayesian
information criterion, Corrected Akaike information and Hannan-Quinn information values. For testing the
goodness of fit of the model, Kolmogorov-Smirnov, Cramer-Von Mises and Anderson Darling test are used.
For comparison of the proposed model, we have considered five other probability models. The suggested
model performs better than other existing models when compared to various validation criteria.
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