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Abstract: Mathematics and architecture have strong logical interconnections. Ratios are good examples of
their interconnectivity. Without mathematics, it is hard to believe the existence of science and arts. It is
not an exaggeration to say that mathematics is everywhere. Nature is beautiful due to the proper ratios of
various components in them and in relation to others. The Fibonacci sequence is one of nature’s numbering
systems. It is abundant in nature. It has a close relationship with the golden ratio. Golden ratios and such
Fibonacci numbers are found to be used in designing logos, magazine covers, plastic surgery, to name a few.
These two are two fascinating topics for mathematicians, artists, natural scientists, and philosophers. This
work presents a panoramic view of the Fibonacci numbers, and the Fibonacci sequences; their mathematical
presentations, patterns, properties, and beauty.
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1 Introduction

The Fibonacci numbers were introduced in Europe by Leonardo of Pisa, Bonacci also known as Fibonacci
as his nickname through his book Liber Abaci in 1202. It is believed that these numbers were already
known in Indian subcontinent much earlier. Fibonacci numbers and the Fibonacci sequence have a close
connection and are found abundantly in nature. It is also related to the golden ratio and is considered as
the nature’s number system. It is found extensively in literature, biology, and computers [2, 9]. We begin
our discussion with an introduction to the golden ratio. Consider a point X on a line segment AB with

A X B

Figure 1: A line segment to get the golden ratio.
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, which yields c2 − c− 1 = 0.
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√
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.

For the length measure, c = 1+
√
5

2 , an irrational number denoted by phi (ϕ), called the golden ratio with
decimal representation ϕ = 1.6180339887498948482 . . . . It is also named as the divine ratio or divine
proportion. The golden ratio and its reciprocal are two numbers whose product and difference are both
equal to 1, i.e.,

ϕ .
1

ϕ
= 1, and ϕ− 1

ϕ
= 1. (1)

Let the first two terms of a sequence {fn} be f0 = 0 and f1 = 1. For n ≥ 2, consider fn = fn−1 + fn−2.

Then, fn represents the nth Fibonacci number with n as its index. It gives a sequence,

{fn} = {0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, . . . }, (2)
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where the nth number is the sum of two numbers preceding it. It is also found to be started with 1
instead of 0. These numbers and the respective sequence in Equation (2) are the Fibonacci numbers and
the Fibonacci sequence, respectively. Here the ratio of a term to its previous term, say, 610

377 = 1.61803 . . . ,
and this ratio gets closer to the golden ratio ϕ. This has been shown in Table 1. For details, we refer to
[2, 4, 6, 9].

Table 1: Fibonacci sequence and the ratio for
fn+1

fn
.

S.No. Fibonacci sequence Ratio for
fn+1
fn

1 1 1.000000

2 2 2.000000

3 3 1.500000

4 5 1.666667

5 8 1.600000

6 13 1.625000

7 21 1.615384

8 34 1.619048

9 55 1.617647

10 89 1.618182

11 144 1.617977

12 233 1.618055

13 377 1.618025

14 610 1.618037

15 987 1.618033

16 1597 1.618034

17 2584 1.618034

The Fibonacci sequence is one of the fascinating topics from ancient history. There has been a lot of work
about its historical background and existence. However, its systematic overview from the mathematical
perspective is somewhat lacking. This paper presents the state-of-art on the Fibonacci sequence, their
mathematical structures, construction, properties, beauty, and applications in diversified fields. Section 2
is about Fibonacci sequence. Section 3 presents its properties. Section 4 discusses its existence and
applications. Finally, Section 5 concludes the paper.

2 Fibonacci Sequence

In the 12th century, the Italian Mathematician Leonardo Pisano used a series to illustrate a problem based
on a pair of breeding rabbits, as a Fiabonacci series, as mentioned as a Fibonacci puzzle as in Section 2.1
as illustrated in Knott [7]. For details, we refer to the classical book like Dunlap [2].

2.1 Fibonacci puzzle

Fibonacci puzzle deals with a biologically unrealistic scenario, where the population growth of an idealized
rabbit family is considered. It is assumed that a newly born pair of rabbits (one male and the other female)
are kept in a field, and each breeding pair reach sexual maturity and always mate at their age of one month.
Let at the end of their second month, they always produce another pair of rabbits. It is also assumed that
the rabbits continue living and breeding forever. Then, the following discussion shows how many pairs
there will be in one year.

� As at the end of the 1st month, they just mate, there are still 1 pair.

� Now, at the end of the 2nd month, they produce a new pair. So, there are 2 pairs of rabbits in the
field.

� At the end of the 3rd month, the original pair give birth to a 2nd pair. So, there are 3 pairs in total.
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� And, at the end of the 4th month, the original pair along with the new pair born two months ago can
produce their new pairs of offspring. Hence, there will be 5 pairs, and so on.

Thus, the number of the pair of rabbits at the end of the twelve months can respectively be expressed as:
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 98, and 153, thereby forming a Fibonacci sequence.

2.2 Fibonacci tiling

5 × 5 8 × 8

13 × 13
21 × 21

Figure 2: Fibonacci tiling.

Fibonacci tiling is one of the beautiful tiling patterns. It
can be constructed by using the Fibonacci sequence. Its
construction pattern is similar to the construction of the
golden spiral [2] as in Fig. 2.

3 Properties of Fibonacci Sequence

Fibonacci sequence has several interesting properties. Here,
we present its relationship with Pascal’s coefficients, inter-
connection with ϕ, recurring formula, the general term,
and the Fibonacci prime.

3.1 Relationship with Pascal’s coefficients

Figure 3: Pascal’s coefficients.

Sum of the elements in each diagonal of the Pascal’s tri-
angle is equal to the corresponding Fibonacci sequence

term, i.e.,
∑⌊n

2 ⌋
k=0

(
n− k
k

)
= fn+1. Here, as in Pas-

cal’s coefficients given in Fig. 3, the numbers in red are
1, 1, 2, 3, 5, 8, 13, 34, 55, 89, · · · forming a Fibonacci sequence.

3.2 Interconnection with golden ratio

The Fibonacci sequence {fn} and the golden ratio ϕ are inter-
connected. This can be illustrated with the help of following example.

Example 1. If we raise the ϕ to consecutive powers, a familiar pattern emerge to Fibonacci [2].

In fact,

ϕ = 1.618034 . . .

ϕ2 = 2.618034 · · · = 1 + ϕ

ϕ3 = ϕ2.ϕ = (1 + ϕ).ϕ = ϕ+ ϕ2 = ϕ+ 1 + ϕ = 1 + 2ϕ

ϕ4 = ϕ3.ϕ = (1 + 2ϕ).ϕ = ϕ+ 2ϕ2 = ϕ+ 2(1 + ϕ) = ϕ+ 2 + 2ϕ = 2 + 3ϕ

ϕ5 = ϕ4.ϕ = (2 + 3ϕ).ϕ = 2ϕ+ 3ϕ2 = 2ϕ+ 3(1 + ϕ) = 2ϕ+ 3 + 3ϕ = 3 + 5ϕ

ϕ6 = ϕ5.ϕ = (3 + 5ϕ).ϕ = 3ϕ+ 5ϕ2 = 3ϕ+ 5(1 + ϕ) = 3ϕ+ 5 + 5ϕ = 5 + 8ϕ

It emerges to Fibonacci, 1, 1, 2, 3, 5, 8,. . . and can be represented as in Equation 3.

ϕn = fn−1 + fn.ϕ. (3)

Hence, we have the following lemmas:

Lemma 1. [2]. If {fn} is a Fibonacci sequence and ϕ is the golden ratio, then they are related by the
following different relations.

a) ϕn = ϕ.fn + fn−1.

b) fn = 1
2ϕ−1 [ϕ

n − (1− ϕ)n].
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c) ϕ = 1+ϕ
ϕ + 1+2ϕ

1+ϕ + 1+3ϕ
1+2ϕ + 3+5ϕ

2+3ϕ + · · ·+ fn+fn+1ϕ
fn−1+fnϕ

≈ 1.618034.

d) fn+ϕ.fn+1

fn−1+ϕ.fn
= · · · = 2ϕ−3

5−3ϕ + 2−ϕ
2ϕ−3 + ϕ−1

2ϕ + 1
ϕ−1 = ϕ

1 ≈ 1.618034.

3.3 Recurring formula

Let f0 = 1 and f1 = 1. Then the Fibonacci sequence {fn} can be expressed as the second order difference
equation as, fn+2 − fn+1 − fn = 0, equivalent to the recurring formula,

fn+2 = fn+1 + fn. (4)

Finding the seventh term of a Fibonacci sequence is not so difficult task but to find seventieth term is much
more cumbersome, as it demands the sum the consecutive pairs of the previous sixty-nine terms.

Alternating form of the recurring formula: From Equation (4), we can write, fn+2 = fn+1 + fn,
equivalently, fn = fn−1 + fn−2.
Assume fn = rn be the solution.

Then, rn = rn−1 + rn−2 =⇒ r2 = r + 1 =⇒ r2 − r − 1 = 0, i.e., r = 1±
√
5

2 .

Let r1 = 1+
√
5

2 and r2 = 1−
√
5

2 .

Hence, fn = α1r
n
1 + α2r

n
2 =⇒ fn = α1(

1+
√
5

2 )n + α2(
1−

√
5

2 )n.

But, f0 = α1 + α2 = 0 and f1 = α1(
1+

√
5

2 ) + α2(
1−

√
5

2 ) = 1 =⇒ α1 = −α2 and α2 = − 1√
5
.

∴ fn =
1√
5

(
1 +

√
5

2

)n

− 1√
5

(
1−

√
5

2

)n

=
1√
5

[
ϕn −

(
−1

ϕ

)n]
. (5)

For details, we refer to Rosen [11].

Theorem 1. [10] Let fn and fn+1 are two successive Fibonacci numbers, then

lim
n→∞

fn+1

fn
= ϕ. (6)

Proof.

lim
n→∞

fn+1

fn
= lim

n→∞

1√
5
[ϕn+1 − (−1

ϕ )n+1]

1√
5
[ϕn − (−1

ϕ )n]
= lim

n→∞

ϕ[ϕn − 1
ϕ (

−1
ϕ )n+1]

ϕn − (−1
ϕ )n

= ϕ. lim
n→∞

ϕn + (−1
ϕ )n+2

ϕn − (−1
ϕ )n

.

1
ϕn

1
ϕn

= ϕ. lim
n→∞

1 + (−1)n+2

ϕn+2

1− (−1)n

ϕ2n

= ϕ.
1 + 0

1− 0
= ϕ.

3.4 Beauty of the Fibonacci

Let the Fibonacci sequence be {fn}= {1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, · · · }. Below, we present
some interesting and beautiful features of the Fibonacci numbers and the sequence [3, 10].

1. Double any Fibonacci number and subtract the latter number to get the number two places before
the original.
e.g., 2f4 − f5 = 2× 3− 5 = 1 = f2,

2f5 − f6 = 2× 5− 8 = 2 = f3,
2f6 − f7 = 2× 8− 13 = 3 = f5, and so on.

In general, 2fn − fn+1 = fn−2.
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2. Starting with the first odd-positioned number, add the consecutive odd-positioned Fibonacci, it gives
the latter term to the last term in the sum.
e.g., f1 + f3 = 1 + 2 = 3 = f4,

f1 + f3 + f5 = 1 + 2 + 5 = 8 = f6,
f1 + f3 + f5 + f7 = 1 + 2 + 5 + 13 = 21 = f8, and so on.

In general, f1 + f3 + f5 + f7 + · · ·+ f2n−1 = f2n.

3. The product of any term of the Fibonacci sequence and the term after two places results in one less
or more than the square of the term between the two. More precisely, if the squared number is at
the even position of the Fibonacci sequence, then one is added. On contrary, if it is odd-positioned,
then one is subtracted.
e.g., f4 × f6 = 3× 8 = 24 and f2

5 = 52 = 25,
f7 × f9 = 13.34 = 442 and f2

8 = 212 = 441, etc.
In general, fn−1 × fn+1 = f2

n ± 1.

4. If the square of a term in a Fibonacci sequence is subtracted from the square of the term two places
after it, then it again results in a Fibonacci number, indexed by the sum of those of the numbers.
e.g., f2

5 − f2
3 = 52 − 22 = 21 = f8,

f2
6 − f2

4 = 82 − 32 = 55 = f10,
f2
7 − f2

5 = 132 − 52 = 144 = f12, etc.
In general, f2

n − f2
n−2 = f2n−2.

5. On adding the squares of the two consecutive Fibonacci numbers again yield a Fibonacci number,
indexed by the sum of those of the numbers, with the index by the sum of those of the numbers.
e.g., f2

3 + f2
4 = 22 + 32 = 13 = f7

f2
4 + f2

5 = 32 + 52 = 34 = f9
f2
5 + f2

6 = 52 + 82 = 89 = f11, etc.
In general, f2

n + f2
n+1 = f2n+1.

6. When any two consecutive terms of a Fibonacci sequence are squared and added, it again results in a
Fibonacci number. In fact, they again form a sequence of alternate Fibonacci numbers starting from
f3. In fact, 12 + 12 = 2, 12 + 22 = 5, 22 + 32 = 13, with the alternate Fibonacci, 2, 5, 13, . . . .

7. Among any four consecutive Fibonacci numbers, the difference of the squares of the two means is
equal to the product of the two extremes.
In particular, for f2, f3, f4, f5, we have f2

4 − f2
3 = 52 − 32 = 16 = f2 × f5.

In general, f2
n+1 − f2

n = fn−1 × fn+2.

8. Starting with f1, the addition of the squares of the consecutive terms up to a term in the Fibonacci
sequence produces a number which can be expressed as a product of two consecutive Fibonacci
numbers: the last number that is squared and the Fibonacci number that immediately follows.
e.g., 12 + 12 = 2 = 1× 2

12 + 12 + 22 = 6 = 2× 3
12 + 12 + 22 + 32 = 15 = 3× 5
12 + 12 + 22 + 32 + 52 = 40 = 5× 8, etc.

In general,
∑k

i=1 f
2
i = fk × fk+1.

9. Among any three consecutive Fibonacci numbers, subtraction of the cube of the smallest one from
the sum of the cubes of the two greater again yields a Fibonacci number, indexed by the sum of those
of the numbers involved.
e.g., f3

3 + f3
4 − f3

2 = 23 + 33 − 13 = 8 + 23− 1 = 34 = f9
f3
5 + f3

6 − f3
4 = 53 + 83 − 33 = 125 + 512− 27 = 610 = f15, etc.

In general, f3
n+1 + f3

n+2 − f3
n = f3n+3.

10. When any finite number of consecutive Fibonacci numbers are added, it results in a number that is one
less than a Fibonacci number as the next two places of the last one added, i.e., f1+f2+f3+f4+f5 =
1 + 1 + 2 + 3 + 5 = 12 = 13− 1 = f7 − 1. Hence,

∑k
i=1 fi = fk+2 − 1.

11. The sum of any ten consecutive Fibonacci numbers is divisible by 11, i.e., 11|(fn+fn+1+ · · ·+fn+9).
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12. If q divides p, then fq divides fq, i.e., q|p =⇒ fq|fp, for any p, q ∈ Z+.

13. It is a general observation that any two consecutive terms of a Fibonacci sequence are relatively
prime, i.e., g.c.d. (fn, fn+1) = 1.

3.5 A Fibonacci prime

A prime number in a Fibonacci sequence is a Fibonacci prime. The first few such numbers are 2, 3, 5, 13,
89, 233, 1597, 28657. It is still an open question, whether there are infinitely many Fibonacci primes [10].

4 Fibonacci: The Nature’s Numbering System

Fibonacci numbers and the corresponding sequence is one of the nature’s numbering systems. It is found
everywhere in nature and in various other fields.

4.1 Nature

Fibonacci numbers also appear beautifully in nature in the spiral growth patterns like the leaf arrangements
in plants, the number of spirals on a cactus, or in sunflowers seedbeds. It has a close connection to the
golden ratio too. Steep and the gradual spirals up the side of pine cones are almost counted as Fibonacci
numbers. Examples include: some pine cones have three gradual and five steep spirals, whereas some others
have eight gradual and thirteen steep spirals. Moreover, in a bee hive, there are generally three types of
bees. The queen bee lays eggs, the male bees have no specific works, whereas the female bees do all works
there [10]. Male bees are developed from unfertilized eggs so they have only mothers no father but the
female bees are developed from the eggs which are fertilized. So they do have both the parents. So one
male bee has 1 mother, 2 grandparents, 3 great-grandparents, 3 great-great-grandparents, and 8 great-
great-great-grandparents. Interestingly, in each preceding generation, the number of bees is a Fibonacci
number [5].

The petals of many flowers are found to be arranged to form a Fibonacci number. For example, some

Figure 4: Different flowers having arrangements in petals to Fibonacci number.
http://www.google.com/goldennumber.net

flowers along with the number of petals are: White Calla Lily-1, Euphorbia-2, Trillium-3, Columbine-5,
Bloodroot-8, Black-Eyed Susan-13, Shasta Daisy-21, and Field Daisies-34, as in Figure 4, as mentioned in
Akhtaruzzaman and Shafie [1].
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4.2 Music

Let a song last for 4 minutes. Then it is divided into two parts, at 61.8% and 38.2%, with a modification by a
certain change: a bridge, or an arrangement with a different instrument or with a new melodic composition
at 61.8% of 240 seconds, i.e., at 148.32 seconds. The changes in the rhythm of the song are followed on
the Fibonacci sequence, to make it lovelier to listen to. Great composers of western music, to name a few,
Mozart, Beethoven, and Wagner deliberately changed the rhythm of their music in sequences. In music,
octave refers to the eight whole tones of the complete musical scale. And, there are 13 notes in the span of

any notes through its octave. The dominant note is the 5th note of the major scale that is the 8th note of
all the 13 notes on the octave. The key frequencies of the musical notes are related to 1, 1, 2, 3, 5, and, 8 as
some Fibonacci numbers. Musical compositions often reflect these numbers and the golden ratio on their
timing. Musical notes progress in high and low pitches with an infinite spiral in the same manner as the
golden spiral. The golden ratio is found to be the mathematical translation of an algorithm used by nature
and is a lesson on aesthetic perfection, beauty, harmony, and pleasure to the music too. Various musical
instruments, such as guitars, piano, violin, and even in the high-quality speaker wire, are found to have
used the golden ratio in their designs. For details, we refer to Akhtaruzzaman and Shafie[1] and Tamargo
et al. [12].

4.3 Poetry

Haiku is a three-line poetry grounded in mathematical constraints with five, seven, and five syllables in
three consecutive lines. Based in this, the Fib, known as the Fibonacci poem is written. The Fib poetry
is in a structured form with 1, 1, 2, 3, 5, and 8 syllables, respectively, [8]. Below, we compose a couple of
pieces of Fib poetry.

Sea
says

to fish,
“ Leave alone;

please forget my heart.”

Just
same

You breathe
Saying ever

Oh, Sambodhika !
Needless to say, I remember

5 Conclusion

Fibonacci numbers and the corresponding Fibonacci sequence form nature’s numbering systems. The
Fibonacci sequence has a close relationship with the golden ratio ϕ. In present days, golden ratios and such
Fibonacci are best used in designing logos, magazine covers, plastic surgery, etc. This work has presented
a panoramic view of the Fibonacci numbers, and the Fibonacci sequences; their patterns, and properties
and opens a wide horizon for the further research.
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