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1 Introduction

Let H∞(D) be the algebra of all bounded analytic functions that map the unit disk D into the complex
plane C. The set that we are interested in is described as follows. Let K ⊂ Z+ and define the set H∞

K (D)
of all functions in H∞(D) whose kth derivative vanishes at zero; formally, we define

H∞
K (D) = {f ∈ H∞(D) | f (k)(0) = 0, for all k ∈ K}.

When K = ∅, we define H∞
∅ (D) := H∞(D). Certain choices of K will cause H∞

K (D) to be a subalgebra of
H∞(D), but there are sets K where this property fails; for example, H∞

{2}(D) is not an algebra. We have

given a characterization for all sets that yield algebras in [2]; namely, that K yields an algebra precisely
when Z+ \ K is an abelian semigroup. We also explored in that paper the case where K is finite: a
notable result is that K yields an algebra if and only if N \ K is a numerical semigroup, N denotes the
set of nonnegative integers. Finally, we offered an algorithm on how to construct these finite sets. These
results in addition to other facts about K are presented in section 1 below. We will then introduce the
Frobenius number and prove properties concerning the generalized Frobenius number. Lastly, attributes of
the stabilization point of an infinite algebra yielding set are proven. Sections 2 and 3 offer a procedure for
constructing all infinite sets that yield algebras, thereby completing our quest in answering the question
posted in Chapter 6.4 of [5].

1.1 Preliminary results

In this section, we will review pertinent results related to our investigation. The following theorem is a
characterization of all sets K that yield algebras (see Theorem 3.1 in [2]).

Theorem 1.1 (Banjade and Dunivin). Let K ⊂ Z+. Then H∞
K (D) is an algebra if and only if Z+ \K is

closed under addition.

As a consequence, the finite case reveals a connection with numerical semigroups, see Corollary 3.1 in [2].

Theorem 1.2 (Banjade and Dunivin). If K ⊂ Z+ is finite, then K yields an algebra precisely when N \K
is a numerical semigroup.

The following sets were defined in [2] to describe the family K of all finite sets K that yield algebras.

(a) The set [k] := {1, 2, . . . , k} denotes the collection of the first k positive integers.

(b) Let A ⊂ Z be a nonempty set. The set

S(A)≤k := {a+ a⋆ | a, a⋆ ∈ A}
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is the collection of all sums of integers in A that are at most k. We note that if A ⊂ [k − 1] is
nonempty, then [k] \A yields an algebra precisely when S(A)≤k ⊂ A (see Theorem 4.1 in [2]).

(c) Let k ≥ 3 and r ∈
[
⌊ (k − 1)/2 ⌋

]
. Define the family

Jr :=

{
J ∈ P

(
[k − 1]

)
\ {∅}

∣∣∣∣∣ i. |J | = r

ii. S(J)≤k ⊂ J

}

and let

K :=

{
∅, [1], [2], [k], [k] \ J

∣∣ k ≥ 3, r ∈
[ ⌊ k − 1

2

⌋ ]
, J ∈ Jr

}
.

We then have the following result (see Theorem 4.2 in [2]).

Proposition 1.1 (Banjade and Dunivin). The set K contains every finite set that yields an algebra.

An algorithm for building the sets in K arises naturally from the definitions of Jr and K (see Algorithm 1
in [2]). If we let K∞ be the family of all infinite sets that yield algebras, our goal is to provide a procedure
for building its members.

Ryle conducted a brief analysis on the structure of the set K when it yields an algebra. We catalogue some
of these results that we have drawn upon in this work (see Lemmas 4.2.1, 4.2.2, 4.2.6, and 4.2.7 in [5]).

Lemma 1.1 (Ryle). Suppose that K is a nonempty set of positive integers such that H∞
K (D) is an algebra.

(a) The integer k /∈ K if and only if zk ∈ H∞
K (D).

(b) If j, k /∈ K where gcd(j, k) = 1, then K is finite.

(c) If j, k /∈ K with gcd(j, k) = d, then there exists Cd such that Nd /∈ K for any N ≥ Cd.

(d) Suppose j, k /∈ K. Then j + k /∈ K.

The following theorems reveal the form of the objects contained in H∞
K (D) (see Lemma 2 and Corollary 1

in [6]).

Theorem 1.3 (Ryle and Trent). There exists d ∈ Z+ such that the following hold.

(a) If zp ∈ H∞
K (D), then p = md.

(b) There is an N0 ∈ Z+ such that (zd)n ∈ H∞
K (D) for all n ≥ N0.

Theorem 1.4 (Ryle and Trent). If H∞
K (D) is an algebra, then there exists d ∈ Z+, a finite set n1 < · · · < np

in Z+ with gcd(n1, . . . , np) = 1, and a positive integer N0 > np so that

Z+ \K = {n1d, n2d, . . . , npd,N0d, (N0 + j)d : j ∈ Z+}.

We note that Theorem 1.3 was originally introduced as Theorems 4.1 and 4.2 in [5], but it is an improvement
since Theorem 1.3 uses fewer assumptions, in particular, it does not require K to be infinite. Further,
Theorems 4.1 and 4.2 were established by contradiction while Theorem 1.3 was proven directly using
algebraic techniques. However, we found an alternative proof of Theorem 1.3. Due to its brevity and the
fact that it contains strategies that will be used in various proofs throughout our work, we have chosen to
include it.

Proof of Theorem 1.3. Choose a, b ∈ Z+ \ K such that d := gcd(a, b) is the smallest greatest common
divisor. By Lemma 1.1.(c), there is a positive integer N such that nd ∈ Z+ \ K for all n ≥ N . Let
k ∈ Z+ \K. Pick a prime p > max{N, k} and set d1 := gcd(k, pd). Then pd ∈ Z+ \K. As k, pd ∈ Z+ \K,
we have d ≤ d1. But d1 ≤ k < p, and thus gcd(d1, p) = 1. Consequently, d1 divides d, so d1 = d. Hence, d
divides k. ■

17



Journal of Nepal Mathematical Society (JNMS), Vol. 6, Issue 1 (2023); D. P. Banjade, J. Dunivin

1.2 Generalized Frobenius number

The Frobenius coin problem is stated as follows.
Given positive integers a1, a2, . . . , an such that gcd(a1, a2, . . . , an) = 1, find the largest integer that cannot
be expressed as a linear combination k1a1+k2a2+ · · ·+knan, where k1, k2, . . . , kn are nonnegative integers
(see [1] and [4] for a history of this famous problem). Restricting ourselves to the two variable case,
the following Theorem gives a formula for the largest positive integer that cannot be written as a linear
combination of two co-prime integers (see [1]). We note that J. J. Sylvester was the first to give the following
formula as a solution to the two variable coin problem (see [1] and [7]). An immediate consequence of the
theorem is an exact count of all positive integers that cannot be written as a linear combination of two
given integers over the nonnegative integers.

Theorem 1.5 (Frobenius Theorem). For any two relatively prime positive integers a and b, the greatest
integer that cannot be written in the form am+ bn for nonnegative integers m and n is ab− a− b.

Corollary 1.1. Suppose that a and b are relatively prime. Then there are exactly
(a− 1)(b− 1)

2
positive

integers that cannot be written as am+ bn for nonnegative integers m and n, not both zero.

The number ab−a−b is known as the Frobenius number. However, the number that captures our attention
is the following generalized version of the Frobenius number.

Definition 1.1. Let a, b ∈ Z+. Define the Generalized Frobenius Number ℓ(a, b) by

ℓ(a, b) := lcm(a, b)− a− b.

The next proposition extends the Frobenius Theorem and serves as a keystone for much of our work.

Proposition 1.2. The number ℓ(a, b) is the largest multiple of gcd(a, b) that cannot be written as am+ bn
for some nonnegative integers m and n, not both zero.

Proof. See [1] for a proof. ■

Proposition 1.3. Let a, b ∈ Z+ such that a ≤ b. Let d = gcd(a, b). The number of multiples of d that are
greater than a and cannot be written as am+ bn where m and n are nonnegative integers not both zero is
(a/d− 1)(b/d− 1)

2
− a

d
+ 1.

Proof. We know that a/d and b/d are relatively prime, so Corollary 1.1 tells us that there are (a/d−1)(b/d−1)
2

positive integers that cannot be written as (a/d)m+(b/d)n where m and n are nonnegative integers. Since
no positive integers less than a/d can be written as such a linear combination, we can remove them from
our count, so that the number of integers at least as large as a/d that cannot be written as our desired

linear combination is (a/d−1)(b/d−1)
2 − a/d + 1. As there is a bijection between an integer and its product

with d, the conclusion follows. ■

Although the above attributes of the generalized Frobenius number ℓ(a, b) will be useful in our work, we still
need to know more about it. Since we were unable to find literature providing the fundamental properties
of ℓ(a, b), we found it interesting in and of itself to discover more of its characteristics. In particular,
the following proposition captures the relationship between ℓ(a, b) and the integers a and b. Note that
ℓ(a, b) ̸= a, b by Proposition 1.2.

Proposition 1.4. Let a, b ∈ Z+ such that a < b. Let d = gcd(a, b).

1. The following statements are equivalent:

(i) ℓ(a, b) < 0.

(ii) a = d.

(iii) ℓ(a, b) = −a.
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2. The number ℓ(a, b) is nonzero.

3. The following are equivalent:

(i) 0 < ℓ(a, b) < a.

(ii) a = 2d and b = 3d.

(iii) ℓ(a, b) = d.

4. We have a < ℓ(a, b) < b if and only if a = 2d and b = a+md for some odd m > 1.

5. We have b < ℓ(a, b) if and only if a = qd and b = a + md for some q ≥ 3 and m ∈ Z+ \ q Z+.
Moreover, m and q are relatively prime.

6. Let c,m, n ∈ Z+ such that c divides m. Then

ℓ(mn, (m+ c)n) =
n

c

(
m− cϕ

)(
m+

c

ϕ

)
,

where ϕ =
1 +

√
5

2
is the golden ratio and

1

ϕ
=

√
5− 1

2
is the silver ratio.

Proof.

1. Assume ℓ(a, b) < 0. Then ab/d < a + b < 2b, and thus a/d < 2. Hence, a = d. Now, if a = d, it is
obvious that ℓ(a, b) = −a. Finally, if ℓ(a, b) = −a, then ℓ(a, b) < 0.

2. If ℓ(a, b) = 0, then ab/d = a+ b < 2b, implying that a
d = 1 as a, d > 0. This gives us ℓ(a, b) = a+ 2b,

contradicting Proposition 1.2.

3. Suppose that 0 < ℓ(a, b) < a. Then ab/d < 2a + b < 3b, so a/d = 1, 2. By part 1, it follows that
a = 2d. Let b = a+md for some positive integer m. Then ℓ(a, b) = md < 2d = a, so m = 1, and thus
b = 3d. If a = 2d and b = 3d, it is obvious that ℓ(a, b) = d. Finally, if ℓ(a, b) = d, then ℓ(a, b) ≤ a
since d divides a. Further, ℓ(a, b) > 0, so by part 1, a ̸= d. Hence, 0 < ℓ(a, b) < a.

4. Suppose a < ℓ(a, b) < b. A similar argument as in part 3 yields a = 2d. Write b = a +md for some
m ∈ Z+. Then ℓ(a, b) = md. As ℓ(a, b) does not divide a, we have m > 1 and odd.

5. Suppose b < ℓ(a, b) Write a = qd and b = a +md = (q +m)d for some integers m and q. A direct
calculation shows that ℓ(a, b) = (q − 1)(q +m)d− qd > (q +m)d. The equation of ℓ(a, b) shows that
m /∈ qZ+ since ℓ(a, b) does not divide a. The inequality shows that q ̸= 1, 2.

6. Since c divides m, we have that gcd(mn, (m+ c)n) = cn. Thus,

ℓ(mn, (m+ c)n) =
mn(m+ c)n

cn
−mn− (m+ c)n

=
n

c

(
m2 − cm− c2

)
=

n

c

(
m2 − cm+

c2

4
− c2

4
− c2

)

=
n

c

[ (
m− c

2

)2

− 5c2

4

]

=
n

c

(
m− c · 1 +

√
5

2

)(
m+ c ·

√
5− 1

2

)
=

n

c

(
m− cϕ

)(
m+

c

ϕ

)
.

■
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1.3 Stabilization point

Ryle also introduced the notion of an infinite set K that yields an algebra stabilizing at some point Nd (see
Definition 4.2.1 in [5]). This definition crystallizes the idea that every member in Z+ \K will eventually
be consecutive integer multiples of d due to Theorems 1.3 and 1.4. In light of Lemma 1.1.(a), we present
an adapted yet equivalent version of her definition.

Definition 1.2. For N, d ∈ Z+, we say that the infinite set K ⊂ Z+ stabilizes at Nd if

(a) (N − 1)d ∈ K where N > 1,

(b) nd ∈ Z+ \K for all n ≥ N , and

(c) if v ∈ Z+ \K where v ≥ Nd, then d divides v.

We call Nd a stabilization point of K. If N = 1 and conditions (b) and (c) are satisfied, then K
stabilizes immediately at d.

The following example illustrates the idea of stabilization and was originally presented in [5].

Example 1.1. Consider the infinite sets

K = {1, . . . , 5, 7, 9, 10, 11, 2n+ 1 |n ≥ 6}

Z+ \K = {6, 8, 2n |n ≥ 6}

Clearly, K yields an algebra by Theorem 1.1. We see that d = 2 and N = 6, so that (N − 1)d = 10 ∈ K,
fulfilling condition (a) in the definition. Moreover, nd = n · 2 ∈ Z+ \K for all n ≥ N , so condition (b) is
fulfilled. Lastly, we know from Theorems 1.3 and 1.4 that condition (c) holds. Therefore, Nd = 6 · 2 = 12
is a stabilization point of K.

In light of Theorems 1.3 and 1.4, it is obvious that every infinite set K ⊊ Z+ that yields an algebra must
stabilize. Nevertheless, we shall give a proof of this fact, but we will also show that K stabilizes at only
one point, and that the factors used to construct the stabilization point are unique.

Proposition 1.5. Suppose that K ⊊ Z+ is infinite and yields an algebra. Then there exist unique integers
N and d such that K stabilizes at Nd.

Proof. Since K is infinite and yields an algebra, Theorem 1.4 says that there are positive integers d and
n1 < n2 < · · · < nj < N such that

Z+ \K = {n1d, n2d, . . . , njd,Nd, (N + i)d | i ∈ Z+}.

We can assume that N is the smallest integer such that Nd, (N + i)d ∈ Z+ \K for all i. Now, if N = 1,
then Z+ \K = dZ+, so K stabilizes at Nd = d. Suppose that N > 1. Then nj and N are nonconsecutive
due to the minimality of N , so (N − 1)d /∈ Z+ \K; and since N − 1 > 0, we deduce that (N − 1)d ∈ K.
Therefore, K stabilizes at Nd.

Now suppose that K also stabilizes at Me. We first show that d = e. Select a prime r > max{M,Nd}.
Because Me is a stabilization point and r > M , we have re ∈ Z+ \K. But Nd is also a stabilization point,
so d divides re. Since r > d is prime, we have gcd(r, d) = 1, and thus d divides e. Similarly, e divides d,
so we conclude that e = d. Now, the minimality of N implies that N ≤ M . However, if N < M , then
(M − 1)e = (M − 1)d ∈ K by Definition 1.2.(a). But the fact that N ≤ M − 1 implies that (M − 1)d /∈ K
by Definition 1.2.(c), a contradiction. Hence, M = N , completing the proof. ■

We know from Theorem 1.3 that integers N and d exist possessing certain properties. We improve upon
these results by giving an explicit description of the integer d, as well as providing sharp upper and
lower bounds for N when K does not stabilize immediately (if K stabilizes immediately, then N = 1, by
definition). We begin by dealing with d. Consider the following example.
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Example 1.2. The following sets yield algebras, as the reader can confirm using Theorem 1.1.

(a) Let a = 8 and b = 10. Consider the infinite set K satisfying

Z+ \K = {8, 10, 16, 18, 20, 2n : n ≥ 12}.

We see that the smallest greatest common divisor d = gcd(8, 10) = 2. Also note that 8 = min(Z+\K)
and 10 = pd where p = 5 is prime.

(b) Let a = 6 and b = 21. Suppose K is given such that Z+ \K = {3n : n ≥ 2}. The smallest greatest
common divisor d = gcd(6, 9) = 3. Further, 6 is the minimum of Z+ \K, and 9 = pd where p = 3 is
prime.

The above examples suggest that if K stabilizes at Nd, then d is the smallest greatest common divisor of
some pair of integers in Z+ \K. We now prove that this is not a coincidence.

Proposition 1.6. Let K ⊊ Z+ be an infinite set that yields an algebra and stabilizes at Nd. Let m :=
min(Z+\K). Then there is a c ∈ Z+\K such that d = gcd(m, c) ≤ gcd(i, j) for all i, j ∈ Z+\K. Moreover,
if m > d, then m does not divide c.

Proof. Select a prime p > max{m,N}. Since K stabilizes at Nd and p > N , we have pd ∈ Z+\K. We claim
that pd is our desired integer. Let m = qd for some q ∈ Z+. Since p > q is prime, gcd(p, q) = 1. Therefore,
gcd(m, pd) = d. Now let d1 denote the smallest gcd of some i, j ∈ Z+ \K. Then d1 ≤ d. However, since
K stabilizes at Nd and i, j ∈ Z+ \K, we have d divides i and j, and thus d divides gcd(i, j) = d1. Hence,
d = d1. Finally, suppose that m > d. As p > m is prime and d divides m, it follows that m divides pd if
and only if m = d. Therefore, m does not divide pd. ■

We are now interested in providing sharp upper and lower bounds for N when K does not stabilize
immediately. The next two propositions deal with this situation, but we first consider some examples
concerning an inequality on N .

Example 1.3. We begin with Z+ \ K = {12, 24, 28, 36, 40, 4n |n ≥ 12}, which stabilizes at 4N = 4 · 12.
Note that m = min(Z+ \ K) = 12 and that the smallest greatest common divisor d = 4. The smallest
member m⋆ ∈ Z+ \ K such that d = gcd(m,m⋆) is m⋆ = 28. Thus, ℓ(m,m⋆) = 44. We now make the
following observations involving N and ℓ(m,m⋆):

(a) ℓ(m,m⋆) /∈ Z+ \K.

(b) N = 12 = ℓ(m,m⋆)/d+ 1.

(c) m/d ≤ N ≤ ℓ(m,m⋆)/d+ 1.

In this case, N achieves its maximum value in the inequality of (c).

Example 1.4. Now let us form (Z+\K)∪{ℓ(m,m⋆)}. We then obtain the set Z+\K = {12, 24, 28, 4n |n ≥
9}, which stabilizes at 4N = 4 · 9. We thus make the following observations (the values of m, m⋆, d and
ℓ(m,m⋆) are the same):

(a) ℓ(m,m⋆) ∈ Z+ \K.

(b) m/d ≤ N = 9 ≤ 12 = ℓ(m,m⋆)/d+ 1.

So N does not achieve its maximum value, but it still satisfies the inequality in (b).

Example 1.5. Finally, the integers 16, 20, 32, and 44 = ℓ(m,m⋆) are all multiples of d greater thanm = 12
that cannot be expressed as mx +m⋆y, where x, y ∈ Z+ ∪ {0}. Form the set (Z+ \K) ∪ {16, 20, 32, 44}.
Then we have Z+ \K = {4n |n ≥ 3}, which stabilizes at 4N = 4 · 3. Although m⋆ = 16 now, the following
observations are still consistent with what we have above:

(a) All multiples of d = 4 greater than or equal to m = 12 are members of Z+ \K.

(b) N = 3 = m/d.
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(c) m/d ≤ N ≤ 6 = ℓ(m,m⋆)/d+ 1.

In this case, N achieves its minimum value of m/d when all the multiples of d greater than m that cannot
be written as a linear combination of m and m⋆ are members of Z+ \K.

The above examples motivate the next two propositions. We first observe that if K does not stabilize
immediately, Proposition 1.6 permits us to deduce that a smallest integer m⋆ ∈ Z+ \ K exists such that
d = gcd(m,m⋆), m < m⋆, and m does not divide m⋆, where m := min(Z+ \ K) and d is the smallest
greatest common divisor.

Proposition 1.7. Let K ⊊ Z+ \ K be infinite and yield an algebra. Suppose that K stabilizes at Nd =
N gcd(m,m⋆). Then m/d ≤ N ≤ ℓ(m,m⋆)/d+ 1.

Proof. Since K stabilizes at Nd, we know Nd ∈ Z+ \ K. As m := min(Z+ \ K), we have m ≤ Nd.
Now, assume to the contrary that ℓ(m,m⋆)/d + 1 < N , so that ℓ(m,m⋆) + d < Nd. Then (N − 1)d =
Nd− d > ℓ(m,m⋆). By Proposition 1.4, there exist nonnegative integers x and y not both zero such that
(N − 1)d = mx + m⋆y. Since m,m⋆ ∈ Z+ \ K and Z+ \ K is closed under addition by Theorem 1.1,
(N − 1)d ∈ Z+ \K. However, as N − 1 ≥ 1 and Nd is a stabilization point of K, we have (N − 1)d ∈ K, a
contradiction. Therefore, N ≤ ℓ(m,m⋆)/d+ 1. ■

The following proposition explains when N achieves its maximum and minimum values.

Proposition 1.8. Let K ⊊ Z+ \K be infinite and yield an algebra. Suppose that K stabilizes at Nd with
N > 1.

(a) If ℓ(m,m⋆) /∈ Z+ \K, then N = ℓ(m,m⋆)/d+ 1.

(b) If Z+ \ K contains all multiples of d greater than m that cannot be written as mx + m⋆y for some
nonnegative integers x and y not both zero, then N = m/d.

Proof.

(a) Since
(
ℓ(m,m⋆)/d+1−1

)
d = ℓ(m,m⋆) ∈ K, it follows that ℓ(m,m⋆)/d+1 satisfies Definition 1.2.(a).

Further, Proposition 1.2 tells us that nd ∈ Z+ \ K for all n ≥ ℓ(m,m⋆)/d + 1, so ℓ(m,m⋆)/d + 1
fulfills Definition 1.2.(b). Finally, suppose v ∈ Z+ \K such that v ≥ ℓ(m,m⋆) + d. Then d divides v
since every member of K is a multiple of d. Therefore, (ℓ(a, b)/d+ 1)d is a stabilization point of K,
so N = ℓ(m,m⋆)/d+ 1 by Proposition 1.5.

(b) First, we see that (m/d − 1)d ∈ K since m = min(Z+ \ K), so Definition 1.2.(a) is satisfied. From
our assumption we deduce that every multiple of d greater than or equal to m = (m/d)d is a member
of Z+ \ K, so Definition 1.2.(b) is fulfilled. The third property of Definition 1.2 is automatically
accomplished because K contains only multiples of d. By Proposition 1.5, we conclude that N = m/d.

■

2 Construction of Infinite Sets That Yield Algebras

Similar to the family Jr that was defined in [2] in order to construct the set K of all finite sets that yield
algebras, we now define a family of sets that will be utilized in building the family of all infinite sets that
yield algebras.

Definition 2.1. For each positive integer d > 1, define the family Jd by

Jd =

J ∈ P(Z+)

∣∣∣∣∣∣∣
i. there exist m,m⋆ ∈ J such that d = gcd(m,m⋆)

ii. for all j1, j2 ∈ J, d ≤ gcd(j1, j2)

iii. J is closed under addition


22
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Note that the family Jd ̸= ∅ for all d > 1 since the set dZ+ ∈ Jd. The motivation for the above definition
of Jd is as follows. First, we want to construct infinite sets K := Z+ \ J that yield algebras; but if there
exist a, b ∈ J such that gcd(a, b) = 1, then K must be finite by Lemma 1.1.(b). Consequently, requiring
d > 1 and enforcing condition i. are necessary. Further, condition ii. is required because we know from
Proposition 1.6 that the smallest greatest common divisor is involved in generating the members of Z+ \K.
Lastly, requiring J to be closed under addition is a necessary and sufficient condition for K to yield an
algebra by Theorem 1.1. So our strategy in constructing infinite proper subsets that yield algebras is to
first obtain the sets J , and then form the set K := Z+ \ J . We shall see in Proposition 2.2 that all sets in
Jd can be used to build a set that yields an algebra, and that all infinite sets that yield algebras can be
written in terms of some member in Jd for a d > 1.

We now consider some examples concerning Jd.

Example 2.1.

(a) Consider the set 3Z+ \ {3, 6}. We first note that m = 9 and m⋆ = 12, so that d = gcd(m,m⋆) = 3
and d ≤ gcd(j1, j2) for all j1, j2 ∈ 3Z+ \ {3, 6}. Further, 3Z+ \ {3, 6} is closed under addition. Hence,
3Z+ \ {3, 6} ∈ J3. However, the set 3Z+ \ {15} /∈ J3 since 6 + 9 /∈ 3Z+ \ {15}.

(b) The set 4Z+∪6Z+ /∈ J2 since 4+6 /∈ 4Z+∪6Z+. In contrast, the 4Z++6Z+ = {4m+6n |m,n ∈ Z+}
is a member of J2: We see that m = 10, m⋆ = 14, d = gcd(a, b) = 2, d ≤ gcd(j1, j2) for all
j1, j2 ∈ 4Z+ + 6Z+, and is clearly closed under addition.

We now begin proving several properties of the sets J ∈ Jd that are similar to those that Ryle established
under the assumption that K yields in algebra. Proposition 2.1 below relates to Theorems 1.3 and 1.4.

Proposition 2.1. Let d > 1 and J ∈ Jd such that d = gcd(a, b) for some a, b ∈ J . Then nd ∈ J for all
n ≥ ℓ(a, b)/d+ 1. Further, d divides every member of J .

Proof. Let a, b ∈ J such that d = gcd(a, b). If n ≥ ℓ(a, b)/d + 1, then nd > ℓ(a, b). By Proposition 1.2,
nd = ax + by for some nonnegative integers x and y not both zero. Because J is closed under addition,
nd = ax+ by ∈ J , as desired. Now let j ∈ J . Choose a prime p > max{j, ℓ(a, b)/d+1}. Then pd ∈ J . Now
set d1 = gcd(j, pd). Because j, pd ∈ J , it follows from the definition of J that d ≤ d1. However, d1 ≤ j < p,
and since p is prime, gcd(d1, p) = 1. Consequently, d1 divides d, and thus d1 = d. Hence, d divides j. ■

We now show that every collection in Jd can be used to obtain a set that yields an algebra.

Proposition 2.2. For all J ∈ Jd where d > 1, the set Z+ \ J is an infinite proper subset of Z+ that yields
an algebra.

Proof. To see that Z+ \J is infinite, let d = gcd(a, b) for some a, b ∈ J . By Proposition 2.1, we see that for
each n ≥ ℓ(a, b)/d+1, the integer nd+1 ∈ Z+ \ J since d does not divide nd+1. Hence, Z+ \ J is infinite.
Moreover, the fact that d > 1 is the smallest greatest common divisor of some pair of integers in J implies
that there are consecutive integers x and x + 1 not in J , so Z+ \ J is a proper subset of Z+. Lastly, the
complement J of Z+ \ J is closed under addition by definition. Thus, Z+ \ J yields an algebra by Theorem
1.1. ■

Define the set K ∞ by

K ∞ :=

{
Z+, Z+ \ J

∣∣ for all J ∈
∞⋃
d=2

Jd

}
.

We will now demonstrate our main result in the next theorem. We first state the following result (see
Corollary 2.1 in [2]).

Lemma 2.1. Suppose H∞
K (D) is an algebra. If K only contains consecutive integers, then K = [k] for

some integer k, or K = Z+.

Theorem 2.1. The set K ∞ contains every infinite set that yields an algebra.
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Proof. Proposition 2.2 tells us that every set in Jd yields an algebra. Now let K be an infinite set that
yields an algebra. We wish to show that K ∈ K∞, so we will proceed with cases on K. First, suppose that
K only contains consecutive integers. Then by Lemma 2.1, K = Z+, so K ∈ K ∞. Now let us assume
that K contains at least one pair of nonconsecutive integers. By Theorems 1.3 and 1.4, there exist positive
integers d, N, and n1 < n2 < · · · < nj such that

Z+ \K = {n1d, n2d, . . . , njd,Nd, (N + i)d | i ∈ Z+ } .

By Proposition 1.6, the integer d is the smallest greatest common divisor of some pair of integers in Z+ \K.
Thus, there are integers m,m⋆ ∈ Z+ \ K such that d = gcd(m,m⋆) ≤ gcd(j1, j2) for all j1, j2 ∈ Z+ \ K.
Furthermore, the fact that K yields an algebra implies that its complement Z+ \K is closed under addition
by Theorem 1.1. Given all of these facts concerning Z+ \ K, we deduce that Z+ \ K ∈ Jd, and thus
K ∈ K ∞. ■

Corollary 2.1. The set K ∪ K ∞ contains every set that yields an algebra.

Proof. This claim follows from Theorems 1.1 and 2.1. ■

3 Algorithm for Generating All Infinite Sets That Yield Algebras

The trivial infinite set that yields an algebra is Z+, so we will ignore this case in our algorithm. For
the nontrivial case, let a and b be distinct positive integers. Define the set U to be the collection of all
positive integer multiples of gcd(a, b) that cannot be represented as a linear combination of a and b over the
nonnegative integers. We will call the members of U unrepresentables. This set is empty when ℓ(a, b) < 0;
otherwise, its cardinality is given in Proposition 1.3, and its maximum is ℓ(a, b). Our algorithm is as follows.

Algorithm: Generating Infinite Sets That Yield Algebras

1. Specify positive integers a < b.

2. Let S0 := {ax + by | x, y ∈ N with x, y not both zero}. Build the set Z+ \ S0. If ℓ(a, b) < 0, the
algorithm ends. Otherwise, proceed to step 3.

3. For each U ∈ P(U)\{∅}, let u1, . . . , un denote all elements in U . Define the set SU to be the collection
of all linear combinations of the form ax1 + bx2 +u1x3 + · · ·+unxn+2 where the xi’s are nonnegative
integers not all zero. Build the sets Z+ \ SU .

It is clear that the sets constructed at the end of the above algorithm yield algebras because their com-
plements are closed under addition by construction. Although it is impossible to write a procedure that
generates all infinite sets that yield algebras, it is the case that each of these sets is obtainable at the end
of some iteration of the algorithm, which we state in the following proposition whose proof is trivial.

Proposition 3.1. Every nontrivial infinite set that yields an algebra can be built using Algorithm 2.

Proof. Let K ⊊ Z+ be an infinite set that yields an algebra and set a := min(Z+ \ K). Proposition 1.6
says that an integer b ∈ Z+ \K exists such that K stabilizes at Nd = N gcd(a, b). Then K = Z+ \ S0 if
there are no unrepresentables of a and b in Z+ \ K. Otherwise, K = Z+ \ SU where U is the set of all
unrepresentables of a and b in Z+ \K. ■

To conclude this paper, we give some formulas of infinite algebra yielding sets by imposing a condition on
the generalized Frobenius number.

Proposition 3.2. Let K ⊊ Z+ be an infinite set that yields an algebra. Let m := min(Z+\K) and m⋆ > m
be the smallest member of Z+ \K such that d := gcd(m,m⋆) is minimal. Then ℓ(m,m⋆) < m⋆ if and only
if K has one of the following forms:

(a) Z+ \ dZ+.
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(b) Z+ \ (dZ+ \ {d}).

(c) Z+ \ {2d, 4d, . . . , (q − 1)d, nd | n ≥ q + 1} for some odd q > 1.

(d) Z+ \ {2d, 4d, . . . , (r − 3)d, nd | n ≥ r}} for each r = 3, 5, . . . , q − 2, q and for some odd q > 1.

Proof. Suppose that ℓ(m,m⋆) < m⋆. If ℓ(m,m⋆) < 0, then Proposition 1.4 says that m = d, so K =
Z+ \ dZ+. Similarly, if 0 < ℓ(m,m⋆) < m, then m = 2d and m⋆ = 3d, so K = Z+ \ (dZ+ \ {d}).
Finally, suppose m < ℓ(m,m⋆) < m⋆, so that ℓ(a, b) = qd. We observe that the unrepresentables of m
and m⋆ are 3d, 5d, . . . , (q − 2)d, qd = ℓ(m,m⋆). If there are no unrepresentables in Z+ \K, then Z+ \K
contains all even multiples of d smaller than ℓ(m,m⋆), so Z+ \ K = {2d, 4d, . . . , (q − 3)d, (q − 1)d, nd |
n ≥ q + 1}. If Z+ \ K contains unrepresentables, let rd denote the smallest one. Then ax + rd for each
x = 1, 2, . . . , (q − r)/d are all unrepresentables greater than rd and are contained in Z+ \ K. Therefore,
Z+ \K = {2d, 4d, . . . , (r − 3)d, nd | n ≥ r − 1}. ■

When b < ℓ(a, b), it is much more difficult to list infinite sets that yield algebras. If a general formula for
the stabilization point is known, then one would be able to list all infinite sets that yield algebras. However,
the stabilization point is dependent on the Frobenius number, which does not have a general formula.
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