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Abstract: Toxoplasmosis is a parasitic disease instigated by T. gondii. T. gondii can infect every warm-
blooded vertebrate and the proportion of the world population that is suffering from the parasitic disease
is over one-third. In this work, a nonlinear epidemic model is developed to analyze how various factors
can instigate backward bifurcation phenomenon in the transmission dynamics of toxoplasmosis. The model
is subjected to the usability test by employing ample mathematical techniques and is found to be usable.
An analytical threshold that governed T. gondii transmissibility is derived and used to study the model
qualitatively. Results from the analysis establish the existence of backward bifurcation for toxoplasmosis
dynamics.
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1 Introduction

Toxoplasmosis is a parasitic disorder activated by T. gondii [18]. The disease affects over one-third of the
human population globally [15]. The main carriers of T. gondii are cats (Felis catus) [8], though other
animals like cattle, swine, sheep, goats, dogs, birds, etc. are potential reservoirs of the disease, T. gondii
reservoirs can be categorized into two-living and non-living reservoirs. Living reservoirs include cats (final
hosts) and other animals (intermediate hosts) [21] while non-living reservoirs include contaminated wa-
ter and soil [15]. It should be noted that unlike other reservoirs of T. gondii, cats remain asymptomatic
throughout their life.

Toxoplasmosis is transmitted through ingestion of oocysts from contaminated food, water or environment.
The disease can also be contracted through unhygienic contact with T. gondii reservoirs and their wastes
[10]. Toxoplasmosis infection is severe and develops faster in immunosuppressed patients. When the in-
fection is fully incubated, the infected individuals or animals may manifest fever, fatigue, myocarditis,
lymphocytosis, abortion, meningioencephalitis, etc. [21]. Transmission and spread of toxoplasmosis can be
prevented through avoidance of contact with cats, elimination of stray cats, proper cooking of vegetable
and meat, drinking of portable water and adequate hygienic practices [21]. However, the disease may be
treated with drugs such as sulfadiazine, clindamycin, pyrimethamine and spiramycin [21].

The qualitative behaviors of many epidemic models rely on a threshold quantity known as the basic repro-
ductive ratio R◦ [13]. The central idea of R◦ is that a patient is unable to spread the infection and the
disease disappears in time if R◦ < 1. On the other hand, if R◦ > 1, infection grows because the patient
is able to substitute itself and the epidemic emerges. Bifurcation is a qualitative phenomenon that shows
how a change in dynamical behavior and stability properties of an epidemic model instigates either disease
eradication or disease persistence in epidemic modeling [1].

Backward bifurcation occurs in disease dynamics when multiple equilibria co-exist in such a way that the
disease persists even when R◦ < 1 [2]. Generally, a stable disease-free equilibrium (DFE) co-exists with a
stable endemic equilibrium when R◦ < 1 and as a result, the condition R◦ < 1 is no longer sufficient for
disease eradication [2, 16, 20]. The knowledge of backward bifurcation is very crucial in epidemic modeling
because intervention programs will have to be designed and fortified in such a way to reduce R◦ further
so as to guarantee disease elimination for epidemic models that are characterized by backward bifurcation
phenomenon.
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Numerous models have been designed to study the transmission dynamics of toxoplasmosis [11, 17, 19].
Some toxoplasmosis models are built around vaccinations as adequate methods of eliminating T. gondii [4].
However, vaccinations, in most cases, do not offer lifelong immunity as the immunity produced by the vac-
cines may wane with time [3]. Individuals who are protected against infections by vaccination may become
susceptible again after the waning of immunity [6]. Therefore, models that are built around vaccination
may exhibit backward bifurcation phenomenon. The study of backward bifurcation for the transmission
dynamics of toxoplasmosis is not new. Authors in [9] and [12] proposed toxoplasmosis models and verified
the existence of backward bifurcation for the models. Nevertheless, the influence of vaccination coverage as
well as reinfection on the existence of backward bifurcation in the dynamics of toxoplasmosis is relatively
new in the literature.

2 The Model

The model presented is the extension of the mathematical model in Arenas et al. [4]. The model in [4] is
extended by incorporating recovery and reinfection. Besides, the present paper considers backward bifur-
cation phenomenon in toxoplasmosis dynamics which was excluded by Arenas and co-researchers [4]. The

Figure 1: Flow chart of T. gondii model.

total population of cats and contaminated environment denoted by N(t) is categorized into five subclasses:
vaccinated V (t), susceptible S(t), infected I(t), recovered R(t) and contaminated environment E(t). It is
assumed that the cat population is recruited at rate π with some fraction of it, (ϕπ) vaccinated at birth
while the remaining fraction (1−ϕ)π that do not receive vaccination at birth moves to the susceptible class.
ϕ is the vaccination coverage that meets the requirement 0 ≤ ϕ ≤ 1. The vaccinated cats become suscepti-
ble at rate θ after the waning of immunity. Susceptible cats contract toxoplasmosis from the infected cats
and also from the contaminated environment at rates α1 and α2 respectively. Infected cats increase oocysts
in the environment at rate ε, recover at rate τ and become susceptible again at rate σ. Infection does not
result in death but natural death occurs for the cat compartments at the same rate µ while oocysts are
removed naturally from the environment at rate δ.

Following the aforementioned assumptions and the flow chart in Figure 1, the toxoplasmosis model is
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derived as follows

dS

dt
= (1− ϕ)π + θV + σR− ΓS − µS, (1)

dV

dt
= ϕπ − (θ + µ)V, (2)

dI

dt
= ΓS − (ε+ τ + µ)I, (3)

dR

dt
= τI − (σ + µ)R, (4)

dE

dt
= εI − δE. (5)

From S + V + I +R = 1, R = 1− S − V − I, and so the model (1)-(5) reduce to

dS

dt
= (1− ϕ)π + θV + σ(1− S − V − I)− (Γ + µ)S, (6)

dV

dt
= ϕπ − (θ + µ)V, (7)

dI

dt
= ΓS − (ε+ τ + µ)I, (8)

dE

dt
= εI − δE, (9)

where Γ = α1I + α2E.

2.1 Model validity

The system of equations (6)-(9) is valid and suitable to conduct the analysis if it satisfies the following
conditions.

2.1.1 Positivity of solutions

Theorem 1. The solutions S(t), V (t), I(t) and E(t) of the model are nonnegative if S◦, V◦, I◦ E◦ are
positive.

Proof. From Eq. (7),
d

dt
V (t) = ϕπ − (θ + µ)V (t) (10)

Assuming (θ + µ) = ϑ and ϕπ = β, then,

d

dt
V (t) + ϑV (t) = β (11)

The product of Eq. (11) and exp(ϑt) implies

d

dt
V (t) exp(ϑt) + ϑV (t) exp(ϑt) = β exp(ϑt) (12)

By product rule, the LHS of Eq. (12) implies

d

dt
V (t) exp(ϑt) + ϑV (t) exp(ϑt) =

d

dt
[V (t) exp(ϑt)] (13)

From Eq. (12) and Eq. (13), we get

d

dt
[V (t) exp(ϑt)] = β exp(ϑt) (14)

=⇒ V (t) = V (0) = exp(−ϑt) +
β

ϑ
(1− exp(−ϑt)) ≥ 0 ∀ t ≥ 0 (15)

Following the same approach, it can be shown that S(t), I(t) and E(t) are nonnegative. Therefore, the
solutions of the model are nonnegative for all t ≥ 0.
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2.1.2 Invariant region

Theorem 2. Given the nonnegative initial data S◦, V◦, I◦ and E◦, the solution for the model is feasible in
the region {

S(t), V (t), I(t) ∈ ℜ3
+|S(t) + V (t) + I(t) ≤ π

µ
;E(t) ∈ ℜ+|E(t) ≤ πε

µ

}
(16)

Proof. Summing up the equations for cat population,

d

dt
C(t) = π − (S + V + I)µ+ σ(1− S − V − I)− (ε+ µ)I,

=⇒ d

dt
C(t) ≤ π − µC,

=⇒ d

π − µC
≤ dt,

=⇒π − µC(t) ≥ k1e
−µt.

As t = 0, C(t) = C(0) gives
k1 = π − µC(0)

. Therefore,

π − µC(t) ≥ k1(π − µC(0))e−µt,

=⇒C(t) ≤ π

µ
−

(
π − µC(0)

µ

)
e−µt

(17)

As t → ∞, 0 ≤ C(t) ≤ π

µ
, which shows that the solution for cat population is bounded within

π

µ
.

Also, considering the population of oocysts in the environment in Eq. (9),

dE

dt
= εI − δE (18)

Notice that I is a subset of C(t) and C(t) ≤ π

µ
in Eq. (17)

=⇒ dE

dt
≤ πε

µ
− δE

=⇒ E(t) ≤ πε

µ
(1− k2e

−δt).

As t → ∞, E(t) ≤ πε

µ
which establishes that the solution for the oocysts population is bounded in the

region
πε

µ
.

3 Model Analysis

3.1 Disease eradication and reproduction number

When oocysts are completely eliminated from the cat population and the environment, the disease eradi-
cation point is obtained as

D◦ = (S◦, V◦, I◦, E◦) = (S◦, V◦, 0, 0), (19)

where

S◦ =
(1− ϕ)(θ + µ)π + θϕπ + σ(θ + µ)− σϕπ

(θ + µ)(σ + µ)
,

and

V◦ =
ϕπ

θ + µ
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Infections occur when susceptible cats interact with the contaminated environment or the infected cats.
The average number of new infections is quantified in terms of a nondimentional quantity known as the
reproductive ratio (R◦). The quantity (R◦) is derived by the method in [7] which necessitated the derivation
of the matrices M and N from the model such that

M =

(
α1S◦ α2S◦
0 0

)
, (20)

N =

(
ε+ τ + µ µ

−ε δ

)
(21)

Thus,

R◦ =
(α1δ + α2ε)

δ(ε+ τ + µ)
S◦ (22)

3.2 Stability of disease eradication

The stability of the point where oocysts are eradicated from the contaminated environment and the popu-
lation is analyzed.

Theorem 3. The disease eradication point D◦ is stable locally if R◦ < 1 and unstable if otherwise, i.e., if
R◦ > 1.

Proof. The variational matrix of the system (6)-(9) evaluated at D◦ is obtained as

J(D◦) =


−(σ + µ) θ − σ −σ − α1S◦ −α2S◦

0 −(θ + µ) 0 0
0 0 α1S◦ − (ε+ τ + µ) α2S◦
0 0 ε −δ

 (23)

The first two eigenvalues of J(D◦) are negative and are λ1 = −(σ + µ) and λ2 = −(θ + µ).
The remaining eigenvalues can be determined from submatrix B given as

B =

(
α1S◦ − (ε+ τ + µ) α2S◦

ε −δ

)
(24)

The characteristic equation of submatrix B is evaluated as

λ2 + (δ + ε+ τ + µ− α1S◦)λ− α1δS◦ − α2εS◦ + δ(ε+ τ + µ) = 0 (25)

The two roots in the Eq. (25) are negative if

(δ + ε+ τ + µ) > α1S◦, (26)

and
−α1δS◦ − α2εS◦ + δ(ε+ τ + µ) > 0 (27)

From Eq. (27),
(α1δ + α2ε)S◦ < δ(ε+ τ + µ).

Therefore,
(α1δ + α2ε)

δ(ε+ τ + µ)
S◦ < 1.

By Eq. (22),
R◦ < 1.

Since it is proved that R◦ < 1, then (δ + ε + τ + µ) > α1S◦ in Eq. (26) and the two roots in Eq.
(25) are negative. The result of the proof indicates that the disease eradication equilibrium D◦ is locally
asymptotically stable.
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3.3 Existence of backward bifurcation

The stability of the disease eradication implies that toxoplasmosis can be eradicated from the cat population
within the framework of the model when R◦ < 1 . However, a change in the value of a parameter or changes
in the values of some parameters of a model may alter the qualitative structure of the model. The alter-
ations in the qualitative structure of a model are referred to as bifurcations in Mathematical Epidemiology
and the parameter whose values alteration results in bifurcation is referred to as a bifurcation parameter
[14]. Backward bifurcation is characterized by the simultaneous existence of stable disease eradication and
stable disease persistence when the associated reproductive ratio is less than unity. Backward bifurcation
has a serious implication in disease management because of disease persistence irrespective of stable disease
eradication when R◦ < 1.

At the bifurcation point when R◦ = 1, one can investigate whether the bifurcation parameter activates
backward bifurcation or not. The existence of backward bifurcation shall be verified for the present toxo-
plasmosis model following the Center Manifold Theory formulated by [5] to be sure if the existence of the
stable disease eradication in the analysis is sufficient to eliminate toxoplasmosis.

To apply the theorem, the variables of the model are transformed in such a way that x1 = S, x2 = V, x3 = I

and x4 = E. If X = (x1, x2, x3, x4)
T , the system of Eqs. (6)-(9) becomes

dX

dt
= F(X) where F =

(f1, f2, f3, f4). Thus, the model Eqs. (6)-(9) are transformed to

dx1

dt
= (1− ϕ)π + θx2 + σ(1− x1 − x2 − x3)− (α1x3 + α2x4)x1 − µx1, (28)

dx2

dt
= ϕπ − (θ + µ)x2, (29)

dx3

dt
= (α1x3 + α2x4)x1 − (ε+ τ + µ)x3, (30)

dx4

dt
= εx3 − δx4. (31)

If α1 is chosen as the bifurcation parameter at R◦ = 1 and if it is expressed in terms of other parameter at
the point, then

α1 =
ε+ τ + µ

S◦
− α2ε

δ
(32)

With α1 = α∗
1, the transformed model Eqs. (28)-(31) consist of a simple eigenvalue that has zero real

part. Hence, with the variational matrix, the behavior of the system (28)-(31) around α1 = α∗
1 can be

investigated via the Center Manifold Theory.

The variational matrix of the system (28)-(31) when α1 changes to α∗
1 is obtained as

J(D◦)|α1=α∗
1
=


−(σ + µ) θ − σ −σ − α∗

1S◦ −α2S◦
0 −(θ + µ) 0 0
0 0 α∗

1S◦ − (ε+ τ + µ) α2S◦
0 0 ε −δ

 (33)

The associated right eigenvectors of J(D◦)|α1=α∗
1
that are represented by w = (w1, w2, w3, w4)

T can be
obtained and,

w1 =
α∗
1δS◦ + α2εS◦ + σδ

δ(σ + µ)
w3 > 0, (34)

w2 =
α∗
1δS◦ + α2εS◦ + σδ + δ(σ + α∗

1S◦) + α2εδS◦

δ(θ − σ)
w3 > 0, (35)

w3 = w3 > 0, (36)

w4 =
ε

δ
w3 > 0. (37)

Inequality (36) is true if θ > σ or if σ = 0.
Likewise, the left eigenvectors of the transformed model represented by v = (v1, v2, v3, v4)

T can be derived
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and, v1 = v2 = v3 = 0 but v3 = v3 > 0. Now, the task is to derive the bifurcation coefficients a and b,
the procedure of which is described in Theorem 4.1 in [5]. As specified in Theorem 4.1 in [5], the model
undergoes backward bifurcation if a and b are both positive. The existence of a backward bifurcation
necessitates a simultaneous coexistence of a stable and an unstable non-trivial equilibrium with stable
disease eradication equilibrium.

Computation of a: Following the procedure in Theorem 4.1 in [5],

2v3w1w3∂
2f3

∂x1∂x3
(0, 0) = 2v3w1w3α

∗
1,

2v3w1w3∂
2f3

∂x1∂x4
(0, 0) = 2v3w1w4α2.

Hence,

a =

4∑
k,i,j=1

vkwiwj
∂2fk

∂xi∂xj
(0, 0)

= 2v3w
3
3

[
(α∗

1δ + α2ε)S◦ + σδ

δ(σ + µ)

]{
α∗
1 +

εα2

δ

}
.

(38)

Computation of b: Following the same theorem as in computing a,

b =

3∑
k,i=1

vkwi
∂2fk

∂xi∂α∗
1

(0, 0)

= v3w3S◦ > 0

(39)

Since the two bifurcation coefficients a and b are positive, the toxoplasmosis model exhibits a backward
bifurcation according to Theorem 4.1 in [5].

The existence of backward bifurcation phenomenon for the toxoplasmosis model implies that a stable
toxoplasmosis-free and a stable toxoplasmosis-endemic equilibrium co-exist when the toxoplasmosis repro-
ductive ratio is below unity. The epidemiological implication therefore is that the established condition of
having the toxoplasmosis reproductive ratio below unity to eradicate toxoplasmosis is no longer enough.
The existence of stable toxoplasmosis disease eradication when R◦ < 1 in the analysis is not sufficient to
eliminate toxoplasmosis from the cat population.

4 Conclusions

In this study, a nonlinear epidemic model is developed to assess the possibility of the existence of a backward
bifurcation in mathematical models of T. gondii. The model is shown to possess the basic properties of a
robust epidemiological model. Equilibrium analysis is conducted and the disease eradication equilibrium
is derived. The reproductive ratio of the model is also derived and the stability analysis of the disease
eradication equilibrium is performed. The model is transformed by changing the value of a parameter to
assess the effect on the qualitative structure of the model and the possibility of the existence of a backward
bifurcation phenomenon. The transformed model is analyzed and the analysis establishes the existence of a
backward bifurcation for the toxoplasmosis model which allow a stable toxoplasmosis endemic equilibrium
to co-exist with a stable toxoplasmosis-free equilibrium when the toxoplasmosis reproductive ratio is less
than unity. The existence of a backward bifurcation for toxoplasmosis dynamics implies that toxoplasmosis
may remain in the cat population regardless of the implementation of necessary measures against the spread
of T. gondii.

The present analysis has offered a theoretical background for controlling toxoplasmosis. Since toxoplasmo-
sis does not confer permanent immunity upon recovery which means that σ > 0 for all t ≥ 0 and given the
existence of a backward bifurcation for toxoplasmosis dynamics, attempts should be made toward super-
vising recovered cats from interacting with the infected cats or contaminated environment. Every policy
that is capable of eliminating T. gondii from the environment and cat population must be formulated and

7



Backward Bifurcation in Epidemic Models of Toxoplasma gondii : A Qualitative Analysis

implemented with all seriousness if toxoplasmosis is to be eradicated from the cat population. Furthermore,
another critical factor to toxoplasmosis eradication in cat populations given the existence of a backward bi-
furcation is vaccination coverage ϕ. Since toxoplasmosis susceptibility in cat populations can be prevented
by adequate vaccinations as indicated in the transmission diagram in Figure 1, every measure must be put
in place to ensure that vaccination coverage attains the highest possible level in such a way that ϕ → 1.
It is clearly indicated in Figure 1 that backward bifurcation in toxoplasmosis dynamics is a function of
reinfection and vaccination coverage.

It should be noted that cats can spread toxoplasmosis into human and livestock populations. It is therefore
necessary that efforts are intensified to eradicate toxoplasmosis from cat populations because T. gondii
infection may be inimical to human well-being and livestock production. The infection may result in fever,
fatigue, myocarditis, lymphocytosis, abortion, meningioencephalitis, etc. in man and animals [21]. Due to
data unavailability, it is impossible to conduct numerical simulations. However, it is hoped that the analy-
sis has revealed vital information that the traditional requirement of reducing R◦ below unity to eradicate
infectious diseases in Mathematical Epidemiology is not sufficient to eradicate toxoplasmosis.
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