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Abstract: In 193/, Hopf established an elegant inequality bounding the exponential integral function. In
1959, Gautschi established an improvement of Hopf’s results. In 1969, Luke also established two inequal-
ities with each improving Hopf’s results. In 1997, Alzer also established another improvement of Hopf’s
results. In this paper, we provide two new proofs of Luke’s first inequality and as an application of this
inequality, we provide a new proof and a generalization of Gautschi’s results. Furthermore, we establish

some inequalities which are analogous to Luke’s second inequality and Alzer’s inequality. The techniques
adopted in proving our results are simple and straightforward.

Keywords: Exponential integral function, Incomplete gamma function, Bounds, Inequality

DOI: https://doi.org/10.3126/jnms.v4i2.41463

1 Introduction

The classical exponential integral function is usually defined as [I, p. 228§]

E(z) = /:O e_Tdr

r

_ / - dr (1)
=TY(0,z2)

for z > 0 where I'(v, 2) is the upper (or complementary) incomplete gamma function defined as

F(v,z):/ " te " dr.

It satisfies the properties
E'(z) = ——, (2)

E'(z) =<

+ & 1+ D B (3)
= — —_ zZ 5

22 z

among others. For more properties of the function, one may refer to [II, [0, 14]. This special function is of-

ten applied in areas such as astrophysics, neutron physics, quantum chemistry and engineering. As a result
of its important roles, it has been studied in various ways. For instance, see [3} [4} [T11 12| T3] [T5] 16 17, 18].

z

In 1934, Hopf [T, p. 26] established the inequality

P <ze®E(z) <1 for z>0 (4)
In 1959, Gautschi [5] gave an improvement of by establishing that
1 2 1
21n<1—|—> <eZE(z)<ln<1—|—> for z2>0 (5)
z z
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Gautschi’s approache is dependent on a double-inequality involving the function

[ee]
P — P
e? / e " dr,
z

where z > 0 and p > 1. By relying on a double-inequality involving the incomplete gamma function I'(v, 2),
Luke [9 p. 201] established the inequalities

1
o < ze*E(z) < z12 for 2z >0, (6)
43z < 2e"B(2) < 245242 for >0 (7)
22+ 4242 2246246 '

Also, by depending on a double-inequality involving the function

1 o p
7/ e " dr,
L(1+1/p) J,

where z > 0 and p € (0,1) U (1, 00), Alzer [2] established the inequality
~ln(l-e ) <E(z)<-In(l1-e") for z>0, (8)

where a > €7, 0 < b <1 and 7y is the Euler-Mascheroni constant.
We observe that the bounds in are bettter than those in . Also, the lower bound of is better than
that of @ and the upper bound of @ is better than that of . Also, the upper bound of @ is better
than that of if z > 0.756244. Moreover, the bounds in are better than those in @ Furthermore,
the lower bound of is better than that of . However, the upper bound of is better than that of .
By using relatively simple procedures, the objectives of this paper are:
(a) to provide two new proofs of the inequality @,
(b) to provide a new proof of the inequality by applying @7
(c) to establish a generalization of the inequality ,
(d) to establish new inequalities similar to (7)),

)

(e) to establish an inequality analogous to .

2 Results and Discussion

Theorem 2.1 ([9]). The inequality

z+1
z+2

o < zefE(z) <

holds for z > 0.

First Proof. Let x >0,y >0, u > 1 and % % = 1. Then by using Holder’s inequality, we obtain

+
/e”
dr
/ dr
1
o ,—xr % oo ,—yr %
<</ ¢ dr) (/ € dr)
1 r 1 r
E

1 1

H@)B (y).
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Thus, E(z) is logarithmically convex for z > 0. By applying and , we obtain

(n ()" = SO EE)

(z+1)e*E(z) — 1
= > 0.
€222 F2(z) =0

Hence (2 4 1)e*E(z) — 1 > 0 which gives the left-hand side of (9). Next let

(z+1)e™*
=F(z) - ~————— f .
A(z) (%) 12 or z>0
Then
—z 3 2
+4zc+4z+2
/ :E/ € <
A(2) (2) + z2 ( 22+4z+4+4
e % (234422 +42+2
= —-1)>0
z 23 4422 4 4z

which implies that A(z) is increasing. Hence for z > 0, we have

A(z) < lim A(z) =0

Z— 00

which gives the right-hand side of @ This completes the proof. O

Second Proof. Let D(z) = ze*E(z) for z > 0. It is known in [6l p. 194] that

1 7,271
D(z) =1 —/0 mdr. (10)

Then .
Inr)r=1
D(z) = — 7( d 0
() /0 (1—-1Inr)? re
which shows that D(z) is increasing. Thus,

D'(z)=(2+1)e’E(z) —1>0

which yields the left-hand side of @D Also,

1 IHT)2T2_1
lel — (
(2) /0 7(1—lnr)2 dr <0

which shows that D(z) is concave. Thus,

1
D'(2) = (2 + 2)e* B(z) - ;L <0
which yields the right-hand side of @[) This completes the proof. O
Remark 2.2. Tt follows from (10]) that,
1 k+1,.z2—1
Inr)stip
DD (L) — (1 k+1/ ( dr> 0
() PE () = (- [ >

for all k € N. Therefore, D'(z) is strictly completely monotonic. Also, since lim,_,, D(z) = 1, and by the
monotonicity property of D(z), we recover the right-hand side of .
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Theorem 2.3 ([5]). The inequality

1 2 . 1

2ln<1—|—z> <eE(z)<1n(1+Z> (11)
holds for z > 0.
Proof. Let ¢(z) = €*E(z) —In (1 + 1) for z > 0. By applying the left-hand side of (9), we obtain

1

0
z+1>

¢'(z) = " E(z) —
which implies that ¢(z) is increasing. Consequently, we obtain
—y =1lim ¢(2) < ¢(z) < lim ¢(2) =0
z—0 zZ—00
which gives
1 1
—v+In <1 + ) < €e*E(z) <In <1 + ) . (12)
z z
Likewise, let 1(z) = e*E(z) — 3 In (1 + 2) for z > 0. By applying the right-hand side of (9), we obtain

Nz oz +1
Y'(2) = e E(2) 7z(z+2)<0

which implies that (z) is decreasing. Hence, we obtain

P(z) > lim ¢¥(z) =0

Z— 00
which gives
1 2
e“E(z) > 3 In <1 + Z) . (13)
Combining and the upper part of yields (11). This completes the proof. O

Remark 2.4. The lower bound of has been discovered as a byproduct of the proof and for 0 < z <
0.20845, it is better than the lower bound of .

In the following theorem, we provide a generalization of Theorem [2:3]
Theorem 2.5. The inequality

1 a 1 b
21 (1 f)<ZE <142 14
S n —|—Z e*E(z) bn( +z> (14)
holds for z >0 where a > 2 and 0 < b < 1.
Proof. Let G(z) = €*E(z) — In(1+ £) for 2> 0 and a > 2. Since

z+a—1>z+1

z4+a T z+2

for all @ > 2, by applying right-hand side of @D, we obtain

-1
2G'(2) = 2e*E(z) — %
z+1
< ze®E(z) — 0.
< ze*E(z) T2 <

Hence G(z) is decreasing. As a result, we have

G(z) > lim G(2) =0

Z—00
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which gives the left-hand side of (T4)). Similarly, let H(z) = e*E(z) — +In (1+ 2) for 2 >0 and 0 < b < 1.
Since

z4+b-—1 < ?
z4+b T z+1
for all 0 < b < 1, by applying left-hand side of @[), we obtain

b—1
2H' (2) = ze”E(z) — %
> ze”E(2) — z—T—l > 0.

Hence H(z) is increasing. In view of this, we have

H(z) < lim H(z) =0

Z—r 00
which gives the right-hand side of . This completes the proof. O
The following theorem is motivated by Luke’s second inequality .
Theorem 2.6. The inequality

z3+222—z< ZE()<z3—|—32'2—2z—|—2
———— < 2¢’E(z
23 4 322 23 + 422

(15)

holds for z >0 .
Proof. By employing , we obtain

2z —1

D(S)(Z) = 22

+e*(z+3)E(z) —1>0
which when rearranged gives the left-hand side of . Similarly, we have

322 2242

DB (z) = — .
z

+e*(z+4)E(z) —1<0

which when rearranged gives the right-hand side of (L5). This completes the proof. O

Remark 2.7. The bounds in (7)) are better than those of (I5). By using the higher derivatives of D(z) and
their associated monotonicities, one can derive other bounds similar to . For example, see the following
theorem.

Theorem 2.8. The inequality

z4+4z3—3z2+4z—6< ZE()<z5+5z4—423+6z2—12z+24
ze*E(z
24 +523 2% 4 624

(16)

holds for z > 0 .

Proof. This follows from the derivatives D) (z) and D (z) and their inherent monotonicities. This com-
pletes the proof. O

Remark 2.9. The lower bound of (16]) is better than that of (15) if z > 3 and the reverse case happens
if 0 < z < 3. The upper bound of (15) is better than that of (|L6)).

Theorem 2.10. The inequality
—y+ha-In(l-e*) <E(z) <—In(l-e*) (17)

holds for z > 0 where 0 < a < 1.
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Proof. Let K(2) = E(z) +In(1 —e %) for z > 0 and 0 < a < 1. Then

—z —Qz

e N ae
z 1 —e-az’

K'(z)=—

By using the basic inequality e* > 1+ z for z # 0, we obtain

and since e * < e

1 o

P —
z 1 —e 2
—Qz

, we have

—Zz —Qaz

L ae
z 1—e o2’

Hence K(z) is increasing and subsequently, we obtain

zZ— 00

—v+ha= lim £(2) <K(z) < lim K(z) =0
z—0t

which gives the inequality . This completes the proof. O

Remark 2.11. The right-hand side of agrees with the right-hand side of Alzer’s result . However,
if « =1 and a = €7, then the left-hand side of is better than that of .

Acknowledgment

The author wish to thank the anonymous reviewers and the Editor for careful reading of the paper and for
their comments and suggestions which helped to improve the quality of this paper.

References

[1]

2]

Abramowitz, M. and Stegun, I. A., 1965, Handbook of mathematical functions with formulas, graphic
and mathematical Tables, Dover Publications, Inc., New York.

Alzer, H., 1997, On some inequalities for the incomplete gamma function, Math. Comp., 66(218),
T71-778.

Bhandari, P. K. and Bissu, S. K., 2016, On some inequalities involving Turan-type inequalities, Cogent
Math., 3(1), Article: 1130678.

Chiccoli, C., Lorenzutta, S. and Maino, G., 1990, Recent results for generalized exponential integrals,
Computers Math. Applic., 19(5), 21-29.

Gautschi, W., 1959, Some elementary inequalities relating to the gamma and incomplete gamma
function, J. Math. Phys., 38, 77-81.

Gelle, M. and Ng, E. W.; 1969, A table of integrals of the exponential integral, Journal of Research of
the National Bureau of Standards - B, Mathematics and Mathematical Science, 73B(3), 191-210.

Hopf, E., 1934, Mathematical problems of radiative equilibrium, No. 31, Cambridge Tracts in Mathe-
matics and Mathematical Physics, Cambridge University Press. London.

Jameson, G. J. O., 2017, The real exponential integrals, Available online at: https://www.maths.
lancs.ac.uk/~jameson/expint.pdf|

Luke, Y. L., 1969, The special functions and their approzimations, Vol. 2, Academic Press, New York.
Masina, E. 2019, A review on the exponential-integral special function and other strictly related special

functions, arXiv:1907.12373v1 [math. GM].

33


https://www.maths.lancs.ac.uk/~jameson/expint.pdf
https://www.maths.lancs.ac.uk/~jameson/expint.pdf

Journal of Nepal Mathematical Society (JNMS), Vol. 4, Issue 2 (2021); K. Nantomah

Nantomah, K., 2021, A harmonic mean inequality for the exponential integral function, Int. J. Appl.
Math., 34(4), 647-652.

Nantomah, K., 2021, A harmonic mean inequality concerning the generalized exponential integral
function, Adv. Math. Sci. J., 10(9), 3227-3231.

Nantomah, K., Merovci, F. and Nasiru, S., 2017, A Generalization of the exponential integral and
some associated inequalities, Honam Mathematical J., 39(1), 49-59.

Olver, F. W. J., Lozier, D. W., Boisvert, R. F. and Clark, C. W., 2010, (eds) NIST handbook of
mathematical functions, Cambridge University Press, London.

Salem, A., 2013, A g-analogue of the exponential integral, Afr. Mat., 24, 117-125.

Sroysang, B., 2013, On the n-th derivative of the exponential integral functions, Communications in
Mathematics and Applications, 4(2), 141-144.

Sulaiman, W. T., 2012, Turan inequalities for the exponential integral functions, Commun. Optim.
Theory, 1(1), 35-41.

Yakubu, A., Nantomah, K. and Iddrisu, M. M., 2020, A p-analogue of the exponential integral function
and some properties, Adv. Inequal. Appl., 2020, Article ID 7.

34



	Introduction
	Results and Discussion

