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1 Introduction

In 1643, Pierre de Fermat [17], proposed a problem to an Italian Physicist, Evangelista Torricelli. The
problem was about finding the point the sum of whose distances from the vertices of a triangle is a minimum.
The minimum value is known as Fermat-Torricelli value or Torricellian point. (See Mordukhovich and
Nam [10]). The study of FTP together with its generalization has attracted several researchers due to its
applications in location science and optimal networks.

The following authors worked on the FTP in normed linear spaces (nls), reflexive nls, reflexive Banach
spaces, inner product spaces (i.p.s) and normed planes and spaces respectively: Radulescu et al. [14],
Vesely [21], Papini and Puerto [13], Dragomir and Comanescu [3], Dragomir et al. [4] and Matrini et al.
[9]. In recent time, Radulescu et al. [14] obtained several general formulations of FTP in nls by using theory
of convex analysis and optimization. Vesely [21] established results on the FTP in nls that are reflexive.
Papini and Puerto [13] studied the problem in Banach spaces by minimizing the sum of distance from k
furthest point of the domain. Dragomir and Comanescu [3] presented results in i.p.s. An interesting version
for solving the problem in reflexive nls, i.p.s and non-expansive spaces is proposed in Dragomir et al. [4].
However, constrained version of the problem using the distance penalty method can be found in Nathan
and George [11]. As a corollary, the study also dealt with further generalization of the FTP. Meanwhile, a
re visitation of FTP was done from the theoretical and numerical point of view by Boris and Nguyen [2]
very recently.

In this paper, to further expand the scope of domain of definition of the functional, we aim to formulate FTP
in more generalized spaces, namely Frechet spaces. In particular, we consider the existence of Torricellian
points in Frechet spaces and as a proposition, we state the properties of functional which recaptures similar
results in Dragomir and Comanescu ([3], proposition 1). This work complements the results of authors
in [3, 4, 14] and also extends Ayinde and Osinuga [1]. The main aim of this paper is to investigate and
generalize Proposition (2.3) of [13], Propositions (4.2, 4.3 and 5.1) of [4] for the case when X is a Frechet
space.

In section 2, we give notions, definitions and results that have direct bearing to our work. In sections 3,
we recall general results of FTP in normed linear spaces that we intend to generalize for Frechet spaces.
Some preliminary results that lead to the existence results on FTP in Frechet spaces are considered first in
subsection 4.1. These preliminary results include Theorem 4.1, which shows the existence of FTP in Frechet
space vis-a-vis its existence in Banach space, Proposition 4.1 for the construction of bounded set for FTP
in Frechet space and Proposition 4.2 which establishes the properties of functional described by the FTP.
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Existence results in the case where the points are collinear are examined in subsection 4.2. Subsection 4.3
is concerned with the main results on the existence of the set of minimizers in Frechet spaces in the case of
non-collinear points. Proposition 4.5 addresses the properties of the set of minimizers for the FTP, Theorem
4.2 and Proposition 4.6 are given to show the roles weak compactness and weak lower semi-continuity play
on the existence of the set of minimizers for FTP while in Theorem 4.3 the existence result is established.
In subsection 4.4 uniqueness of the minimizer for non collinear points in Frechet spaces is established. Strict
convexity concept of the space and the functional FTP is used to show the uniqueness of the solution. This
can be seen in Theorems 4.5 and 4.6.

2 Preliminaries

We shall give here a brief review of terminologies and results about linear topological spaces and Frechet
spaces required for subsequent developments. The details can be found in ([5-8], [12], [15], [16], [18-20] and
[22]).

Definition 2.1. A family {pi}i∈I of continuous seminorms on X is called a fundamental system of semi-
norms, if the sets Ui = {x ∈ X : pi(x) < ε}(i ∈ I) form a fundamental system of zero neighborhoods.

Definition 2.2. A locally convex space(lcs) is a topological linear space with fundamental system of 0-
neighbourhoods comprising convex sets. Every lcs X has a fundamental system of continuous seminorms
{pi}i∈I

Definition 2.3. A lcs X is called a metrizable locally convex space if its topology is defined by a countable
collection of continuous semi norms. If X is complete we call it a Frechet space.

Definition 2.4. A topological linear space X is referred to as a normed linear space (nls) if its topology is
defined by a norm ‖ · ‖. A normed linear spce X which is complete is called a Banach space.

Definition 2.5. Let X be a vector space over K and Xi family of lcs. Then X together with the collection
Xi and linear maps fi : X → Xi, i ∈ ∧ is called a projective system if for each s ∈ X, s 6= 0, there exists
an i ∈ ∧ with fi(s) 6= 0.

For every projective system (fi : X → Xi) i ∈ ∧, the seminorm system {p : p = maxi(pi ◦ fi), i ∈ ∧ pi
continuous seminorm on Xi, i ∈ ∧} induced a locally convex topology on X, which is denoted by the
projective limit topology of the system.

Definition 2.6. A pair (X, (fi), i ∈ ∧) consisting of lcs X and a family of fi ∈ L(X,Xi) is called the
projective limit of a projective system {Xi, i ∈ ∧, fij , i > j} which is denoted by X = lim←Xi where
fij : Xi → Xj is continuous if the family (fi) is compatible with (fij), i.e. fij ◦ fi = fj.

Definition 2.7. A function h : X → (0,∞) is called convex if for any s, t ∈ X and λ ∈ [0, 1], we have
h(λs+ (1− λ)t) ≤ λh(s) + (1− λ)h(t). If the inequality above is < whenever s 6= t and λ ∈ (0, 1), then h
is called strictly convex.

Definition 2.8. Let X be an nls. X is strictly convex iff ‖s+ t‖ = ‖s‖+ ‖t‖, s 6= t, then t = λs for some
λ > 0, s, t ∈ X. (See [2]) (or X is strictly convex if the norm is strictly convex.)

Definition 2.9 (Lower semi continuity). If f : X → [−∞,∞] is an extended real valued function, we say
f is lower semi continuous at s0 if f(s0) ≤ lims→s0 inf f(s).

The Frechet space X considered in this work is graded. This implies that X is equipped with a fixed funda-
mental system of seminorms whereby its topology is given by an increasing sequence of norms pn = ||.||n,
n > 0 for all x ∈ X, ||x||n ≤ ||x||n+1

where Xn = X/kerpn is a Banach space. Hence, this suggests the following projective system.

→ Xn+1 → Xn → Xn−1 → ...→ X0
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Each identity map is continuous and injective.

We remark that X = lim←Xn =
⋂
Xn is a dense subspace of Xn

Therefore, Un = {x ∈ X : pn(x) ≤ α} (n ∈ N) is a fixed fundamental system of neighbourhoods with fixed
fundamental system {pn}n∈N= P of seminorms/norms.

We let Xn = X/kerpn be a Banach space which is of finite dimension.

Let X be a graded Frechet space with the Banach space Xn = X/kerpn finite dimensional. Given a
convex and closed set Un ⊂ X with 0 ∈ Un, the gauge function of the set Un

pUn : X → R+ is defined as

pUn
(x) =

 +∞ if {α > 0 : x ∈ αUn} = φ

inf{α > 0 : x ∈ αUn} otherwise

The gauge function pUn
= pn is a seminorm. This implies that if 0 ∈ Un, domain of pn is X.

Definition 2.10. Let X be a locally convex space. A subset U ⊂ X, is called bornivorous if for every
bounded set B ⊂ X there is λ > 0 so that B ⊂ λU . X is called bornological if every absolutely convex
bornivorous set is a neighborhood of zero.

3 General Results

We recall in this section, results on the existence and uniqueness of the set of minimizers for FTP in normed
linear spaces and inner product spaces.

3.1 FTP in normed linear spaces

The following results on the existence and uniqueness of the set of minimizers for FTP in normed linear
spaces are stated here. The proofs can be found in [4] and [11].

Definition 3.1. Let (X, ||.||) be a real normed linear space, let m ≥ 1 be a positive integer and let A =
{a1, ..., am} be a set of m distinct points in X, then the FTP associated with A on X is T (s) =

∑m
i=1 ||(x0−

ai)|| and its solution set is given by TX = {x0 : T (x0) ≤ T (x), x ∈ X}.

Proposition 3.1 (cf Papini and Puerto [11 Proposition 2.3]). Let X be a nls. If X is a dual space, in
particular, if X is reflexive, then for all {a1, ..., an} a set of distinct points in X, the set of minimizers for
FTP is non-empty.

Proposition 3.2 (cf Dragomir et al. [4 Proposition 5.1]). Let (X, ||.|| be a nls and let A = {a1, ..., an} ⊂ X
(n ≥ 3) be a set of non-collinear points in X. If the space is strictly convex, then the set of minimizers for
FTP contains at most one point.

Proposition 3.3 (cf Dragomir et al. [4 Proposition 5.1]). Let (X, ||.||] be a nls and let A = {a1, ..., an} ⊂
X (n ≥ 3) be a set of non-collinear points in X. If the space is strictly convex, then the set of minimizers
for FTP contains at most one point.

Proposition 3.4 (cf Dragomir et al. [4 Proposition 4.3]). Let (X, ||.||) be a nls and let A = {a1, ..., a2k}
be a set of 2k collinear distinct points in X. Then, the set of minimizers for the FTP is {ak+1}.

3.2 FTP in inner product spaces

We record here results on the existence and uniqueness of the set of minimizers for the FTP in inner product
spaces. We also note that it suffices to state the following theorem which covers for both the existence and
uniqueness of the set of minimizers since an inner product space is already a strictly convex space.
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Proposition 3.5 (cf Dragomir et al. [4 Proposition 5.2]). Let (X(., .)) be an inner product space and let
A = {a1, ..., an} ⊂ X (n ≥ 3) be a set of non-collinear points in X. Then the set of minimizers for FTP
contains a unique point.

4 Main Results

In this section, we generalise existence results of Propositions (3.3 and 3.4) for collinear points that are
available in normed linear spaces to Frechet spaces and also existence and uniquiness results of propositions
(3.1 and 3.2) for non collinear points available in normed linear spaces to Frechet spaces.

4.1 Preliminary results

We consider here the general results on the properties of the FTP functional.

Definition 4.1. Let X be a real Frechet space. Let m ≥ 1 and A = {q1, q2, . . . , qm} ⊂ X be a finite distinct
set. If P = {pn}n∈N are the fixed gauges of X, then, the FTP is given by N(s) =

∑m
i=1 pn(s − qi) where

pn ∈ P for all n.

Theorem 4.1. Let X be a Frechet space (projective limit of Banach spaces Xi). Then the following
conditions are equivalent.

(i) There is a FTP defined on X;

(ii) For each Banach space Xi with continuous map gi : X → Xi there exists a FTP defined on each
Banach space Xi.

Proof. (i) implies (ii):

Define for each Banach space Xi a ball Bi ⊂ Xi. Let also find balls B1 ⊂ Bi and B2 ⊂ B1 such that
B1 +B1 ⊂ Bi. Let U be an absolutely convex 0-neighbourhood in X such that

U = g−1i (B2)

.

Let r > 0 and also w.l.o.g. r ≥ 1. Given a finite set M ′ = {a1, a2, . . . , am} ⊂ Xi we define a finite set
M = {q1, q2, . . . , qm} ⊂ X with

M ′ ⊂ gi(M) + r−1(B2).

Then there is

s ∈ rU where s− qj ∈ U for each qj ∈M

whereby
m∑
j=1

pi(s− qj)

where pi ∈ P for all i exists in X by assumption.
Hence, from

U = g−1i (B2), we have gi(s− qj) ∈ B2 for qj ∈M

which exactly means that for each i,

||gi(s− qj)||i < 1 and
∑m
j=1 ||gi(s− qj)||i in Xi.
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Taking any aj ∈M ′ and choose qj ∈M which satisfies

aj − gi(qj) ∈ r−1B2

that is

||aj − gi(qj)||i < r−1.

Therefore,

s′ = gi(s) ∈ rB2 ⊂ rBi

and this means

||s′||i = ||gi(s)||i < r,

for each i. Therefore,

||s′ − aj ||i = ||gi(s− qj)||i + ||gi(qj)− aj ||i < 1 + r−1,

for each i which finally gives

m∑
j=1

||s′ − aj ||i =

m∑
j=1

||gi(s− qj)||i + ||gi(qj)− aj ||i =

m∑
j=1

||gi(s)− aj ||i

that exists in each Banach space Xi.

(ii) implies (i):

Let U ⊂ X be an absolutely convex 0-neighborhood. Suppose there exists a FTP defined on Xi. This
further implies that there is a FTP defined on the range Imgi of gi.

Hence, for each finite set M = {q1, q2, . . . , qm} ⊂ X and 0-neighborhood U ⊂ X with r > 0 there ex-
ists

s ∈ rU such that ||gi(s)||i < r

and that

||gi(s)− gi(qj)||i < 1

whereby
m∑
j=1

||gi(s)− gi(qj)||i

is a FTP defined on Imgi for each Xi.

This implies that for

s ∈ rU and s− qj ∈ U ,

m∑
j=1

pi(s− qj)

where pi ∈ P for all i exists and is defined on X. We can therefore conclude that (i) and (ii) are equivalent.

Proposition 4.1. Let X be a Frechet space. Given a finite set {aj}j in a Banach space Xn, let Bn be
a bounded set for the FTP

∑m
j=1 ||(s′ − aj)|| on a Banach space Xn for each n, then given a finite set

{qj}j ⊂ X, the set B for the FTP
∑m
j=1 pn(s− qj) on X is bounded for all n.
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Proof. Define the FTP TXn =
∑m
j=1 ||(s′ − aj)|| on the Banach space Xn for each n associated with finite

set {aj}j for s′ ∈ Xn. There is a gauge pBn(s′) = inf{λ : s′ ∈ λBn}, such that

TXn
=

m∑
j=1

||(s′ − aj)||n =

m∑
j=1

pBn
(s′ − aj)

on Xn for each n. Hence, by the gauge pBn
on Xn and for any 0-neighbourhood Vn there exists a bounded

convex neighbourhood of zero Bn = {s′ : T (s′) ≤ T (t′), t′ ∈ X} associated with the FTP
∑m
j=1 pBn

(s′−aj)
so that Bn ⊂ λVn for each n, where λ > 0. See ([4], Proposition 2.7)

However, since the Frechet space X =
⋂
Xn is dense in Xn and metrizable where Xn = X/kerpn for

each gauge pn on X is finite dimensional, then given a finite set {qj}j ⊂ X and s ∈ X there is a fixed
collection of gauges on X for which the FTP

∑m
j=1 pn(s− qj) is defined on the Frechet space X for all n,

with (j = 1, 2, 3, ...m ) by Theorem 4.1.

The Frechet space X carries a product topology, therefore, the set

B ⊆ ΠnBn

is bounded in X.

Moreover, since every Frechet space is bornological, there exists an absolutely convex 0-neighbourhood
U in X such that

B ⊂ λU.

For the bounded set Bn = {s′ : T (s′) ≤ T (t′), t′ ∈ X} in Xn with s′ ∈ Bn for each n there exist
s ∈ X for which s ∈ B.

The following proposition describes the properties of the FTP N(s) in Frechet spaces.

Proposition 4.2. Let X be a Frechet space with P = {pn}n∈N defining its topology. Let A = {q1, q2, . . . , qm} ⊂
X. Then N(s) =

∑m
i=1 pn(s− qi), s ∈ X satisfies the following

(i) N(s) is continuous on X;

(ii) limpn(s)→∞N(s) =∞ and

(iii) N(s) is convex on X.

Proof. (i) For distinct points {q1, q2, . . . , qm} ⊂ X we have qi+Un (n = 1, 2, . . . ) being a neighbourhood
of qi in X for each i where Un = {s|pn(s) ≤ ε} for some ε > 0. Therefore, {q1, q2, . . . , qm} ⊂⋃m
i=1(qi +

⋂
n=1 Un) where ε

⋂
n=1 Un = {s|supn(s) < ε}. Hence, for s ∈ X then, s ∈ qi +Un for each

i. This implies that s − qi ∈ Un, for each i which also implies pn(s − qi) ≤ ε for all n therefore, we
have

m∑
i

|pn(s)− pn(qi)| ≤
m∑
i=1

pn(s− qi) ≤ mε.

Hence N(s) is continuous.

(ii) N(s) =
∑m
i=1 pn(s−qi) ≥

∑m
i |pn(s)−pn(qi)| = |pn(s)−

∑m
i=1 pn(qi)|, this shows that as pn(s)→∞,

limpn(s)→∞N(s) =∞.

(iii) For all s, t ∈ X and β ∈ [0, 1] we have N(βs + (1 − β)t) =
∑m
i=1 pn((βs + (1 − β)t) − qi) ≤∑m

i=1 pn(β(s−qi)+(1−β)(t−qi)) ≤ β
∑m
i=1 pn(s−qi)+(1−β)

∑m
i=1 pn(t−qi) = βN(s)+(1−β)N(t).

Hence, N(s) is convex.
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4.2 Existence results on collinear points

Propositions (3.3 and 3.4) are being generalized in this subsection for Frechet spaces.

The following definition is inspired by ([4] Definition 4.1) and Theorem 4.1. It also holds for Frechet
spaces.

Definition 4.2. Set of n distinct points {q1, · · · , qn} in a Frechet space X are said to be collinear if there
exists two distinct elements s and t in X and { λi} i = 1, 2, ..., n such that qi = λis+(1−λi)t i = 1, 2, 3, ..., n.

Proposition 4.3. Let X be a Frechet space and let A = {q1, ..., q2k+1} be a set of odd collinear distinct
points in X. Then, the subset of the set of minimizers for the FTP is {qk, qk+1}.

Proof. The proof follows from Theorem (4.1) and the argument in the proof of [4 Proposition 4.2].

Proposition 4.4. Let X be a Frechet space and let A = {q1, ..., q2k} be a set of even collinaer distinct
points in X. Then, the set of minimizers for the FTP is {qk+1}.

Proof. The proof follows from Theorem (4.1) and the argument in the proof of [4 Proposition 4.3].

4.3 Existence results on non collinear points

To generalize Proposition (3.1) for Frechet spaces, preliminary results in Propositions (4.5 and 4.6) and
Theorem (4.3) are required.

The solution set for the FTP is defined as follows.

Definition 4.3. Let X be a real Frechet space with P = {pn}n∈N defining its topology. Let A = {q1, q2, . . . , qm} ⊂
X. Then, the set O = {s ∈ X|N(s) ≤ N(t), t ∈ X} will be called a set of minimizers for the FTP.

Given any finite set {q1, q2, ...qm} ⊂ X, the following proposition gives the properties of the set of minimizers
O for FTP.

Proposition 4.5. Let X be a Frechet space with P = {pn}n∈N defining its topology. If A = {q1, q2, . . . , qm} ⊂
X. Then for N(s) as given in Proposition 4.2, O := {s ∈ X|N(s) ≤ N(t), t ∈ X} is a convex, closed and
bounded subset of X.

Proof. From Proposition 4.2, N(s) is convex. Hence, convexity of

O := {s ∈ X|N(s) ≤ N(t), t ∈ X}

follows from the convexity of N(s). We show next that O is closed. O is closed as the inverse image of a
closed set.

Lastly, we need to show that O = {s|N(s) ≤ N(t), t ∈ X} is bounded.

From Proposition 4.1, we have
sup
s∈B

pn(s) <∞.

By definition s ∈ O, and since O is closed, it implies that s ∈ B ⊂ O. Hence, O as the closure of a bounded
set B is bounded.

Theorem 4.2 ([19]). Let X be a lcs. X is reflexive if and only if it is barrelled and every bounded set is
(relatively weakly compact) contained in a weakly compact set.

Concerning weakly lower semicontinuous function on the weakly compact set K. The next proposition
holds and then stated without proof.

Proposition 4.6. Let X be a reflexive Frechet space and given a weakly compact set K ⊂ X, then the
function N : K ⊂ X → [−∞,∞] is weakly lower semi continuous on the weakly compact set K.

22



Journal of Nepal Mathematical Society (JNMS), Vol. 3, Issue 2 (2020); I.A. Osinuga et al.

In the following theorem it is established that the FTP which is weakly lower semicontinuous for reflexive
Frechet space X attains its bound in a weakly compact set in X.

Theorem 4.3. If X is a reflexive Frechet spaces and given a weakly compact set K ⊂ X. Then N : K ⊂
X → [−∞,∞] which is weakly lower semi-continuous on K attains its bound in K.

Proof. Let O = {s ∈ X|N(s) ≤ N(t), t ∈ X} be as we have in Proposition 4.5. Since O is bounded and
closed. It is weakly compact by Theorem 4.2. Suppose N : O ⊂ X → [−∞,∞] is not bounded. This
implies that for a sequence {sj} ⊂ O, N(sj) → −∞. But we have that O is weakly compact. With this,
there exists a subsequence {sjr} of {sj} (j, jr ∈ N) such that sjr → s weakly in O.

Since N is weakly lower semi continuous on O, N(jjr )
weakly−→ N(s) = −∞. This is a contradiction

since 0 ≤ N(s) ≤ N(t), t ∈ X.

By definition N(s) =
∑m
i=1 pn(s− qi) for all n, where A = {q1, q2, . . . , qm} = {qi}mi is finite in X.

Suppose N(sjr )
weakly−→ N(s). That is,

m∑
i=1

pn(sjr − qi) −→
m∑
i=1

pn(s− qi) (1)

for all n.
So also, since O is weakly compact, there exists a subsequence {sjr} converging weakly to s. That is,

sjr
weakly−→ s, which also implies

m∑
i=1

pn((sjr − s)− qi) ≤ mε (2)

for all n.

Hence, from (1) and (2), we have
|N(sjr )−N(s)| ≤ N(sjr − s)

So also
|N(s)−N(sjr )| ≤ N(sjr − s)

Therefore,
|N(s)| ≤ N(sjr − s) +N(sjr )

i.e
|N(s)| ≤ N(sjr + sjr − s)

Let t = snj + snj − s in X.

Since t ∈ X and by the condition of weak lower semicontinuity of N , N(s) = inftN(t). Hence,
N(s) ≤ N(t).

Therefore, N attains its bound in O.

Theorem 4.4. Let X be a reflexive Frechet space with P = {pn}n∈N defining its topology and A =
{qi, . . . , qm} a set of distinct points in X. Then, there exists a set of points that minimizes N(s) =∑m
i=1 pn(s− qi) on X.

Proof. Let M be a bounded subsets of X. By the property of reflexivity, M is relatively weakly compact,
whose closure is weakly compact. Hence, we define O = M̄ = {s ∈ X|N(s) ≤ N(t)}. By Proposition
4.5 and Theorem 4.2, O is weakly compact. By Proposition 4.6, N is weakly lower semi continuous. By
Theorem 4.3, N(s) attains its bound which implies that it attains a minimum on O.
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4.4 Uniqueness of Torricellian point in Frechet spaces for non collinear points

Uniqueness of the minimizer of FTP in Frechet spaces is discussed in this subsection to generalizes Propo-
sition (3.2). This is done by using strict convexity of the space and that of the functional.

Definition 4.4. The lcs X is referred to as strictly convex if given a family P = {pi}i∈I of continuous
seminorms for X and for every s, t ∈ X, pi(s+ t) = pi(s) + pi(t) with pi(s) 6= pi(t) then pi(t− αs) = 0 for
some real number α > 0 and U(s,t)

⋂
ker pi = {0}. Where U(s,t) is the set that spans s and t.

Remark 4.1. Theorem 4.5 holds for Frechet space X. This recaptures the results of Ayinde and Osinuga
[1], Theorem 3.3. Hence, the proof is omitted.

Theorem 4.5. Let X be a Frechet space (a projective limit of sequence of Banach spaces {Xi}i∈N). Then,
X is strictly convex if and only if Xi is strictly convex.

Theorem 4.6. Let X be a Frechet space with P = {pn}n∈N defining its topology. Suppose {q1, · · · , qm} is
non-collinear set of points in X. If X is strictly convex, then N(s) is strictly convex on X.

Proof. Since N(s) is convex by Proposition 4.2 then, we can write

N(λs+ (1− λ)t) ≤ λN(s) + (1− λ)N(t)

where 0 ≤ λ ≤ 1 and s, t ∈ X. We shall show this by contradiction. Since N is called strictly convex if
N(λs + (1 − λ)t) < λN(s) + (1 − λ)N(t). In view of this, let assume that N is not strictly convex i.e.
N(λs+ (1− λ)t) = λN(s) + (1− λ)N(t)

Hence,

m∑
i=1

pn(λ(s− qi) + (1− λ)(t− qi)) = |λ|
m∑
i=1

pn(s− qi) + |1− λ|
m∑
i=1

pn(t− qi)

for all n. Since the terms are non-negative, we then have

pn(λ(s− qi) + (1− λ)(t− qi)) = pn(λ(s− qi)) + pn((1− λ)(t− qi))

for i = 1, 2, · · · ,m

Since X is strictly convex. That is, pn(s + t) = pn(s) + pn(t) implies that pn(s) 6= pn(t) such that
pn(t − βs) = 0 for a β > 0. If λ(s − qi) = s1 and (1 − λ)(t − qi) = s2. There exist β > 0 such that
pn(s1 − βs2) = 0 This implies that

s1 − βs2 ∈ kerp and s1 − βs2 ∈ U(s1,s2).
Hence,

s1 − βs2 ∈ U(s1,s2)

⋂
ker p = {0}

That is

s1 − βs2 = (λs− λqi − βt+ βqi + βλt− βλqi) = 0

i.e.,

(−λqi + βqi − βλqi + λs− βt+ βλt) = 0

(qi(−λ+ β(1− λ)) + λs− β(1− λ)t) = 0

Hence, qi(−λ+ β(1− λ)) = β(1− λ)t− λs

qi =
β(1− λ)

β(1− λ)− λ
t− λ

β(1− λ)− λ
s
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This implies that qi lie on the line segment that connects s and t. This is a contradiction to {q1, · · · , qm}
being non-collinear. So also suppose s, t 6= qi for all i = 1, 2, · · · ,m and β = λ

1−λ

This translates to

pn(qi(−λ+
λ

1− λ
(1− λ)) + λs− λ

1− λ
(1− λ)t) = 0

i.e., pn(λs− λt) = 0, this gives |λ|p(s− t) = 0

i.e. pn(s− t) = 0.

Hence, since |pn(s)− pn(t)| ≤ pn(s− t) = 0. This implies that |pn(s)− pn(t)| = 0. Therefore, pn(s) = pn(t)

This is also a contradiction to the assumption that pn(s) 6= pn(t) and couple with the first contradic-
tion, we can conclude that N(s) is strictly convex.

Theorem 4.7. Let X be a Frechet space with P = {pn}n∈N defining its topology. Let {qi, · · · , qm} ⊂ X be
non-collinear set of points. If X is strictly convex then O = {s |N(s) ≤ N(t)} contains a unique element.

Proof. Let s, t ∈ O. This implies by definition that N(s) = N(t).

Since X is strictly convex which by Theorem 4.6 implies that N(s) is strictly convex. Hence

N(λs+ (1− λ)t) < λN(s) + (1− λ)N(s) = N(s)

λ ∈ [0, 1], let λ =
1

2

N(
s

2
+
t

2
) <

1

2
N(s) +

1

2
N(t) = N(s)

i.e. N(
s+ t

2
) +

N(s) +N(t)

2
= N(s)

This is a contradiction, hence, s = t which implies that O contain a unique element.

5 Conclusions

This paper considered Fermat-Torricelli problem on Frechet spaces as a result of motivation coming from
established results on Fermat-Torricelli problem in normed linear spaces and Banach spaces visited in light
of convex analysis and various norms. This generalization was made by the use of seminorms as gauges.
It was implied that many results for normed linear and Banach spaces respectively were carried over to
this generalized settings and many more in that direction. For a reflexive Frechet space, it was established
that the set of minimizers is weakly compact. This helps to show the existence results for non collinear
points. Convexity criteria were later employed to establish the uniqueness of the minimizer in the case of
non collinear points.

.
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