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Abstract

A diatomic molecule in motion is modeled by the Morse oscillator. It enhances the straightforward harmonic oscillator
model, which assumes that the molecule dissociates at a certain energy and that the vibrational modes converge with
rising energy. Most of its features may be described analytically, and it is frequently used to describe the spectroscopy
of diatomic molecules and anharmonic vibrational dynamics. Studies have been conducted into the diatomic molecules’
behavior as a Morse Oscillator in phase space. Three main types of trajectory categories are investigated. Open trajectory
indicates the unbounded motion, whereas closed trajectory represents the periodic motion. Another trajectory is known
as the homoclinic orbit aided to separate these motions. The trajectory with energy more than dissociation energy is
found to be open, whereas the trajectory with energy less than dissociation energy is found to be closed.
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1. Introduction

A potential energy function known as the Morse po-
tential is named after physicist Philip M. Morse [1].
The intermolecular force between two atoms of a di-
atomic molecule was initially described by it. It
clearly takes into account bond breaking’s effects,
such as the presence of unbound states. As a result,
it provides a more accurate representation of the
molecule’s vibrational structure than the quantum
harmonic oscillator [2]. It also explains how real
bonds are anharmonic. The functional form of Morse
potential is

V (r) = D(1—e %) 2 (1
where D is the molecule’s dissociation energy, and
q is the distance between the two atoms. The depth
of the potential well is represented by D, and its
width is controlled by a. A wide well is represented
by a small o and a narrow well by a large a [3,4].
Figure 1 illustrates the nature of the Morse potential
curve and demonstrates how real molecules do not
exactly follow the law of simple harmonic motion.
Real bonds are elastic but do not follow Hooke's law
because they are not homogeneous enough.

Phase space refers to the set of position and momen-
tum coordinates (g, p) that characterize a dynamical
system. It is a very important concept in physics that
integrates classical and quantum mechanics. Accord-
ing to classical mechanics, phase space is the space of
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all potential states of a physical system. The term”
state” should be understood to include both the posi-
tion (q) and momenta (p) of all the objects in the sys-
tem. As a result, both the system’s position and mo-
mentum are necessary to predict its future behavior
[5,6]. The concept of phase space was developed in the
late 19th century by Ludwig Boltzmann, Henri Poin-
car’e, and Josiah Willard Gibbs [7].

Figure 1: Morse potential curve
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Phase trajectory is the path of a point in a phase
space that depicts how the state of a dynamical sys-
tem changes with time. The Hamiltonian of the sys-
tem H (q,p,t) which depends on generalized co-
ordinates, generalized conjugate momenta of the
system, and time can completely, describes the me-

Figure 2: Structure of oxygen molecule

chanical system. The information concerning the
path taken by the system is given by the analysis of
q with respect to t but gives no details about how
the system is moving. In contrast, analyzing p with
respect to ¢ reveals the time evolution of the system’s
momentum and, consequently, its energy, but does
not provide its position. The investigation of the sys-
tem’s position and momentum evolution without an
explicit correlation to time is made possible by the
analysis of p with respect to q.

Phase-space dynamics refers to the analysis of p with
respect to q. It simply uses p and g to represent
the system’s Hamiltonian or equations of motion.
The system’s behavior can then be graphically rep-
resented by plotting the resulting equation in mo-
mentum space, called phase space trajectory. Every
phase point on the phase space plot depicts the entire
physical state of the system under investigation,
which is one advantage of phase-space dynamics.
The nature of this study is computational and peda-
gogical. This work presents a case study of an oxy-
gen molecule treated as a Morse oscillator. A simple
molecular structure of oxygen is shown in figure 2.

2. Materials and Method

2.1 Hamiltonian

The Hamiltonian is constant and equal to the sum of
the kinetic and the potential energies (the Morse po-
tential). The Morse potential defines one degree of
freedom of the Hamiltonian system. To generate a
phase plot, it is necessary to derive the Hamiltonian
in terms of p and ¢. The Hamiltonian function is
given by,

Hep,) =2 + DA — e~99)2 @)

2.2 Region of Bounded Motion: Periodic orbits

The motion in ¢ of trajectories with energy greater
than D is unbounded. Motions that satisfy

0 < h < D on their trajectory are considered periodic.
These periodic orbits’ level sets are provided by

pZ

2m

h=E + D1 — e 9%)?2 3)

and they encircle the point of stable equilibrium
(g,p) = (0,0). Turning points are the two
unique points where the periodic orbits cross the q-
axis, g4 > 0 and g_ < 0. These turning points

are calculated by

gy = —ilog(l - \/;‘j> > 0 (4)
qg. = —§10g<1+ J?) <0 (5)

The level curve with energy equal to the dissociation
energy h = D has the form:
pZ

2m

D + D(1 — e~%)2 (6)
and is a separatrix connecting the saddle point. It is
referred to as a homoclinic orbit in the language of
Hamiltonian dynamics that separates bounded and
unbounded motion.

For h = D i.e. the energy of the homoclinic orbit,
or separatrix , T(D) = oo, which is the “period of a
separatrix”. For h = 0, which is the energy of the
elliptic equilibrium point. In this case,

V2m

aVD

2.2 Expressions for q(t) and p(?),
For 0 <h<D, q(t) isgiven by

VDh cos( /Z(Dm—_h)at)+D

D-h

TO)= =

(7

Differentiating the expression for q(t) will give the

1
q(t) = ~log

expression for p(t) through the relation q- = %
The homoclinic orbit, corresponding to h = D. The
integral expression for the homoclinic orbits is
1422422

m

qo(t) = ~log—== (8)

Similarly, we obtain py(t) from the relation
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Increasing the total energy h to the value of D and
beyond results in unbounded motion (For 0 < D <
h), trajectories retain the turning point q_, while
q; becomes infinite. The expression for gq_ is
identical to low energies and is obtained from (2) by
setting p = 0 and solving for q.

For unbounded trajectories, it is not possible to de-
fine a (finite) period, but we can obtain an expression
for t asa function of position as

t(q) =

m_ h—D+De~%+,/(h-D){h—D(1—-e~%1)2}
2(h—D) 08 hD e—24

(10)

q =2 as, po(t) =

1
a

An expression for g(t) is given by

hDe2Pt—2pePt+yhD
2(h—D)eBt

q(t) = ~log (11)

2(h=D)
-

Where f =« Using the relation

q % yields the expression of p(t) [3,10].

2.2 Methodology

The current study is both computational and theoret-
ical in nature. It mainly concentrates on Phase space
dynamics of diatomic molecule. Using the Morse
Potential, the necessary Hamiltonian is obtained and
computational calculation is performed by Euler’s
algorithm. Plotting the trajectories is done with the
help of Xmgrace and gnuplot.

3. Results and Discussion

3.1 Morse oscillator over Harmonic oscillator

The two atoms of a diatomic molecule oscillate
about their equilibrium point and have a balance dis-
tance. When the gap widens, the chemical link be-
tween two atoms is shattered. The harmonic oscilla-
tor, which depicts the vibrations of the two atoms
along a bond direction traveling through the centers
of masses, is the most basic model for the motion of
a diatomic molecule. But unlike the approximate ap-
proach for low vibrational quantum numbers pro-
vided by a harmonic oscillator (Hooke’s law), the
behaviors of molecules do not fit this model. Instead,
an exponential form of potential explains how to
bond breaking affects molecule vibrations better
than a harmonic oscillator. The Morse potential is a
particular kind of exponential potential that acts as a
useful model for the potential energy of a diatomic

molecule. Therefore, the laws/equations of simple
harmonic motion do not quite apply to real mole-
cules. The ideal simple harmonic parabola and the
potential curve for anharmonic extension and com-
pression of a typical diatomic molecule (0,) are
shown in Figure 3. The anharmonic potential is
shown by the full line curve, while the harmonic po-

— anharmonic
-- harmonic

5

0 3
Figure 3: Curve comparison between harmonic
and anharmonic potential

tential is shown by the dotted curve. This figure
clearly demonstrates how the Morse oscillator dif-
fers from the harmonic oscillator.

3.2 Phase space trajectory

The phase-space trajectories of the Morse oscillator
for D =10.0,a = 1.0, m = 8.0, as well as for
various values of the Hamiltonian or energy (h) of
the system are depicted in figures 4, 5, 6 and 7. The
equilibrium point at the origin is shown by the black
dot in figure 4 with energy h = 0. The periodic or-
bits of the oscillator at different energies, h = 3.0
and h = 7.0, are represented by the blue and green
trajectories, respectively. These paths are closed and
are referred to as close trajectories. Figure 5 shows
the unbounded motion of the oscillator at different
energies, h = 11.0 and h = 15.0, as represented
by blue and green trajectories. These paths are open
and are referred to as open trajectories. The oscillator
no longer exhibits "back and forth’ motion as a result
of the open trajectory. The open trajectory’s clear
meaning is that the system’s momentum never
reaches zero and always moves in the same direction.
The purple trajectory in figure 6 represents the ho-
moclinic orbit. It stands for the oscillator’s maxi-
mum energy, below which the atom continues to os-
cillate ‘back and forth’ motion and above which the
molecule dissociates into its constituent atoms. The
phase-space trajectory that depicts the oscillator’s
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D =10.0, alpha=1.0,m=8.0
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Figure 4: Periodic orbits

D =10.0, alpha=1.0,m=8.0
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Figure 6: Homoclinic orbits

motion at the boundary when it transitions from a
‘back and forth’ to a dissociation state is called sep-
aratrix. The purple trajectory in figure 6 is very close
in energy to the separatrix and it is extremely close
to it in shape. In figure 7, all of the trajectories with
various energies are compared.

4. Conclusions

The phase space trajectories of the diatomic mole-
cules have been investigated using the Morse poten-
tial. Three different categories of trajectories have
been identified. The first one, which represents peri-
odic motion, is closed or bounded. The second one
is a homoclinic orbit and the third one is an open or

unbounded trajectory that depicts unbounded motion.

The motion in g of trajectories with energy greater
than D is unbounded. The homoclinic orbit, which
described by trajectories with energy h satisfies the
relation 0 < h < D.

D =10.0,alpha=1.0,m=8.0

20

10

10

Figure 5: Unbounded orbits

20

— bounded or perioedic (h < D)
— homoclinic or separatrix (h=D)
—— unbounded (h > D)
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Figure 7: Comparison of orbits
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