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Abstract

Carbonaceous aerosols consist of a bulky but highly variable mass of atmospheric aerosols, mostly 
comprised of Organic Carbon (OC) and Elemental Carbon (EC). OC is emitted directly into the 
atmosphere or formed secondarily from the photo-oxidation process that condensed semi- or non-
volatile compounds and polymerizes organic species in the atmosphere. EC mainly originate from 
incomplete combustion of biomass and fossil fuels, and have an instantaneous consequence on radiative 
forcing effect on regional climate. This study was carried out in Dhulikhel Municipality to determine 
the potential sources and seasonal pathways of carbonaceous aerosols (OC and EC) transporting to 
receptor site by measurement and modeling approaches. The 72 samples were collected (24-hrs) over 
a year (January-December 2018) using a medium volume air sampler. The minimum and maximum 
concentrations of Total Suspended Particulate ranged from 38.00 µg/m3 to 442.45 µg/m3. The annual 
average OC/EC ratio 2.73 ±0.84 indicates the presence of Secondary Organic Aerosols and other major 
sources of carbonaceous aerosols including biomass burning, vehicular emission, and coal combustion. 
Hybrid-Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) air-mass back trajectory analysis 
integrated with meteorological fields was used to identify the potential sources and their atmospheric 
transport pathway. The back trajectories of the 96-hrs period were plotted at 6-hrs intervals starting 
from a single observation location at Dhulikhel. The back trajectories were clustered into four distinct 
seasons to trace temporal variation in the atmospheric aerosols during the study period. The results 
from the HYSPLIT revealed that the sources of particulate pollutants reaching Dhulikhel are local as 
well as of regional origin and are mostly transported from the Middle East and South Asian countries 
like India, Pakistan, Bangladesh, Iran, Saudi Arabia, and Egypt. 
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Introduction

The atmospheric aerosols consist of a bulky but 
highly variable mass of carbonaceous aerosols, 
mostly comprised of Organic Carbon (OC) and 
Elemental Carbon (EC), constituting nearly 30-
70% of the fine particulate mass typically in the 
urban atmosphere (Cao et al., 2003; Fuzzi et al., 
2006; Rengarajan et al., 2007). Generally, OC 
accounts for 10-50%, while EC accounts for minor 
portion (<10%) of the total mass concentration of 
atmospheric particulate matter (Pandit & Seinfeld, 
2006). 

EC is primary pollutant originates from incomplete 
combustion of biomass and fossils fuel  (Seinfeld 
and Pandis  1998), while OC is either emitted 

directly into the atmosphere or formed secondarily 
from the photo-oxidation process that condensed 
semi- or non-volatile compounds and polymerizes 
organic species in the atmosphere (Shakya et al., 
2010; Jimenez et al., 2009). During the thermal 
analysis, EC is differentiated from OC based on 
thermal or optical measurements, therefore OC 
can be regarded as the carbon fraction that evolves 
under a heating cycle in an inert atmosphere, and 
EC as the fraction that evolves during a subsequent 
heating process in presence of oxygen (Karanasiou 
et al., 2015). 

Both OC and EC have significant roles in radiative 
forcing and cloud microphysics, and consequently, 
in regional climate change and precipitation (Wan 
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et al., 2017). Also, the relationship between OC 
and EC provides information on the source of 
origin of the carbonaceous aerosols and the positive 
correlation between them indicates a common source 
of origin (Shakya et al., 2010). The OC/EC ratio is 
developed as an essential diagnostic index that has 
been used to reflect the types and source strength 
of carbonaceous aerosols (Turpin & Lim, 2001). 
OC/EC ratios depends on emission sources and the 
secondary organic aerosol formation and the relative 
amount of OC and EC in the atmosphere, and OC/
EC ratios are the important parameters for the 
assessment of direct/indirect impacts of aerosols on 
the regional scale radiative forcing (Novakov et al., 
2005). However, these ratios depend on the fuel type, 
quantity, and, more importantly, their combustion 
efficiency (Bond et al., 2007; Streets et al., 2004).

The particulate matter including OC and EC can 
remain airborne from days to weeks; therefore, can 
undergo long-distance transport, producing global 
and regional in addition to local impacts on the air 
quality. The transport of air pollutants is mostly 
driven by weather phenomena like vertical air 
motions, along with prevailing winds both dilute and 
disperse particles and gases emitted from various 
sources (Sen et al., 2017), it is also influenced by 
seasonal climate and the atmospheric circulation 
systems (Tripathee et al., 2017). The air-mass back 
trajectories are valuable for the apportionment of 
potential source regions and their pathways, and to 
sightsee the influence of the long-range transport 
of aerosols (Tripathee et al., 2017). 

This study aims to determine the concentrations, 
seasonality, possible sources, and transport 
pathways of carbonaceous particles (OC and 
EC) reaching the receptor site (Dhulikhel, 
Kavrepalanchok from the aerosol sample 
collected from January to December 2018. 
Four distinct seasons—winter (December–
February), pre-monsoon (March-May), monsoon 
(June–September), and post-monsoon (October–
November) – are characterized by South Asian 
Monsoon circulations that affect the weather in 
Nepal (Bonasoni et al., 2010). Based on this, 
seasonal variation has been observed in this study.

Materials and Methods

Study site description

Dhulikhel (27.601°North, 85.538°East) is a 
pleasant hilly city located in the lesser Himalayan 
zone of central Nepal. The city is situated about 
30-kilometer south-east downwind of Kathmandu 
Valley and about 3 kilometer north-west of Banepa 
Municipality. The ambient air quality of the study 
area is influenced by large scale transport of 
pollutants from the Indo-Gangetic Plains and by 
local sources around the highly polluted Kathmandu 
Valley (Shrestha et al., 2010). The southwesterly 
and northwesterly are major surface winds in the 
Kathmandu Valley, which merge into the westerly 
wind channeled to Banepa Valley (Regmi et al., 
2003). The particles concentration gets increased by 
10-20 μg/m3 at Banepa when the westerly winds are 
blown, carrying pollutants out of Kathmandu Valley 
towards Banepa through the south-east Sanga Hill 
(Aryal et al., 2009). During the night time and early 
morning, the Kathmandu Valley is filled by a thick 
cold air pool at low elevations favored by the bowl 
shaped topography of the high mountains (Regmi 
et al., 2003). Thus, any transport of pollutants 
from the Kathmandu Valley to the sampling site at 
Kathmandu University is expected only during day 
time (Shrestha et al., 2010). 

Moreover, the study site is located south-east 
downwind of Bhaktapur Industrial Estate, as well 
as several brick kilns that use low-quality coal from 
January to April (Sarkar et al., 2016). The study site 
is closer to the junction of two national highways 
(Araniko and B.P.), which connect central-hilly 
districts and Terai region to Kathmandu Valley. 
Aside from these sources, notable polluters include 
the pharmaceutical, brewing, plastics, brick, and 
plywood industries.

The study area records a daily mean temperature 
of 16.85°C (max: 24.32°C and min: 5.94°C) and 
a mean relative humidity of 95.91% (max: 100% 
and min: 71.3%) in 2018 (study period). The 
annual rainfall of 1360 mm was recorded in 2018, 
substantial rainfall (1008 mm) was observed in 
monsoon while mild rainfall (329 mm) in pre-
monsoon. The meteorology of Dhulikhel and its 
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surrounding regions is controlled by the South 
Asian Monsoon circulations in the wet season 
(June-September), while Westerlies dominate the 
atmospheric circulation patterns in the dry seasons 
with limited precipitation (Pudasainee et al., 2006; 
Mues et al., 2017). Moreover, meteorology also 
gets influenced by local mountain valley circulation 
(Mues et al., 2018).

Sample collection and analysis

The sampling was carried out under the research 
framework called Atmospheric Pollution and 
Cryospheric Change (APCC), which was established 
in order to examine the transport and influence of 
atmospheric pollution to cryospheric environment 
(Kang et al., 2019). Total Suspended Particulate 
(TSP) samples were collected using medium 
volume air sampler (T2034, Qingdao Laoying, 
China) operated at a continuous flow rate of 100 

L/min at standard condition based on the local 
meteorology. The flow rate was calibrated initially 
during the pre-test. The particles were collected on 
pre-combusted (550 °C for 5 h) quartz fiber filters 
(90 mm in diameter, Whatman plc, Maid-stone, 
UK).

The TSP sampler was set up on the rooftop of three 
storey building of Kathmandu University Central 
Library (25.61894° North and 85.53855° East, 1510 
meters above sea level), situated approximately 2.5 
kilometer north-west of nearest Banepa city in an 
open space, dominated by residential, agricultural 
and forest land use. 

TSP sample (N=72) was collected on every six 
days with each sample lasting 24-hours. However, 
the frequency of sampling was increased for two 
to three samples per week in pre-monsoon (March-
May), slightly modified from Ram et al. (2010b). 

Figure 1: (a) Map of Nepal showing Kathmandu Valley and Kavrepalanchok District (b) Political boundary of Kavrepalanchok 
district and Dhulikhel Municipality (c) Location of sampling site in Dhulikhel
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Ram et al. (2010a) collected 66 samples, Wan et 
al. (2017) collected 68 samples, Wan et al. (2019) 
collected 82 samples for a period of one-year to 
access carbonaceous aerosols. 

The field blank samples were collected approximately 
once after every five samples at the site. All filters 
were carefully transferred in a clean disc, wrapped 
with aluminum foil, and stored in a freezing 
temperature until further analysis (Tripathee et al., 
2016). The aerosol mass loadings were obtained 
gravimetrically using microbalance by weighing 
the filters twice before (wo) and after sampling 
(wt). The net accumulation mass for each filter was 
calculated as the difference between the pre and post 
sampling weight. 

Chemical analysis (OC and EC)

The collected quartz filters were punched in 1.5 
cm2 rectangular filter aliquots to analyze OC and 
EC using EC–OC analyzer (Sunset Laboratory, 
Forest Grove, USA) following the thermo-optical 
transmittance protocol (Ram et al., 2008; Rengarajan 
et al., 2007). The instrument allocates OC and EC by 
applying thermal, chemical and optical properties, 
the OC fraction, evolved during sample heating in 
the inert atmosphere readily gets converted to CO2; 
whereas EC (of refractory nature) is converted to 

CO2 under an oxidizing medium, these evolved CO2 
was reduced to methane (CH4) and measured on 
Flame Ionization Detectors (FID) (Ram & Sarin, 
2010b). For defining the split-point between OC and 
EC and to correct for the pyrolyzed carbon formed 
during the initial charring of organic carbon in an 
inert condition, a 678nm laser source was used and 
every post-analytical run, fix the volume of methane 
was injected as an internal standard to assess the 
performance of FID; whereas potassium hydrogen 
phthalate was used as an external standard (Ram 
& Sarin, 2010). 

Furthermore, quality assurance was regularly 
maintained using Standard Reference Materials 
(GB W08606) designated by National Research 
Center for Certified Reference Materials, China. 
Field blank filters were also analyzed similar to 
test samples.

Cluster analysis of air mass back trajectory

Four-day (96-hrs) air-mass back trajectories arriving 
at the receptor site (Dhulikhel) were computed using 
the NOAA–Air Resource Laboratory’s Hybrid 
Single-Particle Lagrangian Integrated Trajectory 
(HYSPLIT) model (Draxler & Rolph, 2003), at an 
altitude of 500 m above the ground level, which is 
within the planetary boundary layer over Himalayas 
and Tibetan Plateau (Ram et al., 2010a). 

The HYSPLIT model was driven by the 
3-dimensional meteorological fields adopted from 
the GADS- 1o dataset available at National Centers 
for Environmental Prediction Final Analyses-NCEP 
(3-hours temporal resolution, 1°, 111 kilometer 
horizontal resolution and 24 vertical levels). 
The dataset was downloaded from January to 
December 2018 (ftp://arlftp.arlhq.noaa.gov/pub/
archives/gdas1), and these datasets are available 
in ARL format, readable format for the HYSPLIT 
model. Total of 1190 trajectories were given as an 
input to the HYSPLIT model. The four trajectory 
clusters (1, 2, 3, and 4) were computed for each 
seasons, as it gives the best representation of air-
flow classification (Prabhu & Shridhar, 2019). 
The HYSPLIT model provides information on the 
long-range distribution of atmospheric pollutants 
including carbonaceous aerosols, thus can help to 
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assume the location of the source of originating 
air-borne pollutants (Wong, et al., 2012). 

Results and Discussions

TSP mass and seasonal variation

The 24-hour average mass concentration of TSP 
observed to be 226.48 ±106.39 µg/m3 (±Standard 
deviation), that is quite close to the National 
Ambient Air Quality Standard (NAAQS), 2012 of 
Nepal (annual limit: 230 µg/m3). TSP mass ranged 
from 38.00 µg/m3 (in monsoon) to 442.45 µg/m3 
(in pre-monsoon) in 2018. (Table 1).

The mean TSP mass in winter (298.66 ±71.42 µg/
m3) and pre-monsoon (277.67 ±90.50 µg/m3) are 
more than twice that in monsoon (99.02 ±42.52 
µg/m3) and post-monsoon (190.86 ±40.38 µg/m3) 
as presented in Table 1. Moreover, the average TSP 
mass in winter and pre-monsoon was 31.87% and 
22.6% more than the annual average, whereas, in 

monsoon and post-monsoon, it was 56.28% and 
15.73% less than the annual average.

The study done in Bode, Bhaktapur in April 
2013-March 2014 shows that the annual average 
concentration of TSP was 238.24 ±162.24 µg/m3 and 
also indicated mass of TSP in ambient air was more 
in winter (370.21 ±105.12 µg/m3) > pre-monsoon 
(357.69 ±181.53 µg/m3) > post-monsoon (225.13 
±71.58 µg/m3) > monsoon (113.35 ±51.33 µg/m3) 
respectively (Tripathee et al., 2017). According 
to data recorded by the Dhulikhel Air Quality 
Monitoring Station, established by Department of 
Environment, the concentration of TSP in 2018 
ranged from 511.47 µg/m3 (in winter) to 8.14 (in 
monsoon) (DOE, 2021). 

Sometimes low wind speed and shallow planetary 
boundary layers in winter and post-monsoon could 
easily form stagnant weather conditions, which 
is favorable for the accumulating air pollutants. 
Meanwhile, excessive rainfall in monsoon lowers 
TSP levels because it prevents the resuspension of 
dust and wash-out suspended particulates in the 
ambient atmosphere. For most dry days, the TSP 
has exceeded the standard threshold concentration 
(Table 1).

Source Characterization

Inference from OC and EC concentration and 
correlation: The annual average OC and EC 
concentrations in TSP was found to be 18.78 ±12.6 
µg/m3 and 6.42 ±2.89 µg/m3, respectively (Table 
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Table 1: Annual and Seasonal maximum, minimum and average TSP mass at Dhulikhel (2018) 79 

Season Minimum TSP 
(g/m3)

Maximum 
TSP (g/m3)

Average TSP 
(g/m3)

Number of 
samples 

Number of days 
TSP exceeded 
the standard 

Pre-monsoon 
(Mar-May) 

74.14 442.45 277.67 ±90.50 30 20 

Monsoon  
(Jun-Sep) 

38.00 180.69 99.02 ±42.52 20 0

Post-monsoon (Oct-
Nov) 

119.73 248.44 190.86 ±40.38 8 1

Winter 
(Dec-Feb) 

178.62 388.76 298.66 ±71.42 14 11 

Annual 
(Jan-Dec) 

38.00 442.45 226.48 ±106.39 72 26 
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Season 
Average OC 

(g/m3)
Average EC 

(g/m3)
OC % in 

TC 
EC % in 

TC 
TC % in total 

TSP mass 
Pre-monsoon 
(Mar-May) 

21.62 ±13.67 6.87 ±2.2 73.06 ±6.23 26.94 ±6.23 9.63 ±2.77 

Monsoon  
(Jun-Sep) 

7.25 ±2.44 3.22 ±0.91 68.87 ±4.27 31.13 ±4.27 10.84 ±5.97 

Post-monsoon 
(Oct-Nov) 

20.19 ±8.13 7.69 ±2.29 71.56 ±4.05 28.44 ±4.05 14.56 ±3.91 

Winter  
(Dec-Feb) 

28.39 ±9.07 9.32 ±2.14 74.61 ±4.43 25.39 ±4.43 13.36 ±5.65 

Annual 18.78 ±12.6 6.42 ±2.89 72.03 ±5.53 27.97 ±5.53 11.20 ±4.84 
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2), which accounts for 8.29% and 2.83% of the 
TSP mass at the study site. The seasonal average 
mass concentration of EC and OC are presented in 
Table 2, exhibits lower seasonal variability (except 
monsoon) suggesting the study site gets common 
sources and types of aerosols. 

The low concentration during monsoon is attributed 
to relative decrease in the source strength of biomass 
burning emission and removal by wet deposition 
(Ram et al., 2010a). The study done by Islam et al., 
2022 in January 2018 observed the concentration of 
OC in PM2.5 ranged from 20.7 - 9.6 µg/m3, and EC 
in PM2.5 ranged from 6.6 - 3.3 µg/m3 in Dhulikhel. 

The OC% and EC% in total carbon (TC) were found 
to be 72.03 ±5.53% and 27.97 ±5.53%, respectively. 
The annual and seasonal, maximum, minimum and 
average OC%, EC% in TC and TC% in TSP mass 
are presented in Table 2.

The scattered plot (Fig. 3) showed a stronger linear 
relation (R2=0.758) between OC and EC in 2018. 

The relationship between OC and EC in different 
seasons are shown in Fig-4. The correlation 
coefficient of the relationship between OC and EC 
in pre-monsoon was 0.836, likewise in monsoon, 
post-monsoon and winter was 0.764, 0.87, and 
0.77, respectively (Fig. 4). The significant linear 
correlation between OC and EC suggests that the 
carbonaceous aerosols probably have a common 
source of origin (Ram et al., 2012).

6
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Inference from OC/EC ratios: The annual average 
OC/EC ratio was observed to be 2.73 ±0.84 in 
2018, the OC/EC ratio in TSP ranged from 1.48 (in 
monsoon) to 5.55 (in pre-monsoon) as presented 
in Table 3. The higher OC/EC ratio indicates 
prevalence of the OC species over EC, attributed to 
biomass burning, whereas the low ratio indicates the 
higher emissions from fossil fuel (coal and vehicular 
exhaust) combustion (Rai et al., 2021). The lower 
ratio also highlights that the samples contain 
almost entirely primary carbonaceous compounds 
which can be influenced by various factors such as 
meteorology, local sources, and long-range aerosol 
transport (Dinoi et al. 2017).
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The average OC/EC ratio in winter (~3.01) was 
higher compared to other seasons. Moreover, the 
average OC/EC ratios in the four seasons (~2.24–
3.01) exceeds 2, which indicates the presence of 
secondary organic aerosol (Chow et al., 2005). 

The prior study done in Dhulikhel (January 2018) 
measured OC/EC ratio in PM2.5, ranged from 2.9 to 
3.4, with an average OC/EC ratios of 3.1 (Islam et 
al., 2022). OC/EC ratios of 2-4 have been previously 
observed at urban locations in South Asian region 
(Islam et al., 2020; Sharma et al., 2017; Stone et al., 
2010) and are attributed to diesel emissions with 
OC to EC ratio of 0.6438 (Schauer et al., 1999) and 
low-efficiency biofuel combustion (Venkataraman 
et al., 2005). 

The literature suggests that the OC/EC ratio can 
significantly vary while measuring when it is carried 
away from the source of origin (Lim et al., 2003). 
As well, it is claimed that the ratios are likely to be 
influenced by the primary sources of OC, emission 
sources, SOA formation, and deposition removal 
rate (Cachier et al., 1996; Ram et al., 2012). 

Table 4 depicts the OC/EC ratio of the present study 
to that of prior studies.

Air-mass back trajectory analysis and satellite 
observations

To explore the possible source regions of aerosols, 
four-day air-mass back trajectories were computed 
using HYSPLIT model for different seasons 
as shown in Fig-7.  However, due to complex 
topography of the Himalayan region and the 
influence of local/regional transport processes 
related to thermal valley winds, back-trajectory 
results should be described with caution (Tripathee 
et al., 2017). Moreover, the transport of air 
pollutants is mostly driven by weather phenomena 
like vertical air motions, along with prevailing 
winds both dilute and disperse particles and gases 
emitted from respective source (Sen et al., 2017). 

Consequently, the results of HYSPLIT model have 
been discussed together with the satellite-derived 
information on Aerosol Optical Depth (AOD) and 
fire hotspots for the study period. AOD was obtained 
from Modern-Era Retrospective analysis for 
Research and Applications, Version 2 (MERRA-2) 
sensor at 550 nm wavelength (50 km resolution), 
while fire hotspots map was generated from 
Moderate Resolution Imaging Spectro-radiometer 
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Table 4: Comparison of OC/EC ratios with prior studies 129 

Study Area Study Period Mean OC/
EC ratio Source Reference 

Northwestern 
Colorado 

1995 1.1 Motor vehicle 

Watson et al., 2001 1995 2.7 Coal combustion 
emission 

1995 2.97 Coal-fired boilers 
Xi�an, China Sept 2003 to Feb 2004 4.10 Vehicular exhaust Cao et al., 2005 
Kathmandu, Nepal Dec 2007 to Jan 2008 4.47 Vehicular emission Shakya et al., 2010 
Central California July-Aug 1990 6.6 Biomass burning Chow et al., 1996 

Helsinki, Finland March 2006 to Feb 2007 
3.3 Secondary Organic 

Carbon Saarikoski et al., 2008 
6.6 Biomass combustion 

0.71 Traffic 
Kanpur, India Jan 2007 to Mar 2008 7.84 ± 2.4 Biomass burning Ram and Sarin, 2010 
Dhulikhel, Nepal January-December 2018 2.73 ± 0.84  Present study 
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(MODIS) sensors onboard on Terra satellites of 
National Aeronautics and Space Administration 
(NASA).

The air-mass reaching receptor site has illustrated 
two distinct pathways, i.e., during the dry period 
air-mass arrives from Indo Gangetic Plain regions 
of north-west India and eastern Pakistan, while 
during monsoon air-mass arrives mostly from the 
Bay of Bengal (Fig-7), which could be the source 
regions of polluted air mass to our site. Furthermore, 
the results of active forest fire and non-forest fire 
hotspots for the study period showed the occurrence 
of concentrated fire hotspots during dry periods 
(winter and pre-monsoon) as presented in Fig-5, 
which causes an intense haze over this region 
(Tripathee et al., 2017). The prior studies have also 
reported intensive haze in Indo Gangetic Plain and 
Himalayan region during the dry periods (Bonasoni 
et al., 2008; Ram and Sarin, 2015; Tripathee et al., 
2017). 

Besides, the monthly-averaged AOD map at 
wavelength of 550 nm showed the higher aerosol 
loadings across the Indo Gangetic Plain and 
surrounding region, mostly during dry months (Fig-
6). The high AOD during the dry period is mostly 
from biomass burning (Ram and Sarin, 2015; Wan 
et al., 2017) and anthropogenic emissions (Tripathee 
et al., 2017). In the previous discussions, biomass 
burning and anthropogenic activities were identified 
for sources of Carbonaceous Aerosols in TSP of 
the study area. Further, the seasonal pollution 
over the region is shown by satellite data during 
the study period, which could have influenced the 
carbonaceous species at different periods through 
long-range transport and deposition over the 
Himalayan region. 

The air-mass back trajectories obtained from the 
HYSPLIT model for different seasons are described 
below: 

a.	 Winter season (December-February): Most 
of the air-mass arriving at the receptor site 
originates from Middle East and West Asian 
countries. Specifically, cluster-1, accounting 
for about 23% of all trajectories ends up at the 
Arabian Sea and travels through the Uttarakhand 

and Madhyapradesh region of India. Cluster-2 
and cluster-4 end up in Egypt contributing 23% 
and 26% of total trajectories, respectively, and 
cluster-3 originates from Pakistan (Balochistan) 
contributing 28% of total trajectories reaching 
Dhulikhel. The plotted trajectory clusters (1, 2 
and 3) show more than 60% of trajectories of 
air mass enter the receptor site through northern 
India from the Indo-Gangetic Plain which is 
regarded as the most polluted region in Asia 
(Thamban et al., 2017; Prabhu & Shridhar, 
2019) that can consequently affect the air 
quality of the study area. Cluster-1 and cluster-3 
represent slow-moving air mass compared to 
cluster-2 and cluster-3. Figure 5 shows that 
fire incidents are spatially distributed mostly in 
western and central lesser Himalayan regions in 
winter season.

b.	 Pre-monsoon season (March-May): The air 
mass associated with cluster-1 and cluster-3, 
accounting for about 68% of all the trajectories 
could be considered major air masses that end 
up in Pakistan (Punjab) and central Iran, which 
may have significant implications for aerosol 
concentration at the study site. Additionally, air-
masses cluster-2 ended up in India (Jharkhand), 
and cluster-4 ended up in Saudi Arabia, 
contributing 18% and 14% of all trajectories 
reaching the receptor site.

	 More than 80% of air mass appeared from strong 
westerly wind arriving at the study site and 
entering through the western region of Nepal, 
northwest India, and Pakistan, and the climate in 
the Himalayas is strongly influenced by western 
disturbances during this season (Bonasoni 
et al., 2010). Similar results were presented 
by Tripathee et al. (2017); in the dry season, 
a significant amount of pollutants appeared 
at sampling sites in the central Himalayas of 
Nepal (Jomsom and Dhunche) from the Middle 
East region entering through western Nepal, 
northwest polluted Indian cities and Pakistan. 
Furthermore, during the non-monsoon seasons, 
the transport pathways of air masses arriving at 
the central Himalayas of Nepal were similar, 
and northern India appeared to be the foremost 
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source region of particle pollutants (Tripathee et 
al., 2017). As shown in Figure 5, most of the fire 
hotspots were recorded in pre-monsoon when the 
annual average concentration of Carbonaceous 
Aerosols and TSP mass concentrations are also 
higher. The fire hotspots mostly occurred in 
Terai region.

c.	 Monsoon season (June-September): Most 
of the air mass reaching Dhulikhel is highly 
influenced by the South Asian Monsoon as 
shown in Fig. 6, where air-mass cluster-1 ends 
up at the Bay of Bengal contributing to the 
highest proportion of all the air mass (44%) that 
went through Bangladesh and entering receptor 
site from the eastern part of Nepal. The air mass 

of cluster-3 also seems to be prominent because 
it accounts for 29% of total trajectories reaching 
the receptor sites bypassing the northeast region 
of India. The air masses of cluster-2 and cluster-4 
were considered to account for a small portion 
of all the trajectories that originate from India 
(Uttar Pradesh) and Myanmar, contributing 13% 
and 15% of total trajectories respectively.

d.	 Post-monsoon season (October-November): 
Most of the air mass was found to be originated 
from the Middle East (76%) as shown by air-
masses cluster-1 (39%), cluster-3 (30%) and 
cluster-4 (7%) respectively that ended up in 
Saudi Arabia, Egypt (near the Red Sea) and 
Turkey. The air-mass cluster-2, solitarily end 

Figure 5: Fire hotspots in four distinct seasons during the study period in 2018 (red dots symbolize the fire hotspots)
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Conclusion 

The measurements of the Carbonaceous aerosols 
(OC, EC and TC) in the coarse aerosols were 
conducted during a year between January and 
December 2018 at the middle hill site of the central 
Himalayas, Dhulikhel, Nepal. The incidences 
of surpassing the National Ambient Air Quality 
Standards, 2012 prescribed limit for a 24-hour 
daily average mass of TSP were observed with an 
average mass of 229.35 μg/m3. The seasonal TSP, 

OC, and EC levels remained high in pre-monsoon 
and winter, while during the monsoon, TSP mass is 
relatively lower due to the settling down of particles 
from precipitation. 

The annual average OC and EC concentrations in 
TSP was found to be 18.78 ±12.6 µg/m3 and 6.42 
±2.89 µg/m3, which accounts for 8.29% and 2.83% 
of the TSP mass at the study site. Similarly, OC% 
and EC% in total carbon (TC) were found to be 
72.03 ±5.53% and 27.97 ±5.53%, respectively. A 
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stronger linear relation (R2=0.758) between OC 
and EC suggests that the carbonaceous aerosols 
probably have a common source of origin. The 
annual average OC/EC ratio was observed to be 
2.73 ±0.84 in 2018, the OC/EC ratio in TSP ranged 
from 1.48 (in monsoon) to 5.55 (in pre-monsoon). 
The higher OC/EC ratio indicates prevalence of the 
OC species over EC, attributed to biomass burning, 
whereas the low ratio indicates the higher emissions 
from fossil fuel (coal and vehicular exhaust) 
combustion. Moreover, the average OC/EC ratios 
in the four seasons (~2.24–3.01) exceeds 2, which 
indicates the presence of secondary organic aerosol.

The results from air-parcel backward trajectory 
analysis indicates the atmospheric transportation 
that appeared to be reaching Dhulikhel is influenced 
by the two distinct pathways, i.e., from Indo 
Gangetic Plains (IGP) regions during the dry period 
(north-west India and eastern Pakistan) and the Bay 
of Bengal during the monsoon period which could 
be the source regions of polluted air mass to our 
site. The air mass appeared to be transported from 
the Middle East, Bay of Bengal, Arabian Sea, and 
neighboring South Asian countries, passing over 
the desert and Indo-Gangetic Plain before reaching 
Dhulikhel. Thus, the transboundary atmospheric 
aerosol transport and dispersion were observed to 
be significant across the western and central regions 
of Nepal, including the receptor site. Further, 
the seasonal pollution over the region is shown 
by satellite data during the study period, which 
could have influenced the carbonaceous species at 
different periods through long-range transport and 
deposition over the Himalayan region. 
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